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Abstract. We prove some criteria for uniform hyperbolicity based on the periodic
points of the transformation. More precisely, if a mild hyperbolicity condition holds for
the periodic points of any diffeomorphism in a residual subset of a C1-open set U then
there exists an open and dense subsetA ⊂ U of Axiom A diffeomorphisms. Moreover,
we also prove a noninvertible version of Ergodic Closing Lemma which we use to prove
a counterpart of this result for local diffeomorphisms.
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1 Introduction

The notion of uniform hyperbolicity was coined in the mid sixties by the pio-
neering works of Smale and Anosov and constitutes a rich class of dynamical
systems. Indeed, many geometrical, topological and ergodic properties have
been proved to hold for uniformly hyperbolic dynamical systems in both dis-
crete and continuous time setting. From the eminently topological point of
view, one of the greatest achievements by mathematicians in describing uni-
formly hyperbolic behavior was given by the results towards the proof of the
Cr -Structural Stability Conjecture, r ≥ 1, formulated by Palis and Smale in
[27]. Roughly speaking, such Conjecture states that a diffeomorphism f is
conjugated to every diffeomorphism in a small Cr -neighbourhood of it if and
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only if f is hyperbolic (Axiom A) and satisfies the strong transversality condi-
tion. The contributions of Anosov [2], Smale [40, 41, 42], Palis [24, 25, 26],
Palis-Smale [27], De Melo [11], Franks [13], Robbin [36], Robinson [37, 38],
Pliss [32], Mañé [20] and Liao [16], among others, were fundamental to char-
acterize Cr -structural stability (and to give a complete positive answer for the
Conjecture in the case r = 1 ), by methods that rely on periodic orbits.

It is quite natural to understand that periodic orbits are key ingredients to
characterize uniform hyperbolicity and it is natural to ask whether the loss of
hyperbolicity can be observed at this level. Moreover, the more recent devel-
opments on the theory of nonuniformly hyperbolic transformations can be used
to give a positive answer to this question. In fact a recent contribution in this
direction was given by Oliveira, Pinheiro and the present author in [10] that,
inspired by [8, 9, 31], studied the relation between asymptotic growth rates of
the periodic points of diffeomorphisms and local diffeomorphisms on compact
manifolds, and its relations with uniform hyperbolicity and uniform expansion.
More precisely, the authors proved that if a diffeomorphism satisfies the shad-
owing property (in particular if it is conjugated to a hyperbolic one) and the
periodic set is non-uniformly hyperbolic (NUH) such diffeomorphism is hyper-
bolic and an analogous statement for local diffeomorphisms. One of the key
ideas of [10] is that the asymptotic hyperbolicity of a NUH periodic set spreads
out to any recurrent point using the shadowing property. In particular, if the
NUH periodic set exhibits a dominated splitting then any f -invariant probability
measure has only nonzero Lyapunov exponents and, using [6], it follows that f
is uniformly hyperbolic. However, even though dominated splitting is a generic
(residual) feature among robustly transitive maximal invariant sets (see [5], [28])
the strong notion of shadowing seems to be somewhat rare far from uniformly
hyperbolic maps as proved in [12]. Nevertheless, [10] gave rise to some ideas to
prove uniform hyperbolicity used e.g. in [17].

In the present work we are interested in providing new criteria to obtain uni-
form hyperbolicity without assuming the strong shadowing property. Our main
assumption, in both invertible and non-invertible settings, is just that a C1-open
setU exhibits a residual subset of transformations whose periodic sets are NUH.
Note that, in principle, the class of transformations considered here could be
very far from the uniformly hyperbolic ones. Nevertheless, we are able to prove
that under this hypothesis there exists an open and dense subset of U whose
elements present uniform hyperbolicity. We refer the reader to Section 2 for the
definitions and precise statements.

One of the novelties of our approach is that, differently from the strong shad-
owing conditions typically considered when studying the geometrical aspects of
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dynamical systems, we use weak shadowing properties that hold just for points
in total probability sets. This result, known as the Ergodic Closing Lemma, was
proved by Mañé’s [19] in the invertible context and it was extended by us (see
Section 4) to the context of local diffeomorphisms. Since this kind of shadow-
ing by periodic points holds residually in the space of C1-diffeomorphisms and
local diffeomorphisms our criteria provides a generic subset of transformations
exhibiting uniform hyperbolicity.

The paper is organized as follows. In Section 2 we detail the context and give
exact statements of our theorems. The proofs of the criteria to obtain uniform
hyperbolicity from the assumption on the periodic set are given along Section 3
in both invertible and noninvertible context. In the last section, we prove the
version of Ergodic Closing Lemma for Endomorphisms which is needed for the
proof of our Criteria in the Endomorphism case.

2 Setting and statement of main results

Throughout, M will always denote a finite dimensional compact Riemannian
manifold. Let NEnd1(M) ⊂ C1(M) denote the set of C1 nonsingular endo-
morphisms (or local diffeomorphisms) in M endowed with the C1 topology and
let Diff1(M) denote the set of C1 diffeomorphisms on M . First we recall some
necessary definitions.

Definition 2.1. Let 3 be a compact invariant set for a C1 diffeomorphism f of
a manifold M . We say that3 is a hyperbolic set if there is a continuous splitting
T3M = Es ⊕ Eu which is D f -invariant (D f (Es) = Es, D f (Eu) = Eu) and
for which there are constants c > 0, 0 < ς < 1, such that

‖D f n|Es ‖ < c ∙ ςn, ‖D f −n|Eu ‖ < c ∙ ςn, ∀n ∈ N.

Recall also that a diffeomorphism f : M → M is Axiom A if the nonwan-
dering set �( f ) is a hyperbolic set and �( f ) = Per( f ). In such case, �( f )
admits a decomposition �( f ) = �1 ∪ ∙ ∙ ∙ ∪ �w into closed, disjoint transitive
subsets. A cycle on �( f ) is a sequence �i1, . . . , �ik with points x1, y1 ∈ �i1 ,
. . . xk, yk ∈ �ik such that

W s(x1) ∩ W u(y2) 6= ∅, . . .W s(xk) ∩ W u(y1) 6= ∅.

Definition 2.2. Given f ∈ Diff1(M) we say that an f -invariant set X ⊂ M is
a non uniformly hyperbolic set (or simply NUH set) if

(1) There is an D f -invariant splitting TX M = Ecs ⊕ Ecu;
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(2) There exists λ < 0 and an adapted Riemannian metric for which any
point p ∈ X satisfies

lim inf
n→+∞

1

n

n−1∑

j=0

log ‖D f
(

f j (p)
)
|Ecs ( f j (p))‖ ≤ λ

and

lim inf
n→+∞

1

n

n−1∑

j=0

log ‖
[
D f

(
f j (p)

)
|Ecu( f j (p))

]−1
‖ ≤ λ

For simplicity sometimes we will say that f is NUH on X meaning that
X ⊂ M is non uniformly hyperbolic for f . Note that if a set X is NUH and
X has positive measure for some ergodic measure μ, then μ has only nonzero
Liapunov exponents. The properties of such measures for C1+α diffeomor-
phisms are extensively studied in Pesin Theory (see e.g. [29], [30]).

Definition 2.3. Given f ∈ Diff1(M) and an invariant set X ⊂ M , we say that
a D f -invariant splitting TX M = E ⊕ Ê is a dominated splitting if for some
l ≥ 1 there exists 0 < η < 1 so that

sup
v∈E,‖v‖=1

{
‖D f l(x)v‖

}
∙

(

inf
v∈Ê,‖v‖=1

{
‖D f l(x)v‖

}
)−1

≤ η, ∀x ∈ X.

We stress that by a splitting TX M = E ⊕ Ê we mean the usual definition for
which the dimension of the subbundles E , Ê is constant.

As discussed in the introduction, this paper is devoted to study the conse-
quences for an open set U of C1-transformations that exhibits a residual subset
S in which each map exhibits a NUH periodic set admitting a dominated split-
ting. Our first main results are as follows.

Theorem A. Let U ⊂ Diff1(M) be an open subset of diffeomorphisms and
assume that every f in some residual subset S of U, the set Per( f ) ⊂ M
of periodic points of f is non uniformly hyperbolic (NUH), and TPer(g)M =
Ecs ⊕ Ecu is a dominated splitting. Then, there exists an open and dense subset
of U whose elements are Axiom A diffeomorphisms (with no cycles). In partic-
ular, U is contained in the closure of the Axiom A diffeomorphisms set.

Some comments are in order. If, on the one hand, the existence of periodic
points with different index is a clear obstruction to obtain a transitive uniformly
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hyperbolic dynamics, on the other hand the assumption that all periodic points
are hyperbolic and have the same index is not sufficient to guarantee uniform
hyperbolicity. In fact, A. Gogolev[14] has considered examples of diffeomor-
phisms Hölder conjugate to an Anosov diffeomorphism that are not hyperbolic.
It follows from our results in [10] that all periodic points in the example pro-
vided by Gogolev are hyperbolic with the same index and their eigenvalues have
absolute value uniformly far from one.

Our next result is as follows.

Theorem B. Let U ⊂ Diff1(M) be an open subset of diffeomorphisms. Sup-
pose that for any f in some residual subset S of U, the set Per( f ) of periodic
points of f is non uniformly hyperbolic (NUH), and TPer( f )M = Ecs ⊕ Ecu is a
continuous splitting extending to TPer( f )M . Then, there exists an open and dense
subset A of U whose elements are Axiom A diffeomorphisms (with no cycles).
In particular, U is contained in the closure of the Axiom A diffeomorphisms set.

We point out that although Theorem A is a consequence of Theorem B, the
hypotheses in Theorem A are easier to verify. An important remark is also that
in principle, due to Palis’ work (see [25]), Axiom A are not necessarily open if a
no-cycles condition is not assumed. We will need a periodic set semicontinuity
argument in order to obtain the no-cycles condition and the openness stated in
both theorems above. It is also interesting to notice that, at least generically,
bifurcations from uniformly hyperbolic diffeomorphisms are verified by some
lack of hyperbolicity at periodic points. See e.g. [15] for an example where
this is not the case. Furthermore, in the context of the C1-stability theorem (see
[18], [20]), Mañé conjectured that the C1 interior of the subset of diffeomor-
phisms whose periodic points are hyperbolic is the set of diffeomorphisms sat-
isfying Axiom A and the no-cycles condition. Such conjecture was proved by
N. Aoki [3]. By Kupka-Smale theorem there exists a residual subset of C1-
diffeomorphisms exhibiting only hyperbolic periodic points. This shows that it
is much weaker to assume that a property of hyperbolicity in the periodic set
holds just residually, as we do, than also requiring it to be open in the space of
C1-diffeomorphisms.

We will say that a system f has the ergodic closing property if any f -
ergodic measure can be weak* approximated by ergodic measures supported
in f -periodic orbits. By the Ergodic Decomposition Theorem, this is obviously
equivalent to say thatM1( f ) is the closure of the convex hull of ergodic measures
supported in f -periodic orbits.

As a by-product of our techniques we also obtain the following consequence:
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Corollary 2.1. Suppose that f ∈ Diff1(M) exhibits a NUH periodic set with
dominated splitting TPer( f )M = Ecs ⊕ Ecu . If f has the ergodic closing property
then, Per( f ) is hyperbolic.

Let us mention that more recently, inspired in the present paper and tech-
niques, A. Arbieto and L. Salgado proved a version of Thm. A for flows [4].

In the remaining of this section we deal with the non-invertible setting. As
the notion of Axiom A endomorphisms is slightly different and quite elaborated
notion we deal first with the case of expanding transformations. For complete-
ness reasons let us recall some necessary definitions.

Definition 2.4. A C1-map g : M → M on a compact manifold M is expanding
if there are constants C > 0 and σ > 1 such that

‖[Dgn(x)]−1‖ < C ∙ σ−n, ∀n ∈ N.

The following notion deals with expansion at an asymptotic level and it implies
that all Lyapunov exponents of points in X are positive.

Definition 2.5. We say that a map g : M → M is non uniformly expanding
(NUE) on a set X ⊂ M if there exists λ < 0 such that

lim inf
n→∞

1

n

n−1∑

j=0

log ‖[Dg(g j (x))]−1‖ ≤ λ < 0 for all x ∈ X.

We are now in a position to state our criteria to expansion for local diffeo-
morphisms.

Theorem C. Let S ⊂ U a residual subset of an open set U contained in
NEnd1(M). Suppose that each g ∈ S is non uniformly expanding on the set
Per(g) ⊂ M of periodic points. Then, there exists an open and dense subset of
U whose elements are expanding maps.

Remark 2.6. We recall that the condition of NUE in the periodic set of a
specific map f is not strong enough to guarantee by itself that f is an ex-
panding map, even if we also suppose that f is topologically conjugated to
an expanding map. See Remark 1 in [10], where a singular map conjugated to
the doubling map z 7→ z2 in the circle presents a NUE periodic set. A similar
example for the diffeomorphism case can be easily constructed, by taking the
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Smale solenoid instead of the doubling map. See also [7] for an example of
horseshoe whose angle between stable and unstable directions goes to zero.

We also obtain a result analogous to Corollary 2.1 above:

Corollary 2.2. Suppose that g ∈ NEnd1(M) exhibits a NUE periodic set. If g
has the ergodic closing property then f is an expanding map.

Now we deal with the more subtle case of Axiom A endomorphisms and
prove a result analogous to the one of Theorem B. One of the main difficulties
when dealing with non-invertible maps is the possible existence of positively
invariant sets (that is, sets which are equal to their images) for an endomor-
phism that are not negatively invariant. In fact, the single existence of an un-
stable space is not uniquely determined: if the dimension of unstable space
Eu(x) of a point x is not the same of the ambient manifold (which is the ex-
panding map case), for each choice of negative branch in the pre-orbit of x we
may obtain a different unstable space for x . This motivates to the use of unstable
cone fields.

Let X ⊂ M and let E be a subbundle of the tangent bundle T M restricted
to X . Given a point p ∈ X , the cone Ca(p) of width 0 < a = a(p) < 1
around E(p) by

Ca(p) :=
{
v ∈ Tp M, min

w∈E(p)
{∠(v,w) ≤ a}

}

We define the cone field Ca of width a : X → (0, 1) around E as the map
X 3 p 7→ Ca(p). The cone field is continuous if both a and p 7→ E(p) are
continuous.

We say that a cone field Ca around E and a subbundle Ê are complementary,
if E(p)⊕ Ê(p) = Tp M , and Ca(p)∩ Ê(p) is trivial, for all p in the intersection
of the domains of E and Ê .

We now present the definition of hyperbolic set for non-singular endomor-
phisms.

Definition 2.7. Let 3 be a positively invariant compact set for a C1 nonsingu-
lar endomorphism g of a manifold M and set X := ∪+∞

n=0g−n(3). We say that3
is a hyperbolic set if there are complementary invariant subbundle Es of T3M
and a positively invariant cone field Cu

a defined on TX M , such that:

• Es is Dg-invariant, that is, Dg(Es(y)) ⊂ Es(g(y)), ∀y ∈ 3;

• Cu
a is a Dg-invariant, that is, Dg(x) ∙ Cu

a (x) ⊂ Cu
a (g(x)), ∀x ∈ X ;
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• The angle between Es(y) and Cu
a (y) is greater than a positive constant,

∀y ∈ 3.

• There are constants c > 0, 0 < ς < 1, such that ∀n ∈ N

‖Dgn(y)|Es ‖ < c ∙ ςn, ∀y ∈ 3 and

‖[Dgn(x)|Cu
a (x)]

−1‖ := inf
v∈Cu

a (x),‖v‖=1
{‖Dgn(x) ∙ v‖−1} < c ∙ ςn, ∀x ∈ X.

We introduce the following definition of non uniformly hyperbolic set for
endomorphisms.

Definition 2.8. Let g : M → M be a nonsingular endomorphism on a compact
manifold M . We say that a positively invariant set 3 ⊂ M is a non uniformly
hyperbolic set (or simply NUH set) if

(1) There are Dg-invariant, complementary subbundle Ecs whose domain is
3 and a cone field Ccu on X := ∪+∞

n=0g−n(3);

(2) There exists λ < 0 and an adapted Riemannian metric for which any
point p ∈ 3 satisfies

lim inf
n→+∞

1

n

n−1∑

j=0

log ‖Dg(g j (p))|Ecs (g j (p))‖ ≤ λ

and

lim inf
n→+∞

1

n

n−1∑

j=0

log ‖[Dg(g j (p))|Ccu(g j (p))]
−1‖ ≤ λ

Roughly, comparing to the invertible context this condition replaces the exis-
tence of a uniquely determined expanding direction by means of the existence
of an unstable complementary cone field exhibiting non-uniform expansion.

Theorem D. Let U ⊂ NEnd1(M) be an open subset of nonsingular endo-
morphisms on a compact manifold M . Assume that for any g in some residual
subset S ofU, the set Per(g) of periodic points of g is non uniformly hyperbolic,
that the subbundle Ecs extends continuously to Per(g) and that the cone field
Ccu extends continuously to ∪∞

n=0g−n(Per(g)). Then, there exists a residual sub-
set A of U whose elements are Axiom A endomorphisms. In particular, U is
contained in the closure of the set of Axiom A endomorphisms.

For the proof of the theorems in the endomorphisms case, we use
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Theorem E. (Ergodic Closing Lemma for nonsingular endomorphisms.) There
exists a residual subset R ⊂ NEnd1(M) such that for any f ∈ R, the set of
f -invariant probabilities M1( f ) is the closed convex hull of ergodic measures
supported on periodic orbits of f .

Let us mention that Moriyasu [22], proved another version of Ergodic Closing
Lemma for endomorphisms. However, in the paper of Moriyasu, the residual
version of Th. E is not obtained. The generic statement of Th. E is crucial for
the applications.

In fact, the result that corresponds to Moriyasu’s theorem is presented in this
manuscript as Th. 4.1.

On the one hand, Th. 4.1 by itself is not sufficient to extend (non-uniform)
hyperbolicity from the periodic points to produce uniform hyperbolicity.

On the other hand, our main Theorem E presents a C1 residual statement
which produces by far much stronger conclusions. Even in the diffeomorphisms
setting, a result similar to Theorem E and announced by Mañé in [21] was only
proved in detail recently by Abdenur, Bonatti, Crovisier, [1] and in a partially
independent way as this manuscript was being written.

3 Proof of the criteria for generic hyperbolicity

Throughout this section we assume that f is a diffeomorphism in a C1-open set
U and that the periodic set Per( f ) is non uniformly hyperbolic.

Remark 3.1. It is not hard to check that the set Per( f ) is non uniformly
hyperbolic if and only if there exists λ < 0 such that every periodic point p
with period t (p) satisfies

t (p)−1∑

j=0

log
(
‖[D f |Ecu ( f j (p))]−1‖

)
≤ λ ∙ t (p)

and
t (p)−1∑

j=0

log
(
‖D f |Ecs ( f j (p))‖

)
≤ λ ∙ t (p).

Before the proof of Theorem B we recall some notations and preliminary
results. The first of these results is the C1-Closing Lemma proved by Pugh [33].

Theorem 3.2. There is a residual subset R̃ of Diff1(M) such that �( f ) =
Per( f ), ∀ f ∈ R̃.
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Using this version of Pugh’s Closing Lemma, Mañé [19] stated the following
result, often known as Ergodic Closing Lemma, which plays an important role
in our proof.

Theorem 3.3. There is a residual R ⊂ Diff1(M) such that for each f ∈ R, the
set M1( f ) of f -invariant probability measures is the closed convex hull of the
ergodic measures supported at hyperbolic periodic orbits of f .

Given an f -invariant probability measure μ it is well known from the Osele-
dets Theorem [23] that the Lyapunov exponent at x in the direction v ∈ Tx M

λ(x, v) = lim
n→∞

1

n
log ‖D f n(x)v‖,

is well defined in a set of total probability that is, a set that of full measure for
every invariant probability measure. In [6], Cao proved that every nonsingular
endomorphism g for which all invariant measures have only positive Lyapunov
exponents is an uniformly expanding map. An analogous result for diffeomor-
phisms admitting continuous splitting also follows. We will use the following
technical lemma:

Lemma 3.4. [6, Lemma 2] Let g : K → K be a continuous map defined in a
compact metric space K . Let M1(g) be the space of g-invariant probabilities
and let φ be a continuous function on K . If

∫
φdμ < λ, ∀ μ ∈ M1(g), then

there exists N ∈ N such that ∀n ≥ N we have

1

n

n−1∑

i=0

φ(gi (x)) < λ, ∀x ∈ K .

Notice that if g ∈ NEnd1(M) and the condition in hypothesis of the lemma
holds for φ = log ‖Dg−1‖ then g is expanding. Analogously, if f ∈ Diff1(M),
3 is a compact invariant set with the continuous splitting T3M = Ecs ⊕ Ecu ,
and the functions

φ1 = log ‖D f |Ecs ‖, φ2 = log ‖D f −1|Ecu ‖

satisfy the condition of the lemma then 3 is a hyperbolic set for f . Indeed, this
is an immediate consequence of the following simple proposition:

Proposition 3.5. Let g : K → K be a continuous map defined in a compact
metric space K . Let φn : K → R be a g-subadditive sequence of continuous
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functions (that is, φn1+n2(x) ≤ φn1(x) + φn2 ◦ gn1(x), ∀n1, n2 ∈ N). Suppose
that

∫
M φ1dμ < λ, ∀μ ∈ M1(g). Then there exists N such that for all n ≥ N ,

φn(x) ≤ n ∙ λ, ∀x ∈ K .

Proof. By Lemma 3.4 applied to φ = φ1, there is N ∈ N such that

1

n

n−1∑

i=0

φ1(g
i (x)) < λ, ∀x ∈ K .

The subadditivity of φn then implies that

φn ≤
n−1∑

i=0

φ1(g
i (x)) < n ∙ λ, ∀n ≥ N , ∀x ∈ K . �

Taking into account these preliminar results we proceed to prove the main
results stated in the previous section.

Proof of Theorem B. Let R̃ and R be the residual sets given by Pugh’s and
Mañé’s Closing Lemmas, respectively, and let f : M → M be a diffeomor-
phism in the residual set A given by the intersection of S, R̃ and R. There-
fore, not only �( f ) = Per( f ) as the space of invariant probabilities for f
is the closed convex hull of ergodic probabilities supported in periodic orbits.
Take φs := log(‖D f |Ecs ‖), φn = log(‖D f n|Ecs ‖), φu := log(‖[D f |Ecu ]−1‖),
ψn = log(‖[D f n|Ecu ]−1‖) for n ∈ N and K = �( f ) in Proposition 3.5.
Observe that such functions are continuous since the subbundles Ecs and Ecu

vary continuously.
Since f ∈ S, we can use Remark 3.1 to deduce that there exists λ < 0 such

that for every periodic point p with period t (p) we have

∫

�( f )
φsd

(

1
t (p)

∑t (p)−1
j=0 δ f j (p)

)
=

1

t (p)

t (p)−1∑

j=0

φs
(

f j (p)
)

≤ λ

and
∫

�( f )
φud

(

1
t (p)

∑t (p)−1
j=0 δ f j (p)

)
=

1

t (p)

t (p)−1∑

j=0

φu
(

f j (p)
)

≤ λ,

where
1

t (p)

t (p)−1∑

j=0

δ f j (p)
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is the ergodic measure supported in the periodic orbit of p. Using the Ergodic
Closing Lemma for f , all f -invariant probability μ is the limit of a convex
combination of such measures supported in periodic orbits and so we conclude
that ∫

�( f )
φsdμ ≤ λ

and ∫

�( f )
φudμ ≤ λ, ∀μ ∈ M1( f ).

Note that M1( f |�( f )) ' M1( f ). We are under the hypothesis of Proposi-
tion 3.5 (just exchange λ by 0 > λ′ > λ to guarantee the strict inequality in
the statement of Lemma 3.4). Hence, we conclude that Per( f ) = �( f ) is a
hyperbolic set for f .

Now, let us see that (residually) �( f ) has no cycles, and therefore, by [26],
f is �-stable. In particular, there is a neighborhood of f whose elements are
Axiom A.

Given a set S ⊂ M let S(ε) be the ε-neighborhood of S in M .
Consider C the collection of compact subsets of M endowed with Hausdorff

distance given by

dH (K1, K2) := inf
{
ε > 0, K1 ⊂ K2(ε) and K2 ⊂ K1(ε)

}
, ∀K1, K2 ∈ C,

Let K be the set of Kupka-Smale diffeomorphisms, which is residual. Since
hyperbolic periodic points are robust, the map 9 : K → C that assigns each f
to Per( f ) is lower semicontinuous. Hence, there exists a residual subsetR′ ⊂ U
of continuity points for 9.

Note that if g Diff1(M) is an Axiom A with cycles, then g is a discontinu-
ity point for 9. In fact, by [25], there exists an wandering point y out from
a neighborhood of �(g) which by an arbitrarily small perturbation can be
changed into a point of transversal intersection between Stable and Unstable
Manifolds of some basic set of g. Such point y then becomes a nonwandering
point for gn in a sequence tending to g as n → +∞, and is contained in Per(gn).
Therefore, Per(gn) 6→ Per(g) as n → +∞. Since K is a residual subset of
Diff1(M), and transversal intersection between submanifolds is an open prop-
erty, we can take gn to be Kupka-Smale diffeomorphisms. This implies that
g is not a point of continuity for 9.

So we conclude that for f in a residual subset of U, f is Axiom A and has
no cycles. Therefore, we obtained an open and dense subset A ⊂ U, whose
elements are Axiom A (with no cycles). �
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Remark 3.6. Under the conditions of either Theorem A or Theorem B, if it
occurs that for f ∈ A is such that �( f ) has the no cycle condition (see [25])
then we conclude that �( f̂ ) is hyperbolic for all f̂ belonging in an open and
dense subset of U.

As we discussed in the previous section the results in Theorem A follow from
Theorem B by proving that the existence of a dominated splitting over the periodic
set is continuous. More precisely, it is enough to recall the following lemma.

Lemma 3.7. [10, Lemma 14] Let f : M → M be a diffeomorphism on a
compact manifold M . Let X ⊂ M be some f -invariant set. Suppose there ex-
ists some invariant dominated splitting TX M = E ⊕ Ê . Then, such splitting
is continuous in TX M , and unique once we fix the dimensions of E, Ê . More-
over, it extends uniquely and continuously to a splitting of TX M .

Note that Corollary 2.1 is an immediate consequence of the proofs of
Theorems B and A above, as in such corollary we are assuming that the
thesis in Ergodic Closing Lemma holds for f ∈ Diff1(M).

Remark 3.8. Just as in the case of Remark 3.1, Per(g) is NUE if and only if
there exists λ < 0 so that

∑t (p)−1
j=0 log(‖[Dg(g j (p))]−1‖) ≤ λ ∙ t (p) for each

periodic point p with period t (p).

The remainder of this section is now devoted to the proof of Theorem C
and D in the non-invertible context. As the reader may guess the proof of these
theorems goes along the same lines and ideas used in the proofs of Theorems
A and B, using the Ergodic Closing Lemma version for Nonsingular Endo-
morphisms (Th. E). For completeness we write down the proofs anyway.

Proof of Theorem C. Let g : M → M , g ∈ S ⊂ NEnd1(M) belonging in the
residual set R given by Th. E. Therefore, in particular, we have that the space
of invariant probabilities for g is the closed convex hull of ergodic probabili-
ties supported in periodic orbits. Put φ := log(‖[Dg]−1‖). Since g ∈ S, there
exists λ < 0 such that, for any periodic point p with period t (p) we have (see
Remark 3.8):

∫

M
φd



 1

t (p)

t (p)−1∑

j=0

δg j (p)



 =
t (p)−1∑

j=0

φ
(
g j (p)

)
≤ λ,

where
1

t (p)

t (p)−1∑

j=0

δg j (p)
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is the ergodic measure supported in the periodic orbit of p. As the thesis of
Ergodic Closing Lemma holds for g, all g-invariant probability μ is the limit of
a convex combination of such measures supported in periodic orbits and so we
conclude that ∫

M
φdμ ≤ λ, ∀μ ∈ M1(g).

We are again under the hypothesis of the fundamental Proposition 3.5, which
implies that g is an expanding map. �

Corollary 2.2 is a straightforward consequence of the proof above.

Proof of Theorem D. Let g : M → M be a nonsingular endomorphism
belonging to the residual set A given by the intersection of S, R̃ and R, the
last ones given by the Closing Lemmas for Endomorphisms. Therefore, in par-
ticular, we have �(g) = Per(g) and the space of invariant measures for g is
the closed convex hull of ergodic measures supported in periodic orbits. Put
φs := log(‖Dg|Ecs ‖), φu := log(‖[Dg|Ccu ]−1‖). Such functions are continuous,
since the subbundle Ecs and the cone field Ccu are assumed to be continuous.
φs and φu are defined in �(g) and X = ∪n≥0g−n(Per(g)), respectively. Since
g ∈ S, there exists λ < 0 such that, for any periodic point p with period t (p)
we have (just as in Remark 3.1):

∫

�(g)
φsd

(

1
t (p)

∑t (p)−1
j=0 δg j (p)

)
=

1

t (p)

t (p)−1∑

j=0

φs
(
g j (p)

)
≤ λ

and
∫

X
φud

(

1
t (p)

∑t (p)−1
j=0 δg j (p)

)
=

1

t (p)

t (p)−1∑

j=0

φu
(
g j (p)

)
≤ λ,

where
1

t (p)

t (p)−1∑

j=0

δg j (p)

is the ergodic measure supported in the periodic orbit of p. The Ergodic Closing
Lemma for Nonsingular Endomorphisms implies that

∫

�(g)
φsdμ ≤ λ and

∫

X
φudμ ≤ λ, ∀μ ∈ M1(g).

Just as in the previous theorems, we apply Proposition 3.5 to conclude that
Per(g) = �(g) is a hyperbolic set for g. �
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4 Proof of the Ergodic Closing Lemma for nonsingular endomorphisms

For the proof of Theorem E, let us start by fixing some notation. Given x ∈ M ,
we define Bε( f, x) as an ε-neighborhood of the orbit of x . Define 6( f ) as the
set of points x ∈ M such that for every neighborhood U of f and every ε > 0,
there exist g ∈ U and y ∈ M such that y ∈ Per(g), g = f on M \ Bε( f, x) and
d( f j (x), g j (y)) ≤ ε, ∀0 ≤ j ≤ m, where m is the g-period of y.

One important step to obtain the residual version of the Ergodic Closing
Lemma (our Theorem E) is the following result:

Theorem 4.1. For any nonsingular endomorphism f , 6( f ) is a total proba-
bility set, that is, 6( f ) is a full probability set for any f -invariant probability.

Definition 4.2. (ε-shadowing by a periodic point.) Let f and g maps on a
compact metric space 3. Given ε > 0 and x ∈ 3, we say that a g-periodic
point p with period n ε-shadows x iff d(g j (p), f j (x)) < ε, ∀0 ≤ j ≤ n.

Let ε > 0 and a neighborhood U 3 f , U ⊂ NEnd1(M) be given. We define
6( f,U, ε) as the set of points x ∈ M such that there exist g ∈ U and y ∈ M
such that y ∈ Per(g), g = f on M \ Bε( f, x) and d( f j (x), g j (y)) ≤ ε,
∀0 ≤ j ≤ m, where m is the g-period of y. That is, 6( f,U, ε) is the set of
points x ∈ M which are ε-shadowed by a periodic point y ∈ Per(g), for some
g ∈ U. Everytime there is no chance of misunderstanding, we will just write
6(U, ε) instead of6( f,U, ε). If we take a nested neighborhood basisUn of f
in NEnd1(M) then

6( f ) = ∩n∈N6
(

f,Un, 1/n
)
.

Therefore, Theorem 4.1 is an immediate consequence of

Proposition 4.3. For any nonsingular endomorphism f , any neighborhood U
of f and ε > 0, 6(U, ε) = 6( f,U, ε) is a total probability set for f .

Since the proof of Proposition 4.3 is long and involving we divide it in two
main parts that we shall describe next for the reader’s convenience.

Part 1 consists in an improvement of Closing Lemma (see [33], [34], [35],
[43]), roughly stating in particular that given a nonsingular endomorphism f ,
for any point x ∈ M there are ρ > 1 and r > 0 such that if x returns to a
ball B(x, r ′), r ′ < r , then there is an intermediate iterate y = f m(x)(x) which
returns to B(x, ρr ′) that is shadowed by a g-periodic point, where g is some
endomorphism close to f . The precise statement corresponds to Lemma 4.9,
whose proof we write down further in this paper. Let us point out that this first
part of the argument is entirely topological.
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Part 2 uses ergodicity and Birkhoff’s Theorem to show that the set of points
x ∈ M that are shadowed by periodic points of some endomorphism close to
f has total probability with respect to f -invariant measures. In fact, recall first
that typical points for an ergodic invariant measure are recurrent. The arguments
in Part 1 yield that at every time a recurrent point x returns to a ball there is an
intermediate iterate y with the shadowing property we look for, that also returns
to a ball with the same center and whose radius is ρ times bigger. Notice that
if we could take ρ equal to one above there would be nothing to do: the set
of recurrent points and of the ε-shadowable points 6(U, ε) would visit equally
the same balls which imply that they have the same measure. More generally,
using standard Radon-Nikodym derivative calculations, the same conclusion
would be obtained if the μ-measure of a ball and its ρ-homothetic image were
proportional, at least for balls with sufficiently small radius. In fact, given a set
S it is well known that μ-a.e. point x ∈ M we have

χS(x) = lim
r→0

μ(B(x, r) ∩ S)

μ(B(x, r))
.

Applying Part 1 when S = 6(U, ε) one has that for some ρ = ρ(x)

lim inf
r→0

μ(B(x, ρr) ∩ S)

μ(B(x, r))
≥ 1

holds μ-a.e. x ∈ M , due to ergodicity of μ and the fact that asymptotic fre-
quency of visits of a typical point to B(x, ρr) ∩ S is greater or equal than to
B(x, r). If the measures of B(x, r) and B(x, ρr) were proportional, say, by a
factor of ζ > 0, we could obtain

χS(x) ≥ lim inf
r→0

μ(B(x, ρr) ∩ S)

μ(B(x, ρr))
∙
μ(B(x, r))

μ(B(x, r))
≥ ζ > 0,

which implies that the indicator function χS of S is equal to 1 a.e., and so S has
total probability. Even though such proportionality on balls with same center
and different radius may not hold for general measures, rough estimates in such
direction do hold, which are sufficient for our proof. Following the ideas above,
we use a Vitali’s covering like argument to prove that the set of points that
are shadowed by a periodic point of some nearby endomorphism g has total
probability for f . The core of these arguments is contained in Lemma 4.12 and
Theorem 4.14 below.

We proceed to prove Part 1 and its main technical Lemma 4.9.
For that purpose we shall first introduce some notations and proceed to some

perturbation lemmas. As the manifold M is compact, there is δ such that
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{expp, p ∈ M} is an equilipschitz family of diffeomorphisms, such that each
exponential map expp embeds B(0, δ) in a neighborhood Bp of p. Given p ∈ M ,
we define a metric d ′ = d ′

p : Bp × Bp → [0,+∞) given by

d ′(x, y) := | exp−1
p (x)− exp−1

p (y)|.

Obviously, d ′ is Lipschitz-equivalent to the manifold usual metric restricted
to Bp. Setting d ′ as the metric in Bp, then expp isometrically maps B(0, δ) on
Bp = B ′(p, δ), where the quote ’ signs the ball in the metric d ′.

Lemma 4.4. [35] For any η > 0, for any f ∈ NEnd1(M), there is an α > 0
such that for any f ∈ NEnd1(M), any q ∈ M , any two points v1, v2 ∈ Tq M with
B(v2, |v1 − v2|/α) ⊂ B(0, δ) ⊂ Tq M , there is a diffeomorphism h = hq,α,v1,v2 :
M → M , called an α-lift, such that:

(1) h(expq(v2)) = expq(v1);

(2) The closure of set of points where h differs to the identity is contained in
expq(B(v2, |v1 − v2|/α);

(3) d1(h f, f ) < η.

Definition 4.5. (Dynamical neighborhood.) We say that a neighborhood V of a
point p ∈ M is N -dynamical for f if each connected component ∪N

j=0 f − j (V )
contains exactly one point of ∪N

j=0 f − j ({p}).

Lemma 4.6. [13], [43] Let f ∈ NEnd1(M), p ∈ M , N ≥ 1 given such
that all terms in ∪N+1

j=0 f − j (p) are distinct. Then, for any η > 0, there is a

β > 0, and a map f1 ∈ NEnd1(M), called a local linearization of f with the
following properties (1)-(5).

(1) B ′(p, β) is (N + 1)-dynamical for both f and f1, and f − j (B ′(p, β)) =
f − j
1 (B ′(p, β)) for j = 1, . . . , N + 1.

(2) For q ∈ ∪N+1
j=1 f − j (p), let V (q) be the open connected component of

∪N+1
j=1 f − j (B ′(p, β/4)) containing q . Then, f1|V (q) = exp f (q) ◦(Tq f ) ◦

exp−1
q .

(3) f N+1
1 (x) = f N+1(x), ∀x ∈ f −N−1(B ′(p, β)).

(4) f1 = f on M \ ∪N+1
j=1 f − j (B ′(p, β)).

(5) d1( f1, f ) < η.
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Remark 4.7. For the sequel, we need to emphasize two aspects from the last
lemma. On the one hand, we obtain as a direct consequence that if for some
k ∈ N we have that x, f k(x) are both out of ∪N

j=0 f − j (B ′(p, β)), then f k(x) =
f k
1 (x). On the other hand, notice that as η goes to 0, one can take β arbitrarily

small in the last lemma.

Theorem 4.8. (Theorem A in [43].) Let (T , Tq) a complete tree of isomor-
phisms associated to the pre-orbit of a point q0 ∈ M , that is, a collection
of n-dimensional inner product spaces Eq and isomorphisms Tq : Eq → Eq0

associated to each q in the pre-orbit of q0, with Tq0 equal to identity. Given
α > 0, there are ρ > 0 and N ≥ 1 such that: for any ordered set X =
{x0 ≺ ∙ ∙ ∙ ≺ xt} ⊂ Eq0 , there is a point y ∈ X ∩ B(xt , ρ|x0 − xt |) such
that for any branch 0 = {q0, q1, . . . , } of T , there is a point w = w(0) ∈
X ∩ B(xt , ρ|x0 − xt |) which is before y in the order of X , together with N + 1
points c0(0) = c0, . . . , cN (0) = cN ∈ B(xt , ρ|x0 − xt |) satisfying the follow-
ing two conditions:

• c0 = w, cN = y; and

• |T −1
qn
(c j ) − T −1

qn
(c j+1)| ≤ αd

(
T −1

qn
(c j+1) − T −1

qn
(A)

)
, where A := {x ∈

X, w ≺ x ≺ y} ∪ ∂B(xt , ρ|x0 − xt |).

The next lemma is the main target in the first part of our Ergodic Closing
Lemma, whose arguments are just topological. It implies in particular that,
given ε > 0 and any f -recurrent point x , then x has an iterate which is ε-
shadowed by a periodic point of some g close to f .

Lemma 4.9. Given f ∈ NEnd1(M), p ∈ M , ε > 0 and a neighborhood U
of f , there exist r > 0, ρ ′ > 1 such that if for some natural t > 0, we have
x, f t(x) ∈ B ′

r (p), with 0 < r ≤ r , then there exist 0 ≤ t1 < t2 ≤ t and g ∈ U
such that:

• w = f t1(x), y = f t2(x) ∈ B ′
ρ′r (p);

• gt2−t1(w) = w;

• g(z) = f (z) for z /∈ Bε( f, x) and d(g j (w), f j (w)) ≤ ε, ∀0 ≤ j
≤ t2 − t1.

Proof. Take an η > 0 such that the η-ball with center f is contained in U.
Take 1 > α > 0 such that d1(h ◦ f, f ) < η/2, for any α-lift h. Without loss of
generality, we assume that ε < α2. We also assume that ε < δ.
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We assume that p is not periodic for f , otherwise, there is nothing to prove.
This implies that all points in the pre-orbit of p are distinct. Let ρ > 2 and N ≥ 1
be the numbers provided by Theorem 4.8, for α > 0 taken as above, and for
q0 = p, each q j to be some j-pre-image of p, Eq j = Tq j M and Tq j = D f j (q j ).

So, take r > 0 such that r < ε/(6ρ) and diam( f − j (B ′(p, 3ρr)) < ε,
∀ j = 0, . . . , N + 1. We assume that each connected component of
∪N+1

j=0 f − j (B ′(p, 3ρr)) contains exactly one point q j ∈ f − j (p), j = 1, . . . ,

N + 1. In particular, if z, f t̂(z) ∈ B ′(p, 3ρr), then t̂ > N + 1.
Now, assuming that x, f t(x) ∈ B ′(p, r), for some 0 < r < r we can apply

Theorem 4.8 to the set X = {x, f (x), . . . , f t(x)} ∩ B ′(p, 3ρr) endowed with
the order given by the iterate number: if f k(x), f k̂(x) ∈ X , then f k(x) ≺
f k̂(x) ⇔ k < k̂. Therefore, set ρ ′ = 3ρ. We then obtain f t2(x) = y ∈
{x, . . . , f t(x)} ∩ B ′( f t(x), ρ ∙ d ′( f t(x), x)) ⊂ B ′(p, ρ ′r) such that for any
branch 0 = {p = p0, p1, . . . , pn, . . . } of the pre-orbit of p, there is w =
w(0) = f t1(x) ∈ {x, . . . , f t(x)} ∩ B ′( f t(x), ρ ∙ d ′( f t(x), x)), with t1 =
t1(0) < t2 together with points c0 = c0(0), . . . , cN = cN (0) ∈ B ′( f t(x), ρ ∙
d ′( f t(x), x)) such that:

(a) c0 = w, cN = y; and

(b) |T −1
p j
(c j )−T −1

p j
(c j+1)| ≤ αd(T −1

p j
(c j+1), T −1

p j
(A)), where A := { f j (x) ∈

X; t1 < j < t2} ∪ ∂B ′( f t(x), ρ ∙ d ′( f t(x), x)).

As w = w(0) and y are both in X , there is a natural number k(0) ≥ 1
such that f k(0)(w(0)) = y. Note that k(0) > N + 1, as ∪N+1

j=0 f − j ({y}) ∩
B ′(p, 3ρr) = y, from our choice of r . Setting z := f k(0)−N−1(w(0)), we
see that z does not depend on the branch 0 of p, since w(0) and y are in
X , f k(0)(w(0)) = y and y, N do not depend on 0. By our choice of r ,
since y ∈ B ′(p, 3ρr) there is a unique connected component VN+1 ⊂
f −(N+1)(B ′(p, 3ρr)) such that z ∈ VN+1. Also, there is a unique pN+1 ∈
f −(N+1)(p) ∩ VN+1. From now on, we fix 0 as some branch of p contain-
ing pN+1 (That is, 0 = (p = p0, . . . , pN+1, . . . )), and we consider all con-
stants w, c0, . . . , cN , k obtained by applying Theorem 4.8 with respect to such
branch. For each p j , j = 0, . . . , N − 1, let h p j be the α-kernel lift ob-
tained by treating in Lemma 4.4 q = p j , v1 = [D f j (p j )]−1(c j ), v2 =
[D f j (p j )]−1(c j+1). Defining a map g : M → M by

g :=

{
h p j ◦ f1 on V (p j+1);

f1 on the rest of M,

we have that g ∈ NEnd1(M) and d1(g, f ) < η. Thus g ∈ U.
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Due to condition (b) above, the g-orbit from w to z never touches the region
in which g 6= f1. Therefore, gk−(N+1)(w) = f k−(N+1)

1 (w). By remark 4.7, we
also have that f k−(N+1)(w) = f k−(N+1)

1 (w), and thus

gk−(N+1)(w) = f k−(N+1)(w) = z.

Now, it is easy to see that gN+1(z) = w and then gk(w) = w. In fact,
f N+1
1 (z) = y, and the lifts h pN−1, . . . h0 gradually and slightly modifies f1-orbit

segment joining z and y, in such way that gN+1(z) = w and d(g j (z), f j (z)) ≤
d(g j (z), f j

1 (z))+ d( f j
1 (z), f j (z)) < ε, ∀ j = 1, . . . , N + 1. �

Now we proceed to prove the second part of the proof of Proposition 4.3.

Although the main idea of this part is borrowed from [19], the proofs we
have written are presented in an abstract setting for future use and bookkeeping
purposes. This will also clarify the sort of arguments which are used.

We start by introducing some notation. We say that a subset C of the torus
T s is a cube if it can be written as A = I1 × ∙ ∙ ∙ × Is , where the sets Ii are
intervals of same length in S1 (containing both, none, or one of its boundary
points). If pi is the middle point of Ii , we say that the point (p1, . . . , ps) is
the center of A. The length of the intervals Ii is called the side of the cube.
For each k ∈ N+, let (P(k)j ) j∈N+ be a sequence of partitions of T s by cubes

whose side is 2π/k j . For every atom P of a partition P(k)j , we can associate

cubes P̂ and P̃ having the same center of P , but with sides 2π/k j−1 and
6π/k j−1, respectively. If x ∈ T s , denote by P (k)

j (x) the atom of P(k)j con-
taining x . Suppose that M is isometrically embedded in T s . We recall the
following useful fact on such kind of partitions.

Lemma 4.10. [19, Lemma I.5] For every probability measure μ on the Borel
sets of T s , every δ > 0 and for all odd natural k, the following inequalities
holds for any j ≥ 1:

μ
({

x;μ
(
P (k)

j (x)
)

≥ δμ
(
P̂ (k)

j (x)
)})

≥ 1 − δks

and
μ

({
x;μ

(
P (k)

j (x)
)

≥ δμ
(
P̃ (k)

j (x)
)})

≥ 1 − δ3sks .

Let f ∈ NEnd1(M), ε > 0, a neighborhoodU of f and an ergodicμ ∈ M1( f )
be given. Extend μ to a measure on T s by μ(A) := μ(A ∩ M), for all Borel
set A ⊂ T s . Let f ⊂ M be some Borelian set and suppose that f(r, ρ), where
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r > 0, ρ > 1, is some Borelian set whose elements are points x ∈ M with the
following property: if y ∈ B ′

r ′(x) for some 0 < r ′ ≤ r and f t(y) ∈ B ′
r ′(x), for

some t > 0 then there exist 0 ≤ t1 < t , such that f t1(y) ∈ B ′
ρr ′(x) ∩ f. Take

ri > 0, ρl > 1 two monotone sequences converging respectively to 0 and +∞.
Our first target in this second part is to obtain an abstract result (The-

orem 4.14) which will be essential in both proofs of Proposition 4.3 and The-
orem E. Such result says that, if ∪i,lf(ri , ρl) = M , then f has total probability
for f .

Remark 4.11. All results from this point of the paper up to Theorem 4.14 do
not use much regularity of f . In fact, specifically for the statements from
Lemma 4.12 up to Theorem 4.14, we only request f : M → M to be a Borelian
map such thatM1( f ) 6= ∅. This occurs, for instance, if f is a continuous map.

For each pair (i, l), we can find and odd natural k = k(i, l) and j (i, l) such
that ∀ j ≥ j (i, l) and x ∈ T s there exists 0 ≤ r ≤ ri satisfying

P (k)
j (x) ⊂ Br (x)

and
P̂ (k)

j (x) ⊃ Bρl r (x),

the balls here are taken in the torus. The next lemma is where the μ-ergodicity
is necessary for the proof of Proposition 4.3.

Lemma 4.12. If x ∈ f(ri , ρl), j ≥ j (i, l), k = k(i, l) and μ(P (k)
j (x)) ≥

δμ( P̂ (k)
j (x)), we have:

μ
(
P̂ (k)

j (x) ∩ f
)

≥ δμ
(
P̂ (k)

j (x)
)
.

Proof. As μ is ergodic, for μ-typical y ∈ M , we have that

μ
(
P̂ (k)

j (x) ∩ f
)

= lim
n→+∞

1

n
#
{
1 ≤ t ≤ n; f t(y) ∈ P̂ (k)

j (x) ∩ f
}
,

and

μ
(
P (k)

j (x)
)

= lim
n→+∞

1

n
#
{
1 ≤ t ≤ n; f t(y) ∈ P (k)

j (x)
}
.

By the definition of f(ri , ρl), between any pair of natural numbers n1 and n2

such that f n1(y), f n2(y) ∈ P (k)
j (x) ⊂ B ′

r (x), there exists n1 ≤ t1 < n2, such
that

f t1(y) ∈
(
B ′
ρl r (x) ∩ f

)
⊂

(
P̂ (k)

j (x) ∩ f
)
.
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This implies that

#
{
1 ≤ t ≤ n; f t(y) ∈ P̂ (k)

j (x) ∩ f
}

≥ #
{
1 ≤ t ≤ n; f t(y) ∈ P (k)

j (x)
}

− 1.

Hence
μ

(
P̂ (k)

j (x) ∩ f
)

≥ μ
(
P (k)

j (x)
)

≥ δμ
(
P̂ (k)

j (x)
)
. �

Now define 30
δ(i, l), for δ > 0, as the set of points x ∈ T s such that for

k = k(i, l), we have

μ
(
P (k)

j (x)
)

≥ δμ
(
P̂ (k)

j (x)
)

and μ
(
P (k)

j (x)
)

≥ δμ
(
P̃ (k)

j (x)
)
,

for an infinite sequence ς(x) of values of j , and set 3δ(i, l) := 30
δ(i, l) ∩

f(ri , ρl). The next lemma, a kind of Vitali’s covering lemma, will be useful to
estimate the measure of fc.

Lemma 4.13. Given a neighborhood V of fc ∩3δ(i, l), there exist sequences
xq ∈ fc ∩3δ(i, l), ( jq), jq ∈ ς(xq) ⊂ N, q = 1, 2, . . . , such that

(1) The sets P̂ (k)
jq (xq), q ∈ N are disjoint and contained in V ;

(2) μ
(
(fc ∩3δ(i, l)) \ ∪q∈N P̂ (k)

jq (xq)
)

= 0.

Proof. By standard measure theoretical arguments, a translation τ : T s → T s

can be found in such way that

μ
(
τ
(
∪

{
∂ Â; A ∈ P(k)j , k ≥ 1, j ≥ 1

}))
= 0;

where ∂ Â is the boundary of Â ∈ P̂(k)j . Denoting by F the family of sets

P (k)
j (x) with x ∈ 3δ(i, l) ∩ fc and j ∈ ς(x). Take a sequence Au ∈ F

satisfying:

(1) Âu ⊂ V , ∀u ∈ N, and μ( Âu ∩ Âe) = 0, ∀1 ≤ e < u.

(2) diam(Au) = max{diam(A); Â ⊂ V and μ( Â ∩ Âe) = 0, ∀1 ≤ e < u}.

Such properties imply that limu→+∞ diam(Au) = 0 and
∑

u

μ(Au) = μ(∪u Au) ≤ 1. (1)

We claim that for N ≥ 1

(
3δ(i, l) ∩ fc

)
\ ∪N

u=1 Âu ⊂ ∪u>N Ãu . (2)
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In fact, if x ∈
(
3δ(i, l) ∩ fc

)
\ ∪N

u=1 Âu , there exist A ∈ F with x ∈ A and

Â ∩ (∪N
u=1 Âu) = ∅. Take N1 > N such that Â ∩ Âu = ∅, ∀1 ≤ u < N1 and

Â ∩ ÂN1 6= ∅. By item (4) above, it follows that diam( Â) ≤ diam( ÂN1). This
implies that Â ⊂ ÃN1 and then

x ∈ A ⊂ ÃN1 ⊂ ∪u>N Ãu,

which concludes the proof of equation 2. By such equation and our assumption
that partition elements borders have zero measure, we obtain that

μ
((
3δ(i, l) ∩ fc

)
\ ∪N

u=1 Âu

)
= μ

((
3δ(i, l) ∩ fc

)
\ ∪N

u=1 Âu

)
≤

μ
(
∪u>N Ãu

)
≤

∑

u>N

μ( Ãu) ≤ δ−1
∑

u>N

μ(Au).

Due to eq. (1) the tail sum above goes to zero as N → +∞, which implies the
lemma. �

Lemmas 4.12 and 4.13 are the key ingredients in the

Theorem 4.14. Let M be a compact Riemannian manifold and let f : M → M
be a measurable Borelian map such that M1( f ) 6= ∅. Let f ⊂ M and f(r, ρ)
be Borelian subsets of M , where r > 0, ρ > 1.

Suppose that the points x ∈ f(r, ρ) have the following property: if y ∈ Br ′(x)
for some 0 < r ′ ≤ r and f t(y) ∈ Br ′(x), for some t > 0 then there exist
0 ≤ t1 ≤ t , such that f t1(y) ∈ Bρr ′(x) ∩ f. Suppose also that ri > 0, ρl > 1
are two monotone sequences converging respectively to 0 and +∞, such that
∪i,lf(ri , ρl) = M . Then, f has total probability with respect to the map f .

Proof. Consider 30
δ(i, l) and 3δ(i, l) = 30

δ(i, l) ∩ f(ri , ρl) the same sets
defined above in our text. By Lemma 4.10, this implies that

μ
(
30
δ(i, l)

)
≥ 1 − δ

(
ks + 3sks

)
.

Since the last inequality implies that ∪+∞
n=131/n(i, l) = f(ri , ρl)(mod 0) it is

enough to prove that

μ
(
fc ∩3δ(i, l)

)
= 0, ∀0 < δ < 1.

In fact this implies that f ⊃ f(ri , ρl) mod (0) and, consequently,

f ⊃
(
∪i,l f(ri , ρl)

)
= M mod (0).
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We will then have μ(f) = μ(M) = 1, and the proof of Theorem 4.14 will be
completed.

Fix (i, l) and δ > 0. Let V a neighborhood of 3δ(i, l) ∩fc. By lemmas 4.12
and 4.13 it follows that

μ(V ) ≥
∑

q

μ
(
P̂ (k)

jq (xq)
)

≥
1

1 − δ

∑

q

μ
(
P̂ (k)

jq (xq) ∩ fc
)

=

1

1 − δ
μ

((
∪q P̂ (k)

jq (xq)
)
∩ fc

)
≥

1

1 − δ
μ

(
3δ(i, l) ∩ fc

)
.

But if μ
(
3δ(i, l) ∩ fc

)
> 0, one can take V satisfying

μ(V ) <
1

1 − δ
μ

(
3δ(i, l) ∩ fc

)
,

contradicting the last inequality. Hence μ
(
3δ(n,m) ∩ fc

)
= 0. �

Now, let us finish the proof of Proposition 4.3 (which implies Theorem 4.1).

Proof of Proposition 4.3. Define 6(U, ε, r, ρ), where r > 0, ρ > 1, as the
set of points x ∈ M such that if y ∈ Br ′(x) for some 0 < r ′ ≤ r and f t(y) ∈
Br ′(t), for some t > 0 then there exist 0 ≤ t1 < t2 ≤ t , g ∈ U and z ∈ M such
that g = f on M \ Bε( f, x),

gt2−t1(z) = z, d(g j (z), f j ( f t1(y)) ≤ ε,

∀0 ≤ j ≤ t2 − t1,

and
f t1(y) ∈ Bρr ′(x).

In particular, f t1(y) ∈ 6(U, ε). It is easy to see that 6(U, ε, r, ρ) is a Borelian
set. Again, let ri > 0 and ρl > 1 to be two monotone sequences converging
respectively to 0 and +∞. We note that Lemma 4.9 implies that

M = ∪i≥1 ∪l≥1 6(U, ε, ri , ρl),

for every neighborhood U of f and every ε > 0. So, taking f = 6(U, ε)
and f(ri , ρl) = 6(U, ε, ri , ρl) in Theorem 4.14, we conclude that μ(f) =
μ(6(U, ε)) = 1 for all f -ergodic probability. By Ergodic Decomposition
Theorem, this implies that 6(U, ε) has total probability. �
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So far, we have proven the raw version of Ergodic Closing Lemma for
Endomorphisms (Theorem 4.1). The next lemma will be used in the proof of
the residual version of Ergodic Closing Lemma. We denote by M(M) the set of
probabilities on M endowed with the weak-* topology.

Lemma 4.15. Let f : M → M be an endomorphism. Suppose that, for x in
a total probability set S ⊂ M , given ε > 0 and a neighborhood U of f , there
exists gx,ε ∈ U with a periodic point p = p(x, ε) which ε-shadows x . Then,
given any ergodic measure μ ∈ M1( f ), there are gk → f and gk-periodic
points pk such that μ is the limit of the sequence (μk) of gk-ergodic measures
respectivelly supported in the orbit of pk . Moreover, each pk can be taken to be
a hyperbolic periodic point for gk .

Proof. Let us consider an f -ergodic probability μ. We suppose, without loss
of generality, that μ is not supported in a periodic orbit, otherwise there is
nothing to prove. For a μ-typical point x ∈ M , we can assume that x is re-
current (by Poincaré’s Recurrence Theorem), has the shadowing property as in
lemma’s statement, and that

1

n

n−1∑

j=0

δ f j (x) →weak−∗ μ, (3)

as n → +∞. In the last claim we made use of the Ergodic Decomposition
Theorem.

Set ε1 = 1 and nk > 0 as the first return time of the orbit of x to B(x, εk),
where

εk+1 := d
(

f nk (x), x
)/

2, ∀k ≥ 1.

Therefore, nk → +∞ as k → +∞. By hypothesis, one can take a sequence
of gk := gx,εk , with gk → f , exhibiting gk-periodic points (pk) such that
each pk εk/3-shadows the orbit of x . In particular, the period tk+1 of pk+1

is, at least, nk (otherwise, the orbit of x would return to B(x, εk) before nk).
So, tk+1 ≥ nk implies that tk → +∞ as k → +∞, and (up to take a subse-
quence) we can suppose that tk are distinct. Note that slightly perturbing gk in
the neighborhood of pk , we can suppose that pk is hyperbolic. Set μk as the gk-
ergodic probability supported in the orbit of pk . We will show that μk →weak−∗ μ

as k → +∞. From equation 3 we have that

νk =
1

tk

tk−1∑

j=0

δ f j (x) →weak−∗ μ,
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as k → +∞. Let α > 0 and {ϕ1, . . . , ϕs} ⊂ C0(M) be given. All we need to
see is that there exists k0 ∈ N such that μk belongs to the neighborhood

Vϕ1,...,ϕs ;α :=
{
ν ∈ M(M); |

∫
ϕi dν −

∫
ϕi dμ| < α, ∀i = 1, . . . , s

}
,

forall k ≥ k0. In fact, as ϕi , i = 1, . . . , s are uniformly continuous, take
ε > 0 such that |ϕi (y) − ϕi (z)| < α/2, ∀i = 1, . . . , s, ∀y, z ∈ M such that
d(y, z) < ε. Then, take k0 such that εk < ε/2,and |

∫
ϕi dνk −

∫
ϕi dμ| < α/2,

∀k ≥ k0, ∀i = 1, . . . , s. We conclude that

|
∫
ϕi dμk −

∫
ϕi dμ| ≤ |

∫
ϕi dμk −

∫
ϕi dνk | + |

∫
ϕi dνk −

∫
ϕi dμ| <

1

tk

tk−1∑

j=0

|ϕi ( f j (x))− ϕi (g
j
k (pk))| + α/2 ≤ α, ∀i = 1, . . . , s;

which implies the lemma. �

Now, we proceed with the proof of Theorem E, by deriving it from Theorem
4.1 and Lemma 4.15 above. The arguments here are basically the same as in
Theorem 4.2 in [1].

Proof of Theorem E. For m ∈ N fixed, by standard transversality arguments,
the collection Km of endomorphisms f such that all periodic points of f , with
period up to m are hyperbolic is an open and dense subset NEnd1(M). So
R̂ := ∩+∞

m=1Km is a residual set. Let the set of probabilities M(M) on M to
be endowed with the weak-* topology and let κ be the collection of compact
subsets of M(M) endowed with Hausdorff distance. Given f ∈ R, denote
by Mper ( f ) the set of f -ergodic measures supported in f -periodic orbits. Set
ϒ : R̂ → κ given by

ϒ( f ) = Mper ( f )

Due to the robustness of hyperbolic periodic points, such ϒ is lower semicon-
tinuous. This implies that there is a residual subset R ⊂ R̂ whose elements are
continuity points for ϒ .

From now on, let f ∈ R. Let us prove that M1( f ) is the closed convex hull
of f -ergodic measures supported in f -periodic orbits. By Ergodic Decompo-
sition Theorem, all we need to prove is that any f -ergodic measure μ is in
Mper ( f ). By Lemma 4.15, such measure μ is accumulated by μk ∈ Mper (gk),
where gk → f as k → +∞. As R̂ is residual, by means of a slight perturba-
tion, we can suppose that gk ∈ R̂ (as we construct pk to be hyperbolic in the
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proof of that Lemma 4.15, such pk persist under any sufficiently small perturba-
tion). Since f is a continuity point for ϒ , we have that Mper (gk) → Mper ( f )
as k → +∞, and this implies that μ ∈ Mper ( f ).

Therefore, Mper ( f ) contains all f -ergodic measures, and by Ergodic De-
composition Theorem, we conclude that M1( f ) is the closed convex hull of
f -ergodic measures supported in periodic orbits. �
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