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ABSTRACT: The fitting of ab initio electronic energies of polyatomic molecules for
different nuclear configurations is an active field in quantum chemistry and is an
important step in the study of chemical reaction dynamics and for the determination of
rovibrational spectra. The choice of a good-fitting function and the decision as to which
geometries are relevant for the problem remains a matter of feeling as a large number
of ab initio points of good quality usually involves prohibitively large amounts of CPU
times. More recently, the use of neural networks has drawn some attention for fitting
potential energy surfaces (PES). Neural networks are generic function approximators for
any required accuracy and are therefore well suited for fitting many-dimensional PES.
In this work we present a comparative study for the ground state PES of the H3�

molecule obtained fitting state-of-the-art ab initio points. The PES is obtained using both
a neural network and a polynomial function in Morse-type symmetry-adapted
coordinates. The quality of the surfaces is asserted by computing the associated
rovibrational spectra. The resulting energies are compared with known experimental
results. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 95: 281–288, 2003
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Introduction

I n the study of properties of molecular systems
such as rovibrational levels, photodissociation

cross-sections and chemical reaction dynamics usu-
ally require the knowledge of a potential energy
surface (PES) for the nuclear motion under the
Born–Oppenheimer approximation [1] and is also
required for nonadiabatic corrections of the dynam-
ics. The PES is obtained by fitting ab initio and/or
experimental data using a functional form, usually
a polynomial in a coordinate system chosen to in-
corporate any symmetry in the system. Examples
are the Morse symmetry–adapted deformation co-
ordinates [2] and the bond-order coordinates [3],
among others [1].

More recently, some articles dedicated some at-
tention to the use of a neural network (NN) for
fitting a PES [4–9]. Neural networks have also been
applied for the estimation of correlation energy in
diatomic molecules [10], for the determination of
the PES of a macromolecule by learning the rela-
tionship between the vibrational spectra and the
PES itself [11], and for constructing maps of PES
and observables [12]. The use of a NN in physics
and chemistry is not devoid of some criticism [13],
and the pros and cons of its use still need further
investigation.

The current article aims to discuss some issues
on the relevance of the use of NNs for PES fitting by
an application to the ground state of the H3

� mole-
cule. Being a two-electron system, it allows for very
accurate electronic structure calculations. In Ref. [2],
Cencek et al. obtained ab initio confidence interval
(CI) calculations plus adiabatic and relativistic correc-
tions resulting in a sub–micro-Hartree accuracy for 69
geometries relevant for the determination of vibra-
tional levels. These were obtained in a subsequent
article [14] using a 7th-, 9th-, and 10th-order polyno-
mial in Morse-type symmetry–adapted coordinates,
and improved by introducing nonadiabatic correc-
tions to the nuclear dynamics [15]. A fit using an NN
was obtained in Ref. [4] but using lower precision
electronic energies [16, 17]. In the current work, we
obtain a PES for the H3

� molecule using an NN to fit
the points in Ref. [2]. Both this PES and the one
obtained in Ref. [14] are used to compute vibrational
energy levels of the molecule. The results obtained are
then compared with experimentally determined band
origins. This is the first comparative study, to the
authors’ knowledge, of the use of NNs for PES fitting
relative to a standard fit procedure, with a compari-

son to experimental data, and sheds some light on the
issue as to whether and when to use the current
approach.

The structure of the article is the following: in the
next section we present the NN theory required for
function fitting; afterward we obtain a PES for the
H3

� molecule. This PES is then used to compute
vibrational levels for the system, with a comparison
with other theoretical results and experimental en-
ergy levels. The article is closed with some conclud-
ing remarks and perspectives for future work.

Function Approximation Using Neural
Networks

A SINGLE NEURON

The basic unit of an NN is a single neuron as
depicted in Figure 1. Each neuron receives a given
number of inputs xi, i � 1, . . . , n. The output is
computed in two steps: first the inputs are com-
bined linearly with some prescribed weights:

z � �
i�1

n

wixi, (1)

where z is the activation of the neuron and the wi

are also called the synaptic weights associated to
the synaptic connections. In the second step the
output is obtained as a function of the input by

y � �� z�, (2)

where � is the activation function. Many choices are
possible for � as, for instance, the logistic function:

FIGURE 1. Structure of a single neuron.
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�� z� �
1

1 � exp��z�
, (3)

the hyperbolic-tangent function

�� z� � a tanh�bz�, (4)

where a and b are adjustable parameters and the
linear function

�� z� � z. (5)

NETWORK STRUCTURE

An NN is formed using neurons connected such
that some outputs are used as inputs of other neu-
rons. The network then has a global set of inputs
and outputs and synaptic connections. To each con-
nection we associate a synaptic weight. For the
specialized task of function approximation we are
particularly interested in the feed-forward fully
connected NN, illustrated in Figure 2. The network
is structured in different layers. The first layer
(from above, seen in Fig. 2) is formed by the input
neurons such that the outputs are simply the NN
inputs. The last layer is formed by the output neu-
rons. The outputs of the NN are the outputs of the
output neurons. The other layers are called hidden
layers. Each layer except for the output layer has a

bias that is equivalent to a neuron with unit output.
Each connection has its own synaptic weight that is
determined using a learning procedure, described
below.

We now establish some notations: the output of
the jth neuron on the kth layer is denoted by yj

(k),
where k � 0 corresponds to the input layer, k � 1 to
the first hidden layer, and so on up to the output
layer with k � N. The activation of this neuron is
denoted by zj

(k) and, hence,

yj
�k� � ��k�� zj

�k��, (6)

where �(k) is the activation function for the kth
layer. Here all neurons in the same layer have the
same activation function. Different levels can have
different activation functions. The activation of the
neuron is then given by:

zj
�k� � �

i�1

nk

wji
�k�yi

�k�1� � wj0
�k�, (7)

where i � 0 corresponds to the bias, nk is the num-
ber of neurons in the kth layer, and wji

(k) is the
synaptic weight of the connection from the ith neu-
ron of the (k � 1)th layer to the jth neuron of the kth
layer. Thus, the NN corresponds to the following
functional form:

yi
�N� � ��N�� �

i�1

nN

wji
�N���N�1�� �

l�1

nN�1

wil
�N�1���N�2��. . .�

� wi0
�N�1�� � wj0

�N�� . (8)

This is the functional form used to fit data points to
obtain a PES, and its importance is given by the
following theorem [19]:

For any continuous function F(x1, . . . , xn) on n
variables, there exists a neural network of the
form (8), with linear output activation function
�(N)(z) � z, such that

�F� x1, . . . , xn� � y1
�N�� � �,

for any arbitrarily small �.

Our task is therefore to determine the NN structure
and synaptic weights that best fit a given set of data
points. This is the subject of the next subsection.

FIGURE 2. Feed-forward fully connected neural net-
work.
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LEARNING METHODS

Now we address the question of how to deter-
mine the weights wji

(k) such that the functional form
in Eq. (8) gives a good approximation, within an
allowed error, for a PES fitting the energies of dif-
ferent nuclear configurations. The nuclear configu-
ration given by the coordinates Qi, i � 1, . . . , m, of
the nucleus are used as the inputs yi

(0) of the NN
and the corresponding electronic energy is obtained
as the single output y1

(N). Let us suppose we have a
number Nex of input–output points, called the ex-
amples, denoted by yi

(0)(n) and E(n), with n � 1, . . . ,
Nex. We want the NN to fit these points by mini-
mizing the error function

� � �
n�1

Nex

��n�, (9)

with

��n� �
1
2 �

j�1

m

ej
2�n�, (10)

and

ej�n� � E�n� � y1
�N��n�. (11)

In this way the error � is a function of the weight
parameters wji

(k) and the fitting is equivalent to a
function minimization in the weight space. One
says that the NN learns the input–output relation-
ship and can then be used to generalize, that is, to
obtain the output for inputs not used in the previ-
ous process.

The most commonly used method is the back-
propagation algorithm, which is a gradient-descent
method in the weight space. The gradient of � is
given by:

��

�wji
�k� � ��j

�k�yi
�k�1�, (12)

with

�j
�k� � ���k�� zj

�k�� �
i�1

nk�1

�i
�k�1�wij

�k�1�; k 	 N,

�j
�N� � ej���N�� zj

�N��, (13)

where ��(k) is the derivative of the activation func-
tion. The back-propagation prescription is done in
two steps for each training example: a forward pass
where the activation zi

(k) and output yi
(k) of each

neuron is computed starting from the input layer
(k � 0) up to the output layer (k � N). The second
step is a backward pass where the gradients in Eq.
(12) are computed from the output to the input
layers. The corrections of the synaptic weights in
each cycle is:

wji
�k��l � 1� � wji

k �l � � 
�j
�k�yi

�k�1�, (14)

where 
 is the learning parameter (typically be-
tween 0 and 1) and controls the rate at which we
descend to the minimum in the weight space and l
counts the number of cycles performed. In Eq. (14)
each example is used in turn to correct the weights.
A complete cycle with all the examples being used
is called an epoch. The network is initialized with
random weights, and then the repeated application
of Eq. (14) is used to minimize the error. This pre-
scription can be slightly modified by

wji
�k��l � 1� � wji

k �l � � ��wji
k �l � 1� � 
�j

�k�yi
�k�1�,

(15)

where �wji
k(l � 1) is the weight correction when the

same example was used in the previous epoch. The
new term in Eq. (15) helps to avoid oscillations in �
during the gradient descent, and � is called the
momentum constant.

The main drawback of the back-propagation al-
gorithm is that it gels exceedingly slow near the
minimum. Also, to ensure convergence, the param-
eters � and 
 must take increasingly smaller values
as they approach the minimum. This makes the
method too time-consuming if great accuracy is
required, as is the case in the current article. Other
learning methods are available in the literature [19].
We used an efficient alternative namely, the conju-
gate-gradient method, which we summarize now
[19, 20]. Near the minimum, the error function can
be written as

� � c � bT � w �
1
2 wT � A � w � . . . , (16)

where the dots stand for cubic- and higher-order
terms and w is a vector with the weights wji

(k) as
components. Two vectors s(i) and s( j) are said to be
A-conjugate if
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s�i�T � A � s� j� � 0. (17)

The conjugate-gradient method then works to gen-
erate a sequence of A-conjugate vectors and mini-
mize the error along each of the directions given by
these vectors. We start at a point w(0) and take as
the initial direction s(0) � ���/�w(0) computed
using Eq. (12). The algorithm is given by the fol-
lowing steps:

1. Minimize � along the direction s(i) starting
from w(i) and set w(i � 1) to this minimum.

2. Compute the new direction vector by

s�i � 1� � r�i � 1� � ��i � 1�s�i�,

where r(i � 1) is

r�i � 1� � �
��

�w�i � 1�
,

and �(i � 1) is given by the Polak–Ribière
formula [19]:

��i � 1� � max�rT�i � 1� � �r�i � 1� � r�i��
rT�i� � r�i� , 0�.

3. Verify for the stopping condition and go back
to step 1.

As stopping condition we require that � is lower
as a prescribed value. The main advantage of the
conjugate-gradient method is that for a purely
quadratic function it is guaranteed to converge to
the minimum in at most n iterations for a function
in n variables. In our applications, we start the
learning by doing a few back-propagation cycles to
avoid straying too far from the minimum and then
proceed with the conjugate-gradient method.

Before closing this section we discuss an im-
portant issue in fitting functions from data points.
In the iterative process of minimizing �, the func-
tional form of the NN gets closer to the points
used in the learning. The same is not necessarily
true for other points. To ensure a good overall fit,
we separate the data set in two disjoint sets: an
example set used to train the network, and a test
set used to verify the quality of the generalization
of the fit. When the learning begins, the error
associated with both sets starts diminishing, but
after a certain number of epochs the error for the
test set starts growing while the error for the
example set continues to converge to its mini-
mum. The learning must be stopped at this point,

after which we say that the network is overfitted.
The same type of problem is also present in fitting
any other type of functional forms.

Potential Energy Surface for H3
�

For obtaining a PES for the H3
� molecule we used

the 69 ab initio points in Ref. [2], converting from
the Morse-type coordinate to internuclear dis-
tances. Because we have only a relatively small
number of points, it is difficult to separate some of
them to use as test data. To avoid this problem we
use the multifold cross-validation, where we take
only a few points as test patterns and train the NN
and then consider all (or a significant part) parti-
tions of the points in example and test sets. Then,
looking for overfitting in each case allows determi-
nation of an optimal stopping point for learning for
all the points. In our case we considered in each
partition an example set of 66 points and a test set
of 3 points. This results in 23 different partitions in
such a way that all points are used at least once as
test and example data.

For the structure of the net, a hidden two-layer
NN has better convergence. This can be explained
heuristically by noting that the first hidden layer
reveals global features of the PES, whereas the sec-
ond layer reveals local details. The number of neu-
rons in each hidden layer was determined by ex-
perimenting with different configurations and
considering the lowest possible error in a reason-
able CPU time without overfitting. The best struc-
ture we obtained has 3 input neurons, 12 neurons in
the first hidden layer, 3 neurons in the second hid-
den layer, and one output neuron, with a total of 91
weights. The activation of the output neuron is the
linear function in Eq. (5). For the hidden layers we
use a hyperbolic tangent function in Eq. (4) with a �
1.7159 and b � 2/3 [19].

The permutation symmetry of the molecule can
be considered in a number of ways. The NN can
reveal the original 69 points plus all different per-
mutations of the internuclear distances, which
amounts to 208 points, with the corresponding in-
crease in the CPU time required to reveal the extra
examples. In Ref. [4] a symmetric NN was intro-
duced in such a way that the final functional form
is already in the symmetrized form, without having
to artificially introduce extra data in the examples.
Here we consider a simpler alternative by symme-
trizing the input space, that is, by rearranging the
points such that the NN reveals the examples with
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increasing internuclear distances for each example.
Later, when computing the output of the NN, the
input internuclear distance should be put in the
same order. This approach allows one to use the
same computer code for systems with and without
specific symmetries.

For the structure used we obtained as final
error � � 8.3 � 10�11 after some 200,000 cycles of
the conjugate-gradient algorithm. Each cycle took
0.04 s of CPU time on a Pentium III 700-MHz
computer. The weights for the PES are given in
Table I. The error obtained must be compared
with the error � � 3.7 � 10�12 obtained using a
10th-order polynomial in Morse-type coordinates
(here we used the same definition for � for each
PES). Because the polynomial fit is obtained by
linear algorithm, the CPU time it requires is

much less than that required for the NN fit, and
the error is one order of magnitude lower. Nev-
ertheless, a decisive test is to use each PES to
compute an observable quantity that is very sen-
sitive to the details of the PES. We chose to com-
pute vibrational levels and compare the results to
experimental results. This is the subject of next
section.

Vibrational Levels

For a comparison of the fit using an NN, we
computed the first low-lying vibrational levels for
vanishing total angular momentum ( J � 0), using
the discrete variable representation (DVR) program
TRIATOM of Tennyson and Miller [21] and a finite-

TABLE I ______________________________________________________________________________________________
Synaptic weights for the H3

� PES.

k j i wji
(k) k j i wji

(k) k j i wji
(k)

1 1 0 0.375510532 1 1 1 �1.70043409 1 1 2 0.455163557
1 1 3 �0.793956725 1 2 0 0.303926169 1 2 1 �0.157734918
1 2 2 �2.12419247 1 2 3 �0.0538461535 1 3 0 0.0226537177
1 3 1 0.826187203 1 3 2 0.587865257 1 3 3 0.627611882
1 4 0 �0.244220911 1 4 1 0.791588196 1 4 2 0.729209407
1 4 3 0.818622876 1 5 0 �0.15761748 1 5 1 �0.212018197
1 5 2 0.326923088 1 5 3 �0.733097008 1 6 0 0.0503493976
1 6 1 0.896491076 1 6 2 0.333824979 1 6 3 �0.0524267651
1 7 0 �0.229645401 1 7 1 2.15296563 1 7 2 �0.0814328207
1 7 3 0.134303161 1 8 0 �0.371938632 1 8 1 0.00549235323
1 8 2 �0.246447306 1 8 3 �0.229665144 1 9 0 �0.255905757
1 9 1 0.276417328 1 9 2 �0.204703445 1 9 3 �1.45691204
1 10 0 �0.09581898 1 10 1 �0.673445085 1 10 2 �0.111535606
1 10 3 0.182339981 1 11 0 0.15211796 1 11 1 0.117505871
1 11 2 0.469840601 1 11 3 1.54250597 1 12 0 0.619813374
1 12 1 �0.992249303 1 12 2 0.279952426 1 12 3 �1.9027655
2 1 0 �0.38040978 2 1 1 �0.0866025603 2 1 2 �0.617434174
2 1 3 �0.408066751 2 1 4 0.263874675 2 1 5 0.0768341751
2 1 6 0.532070302 2 1 7 0.900838818 2 1 8 0.707992089
2 1 9 0.360217565 2 1 10 0.00935472058 2 1 11 �0.432323118
2 1 12 �0.328723798 2 2 0 �0.001614275 2 2 1 0.904230576
2 2 2 0.439883386 2 2 3 �0.293905037 2 2 4 �0.547526572
2 2 5 0.207919775 2 2 6 �0.568323183 2 2 7 �0.890011564
2 2 8 �0.167335093 2 2 9 �0.99983859 2 2 10 0.64372784
2 2 11 0.858283376 2 2 12 0.818341429 2 3 0 0.289572135
2 3 1 0.338081277 2 3 2 0.772004138 2 3 3 0.272043377
2 3 4 0.281829982 2 3 5 �0.0180026416 2 3 6 0.127608918
2 3 7 1.06702826 2 3 8 0.0710791893 2 3 9 0.772117602
2 3 10 �0.380046919 2 3 11 �0.434865275 2 3 12 0.600470984
3 1 0 0.46885215 3 1 1 �1.05029002 3 1 2 �0.279254423
3 1 3 0.890284642
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element (FE) method in hyperspherical coordinates
[22]. The results are shown in Table II. The experi-
mental results are taken from Refs. [14], [23], and
[24]. The values of the energy levels depend slightly
on the method used. For the ground state the best
agreement with the experimental value is obtained
using the DVR method with the neural network fit.
Both fits result in a good agreement with the exper-
imental data, usually with an error of the order of 2
cm�1.

Concluding Remarks and Perspectives

The NN and polynomial fit yield good results for
the vibrational energy level of the H3

� molecule. The
error associated with the polynomial fit is one order
of magnitude smaller than for the NN fit. Also, the
CPU time required for a polynomial fit is much
smaller than to train an NN. Therefore, for a
smooth PES, using a polynomial fit seems to be a
better choice than to use the more computer-de-
manding NN fit. Nevertheless, it is not an objective
of the current article to obtain a better PES for the
H3

� system than that available in the literature but
to show that our approach allows one to obtain
high-quality PES from ab initio data. This is re-
quired for describing more complicated structures
in a PES that would be difficult to be fitted by a
simple polynomial function. The main advantage of
an NN is its ability in approximating complicated
functions as stated by the approximation theorem
for NNs. An improvement of this approach can be
obtained by considering preliminary information
on the PES structure. For instance, in the many-
body expansion method [1], the PES is written as a
sum of two- and three-body terms (for a triatomic
molecule). Each term is then fitted with a functional
form. This ensures a correct asymptotic behavior
for the PES. Fitting each many-body term with an
NN results in a better NN fit than simply fitting the
whole set of ab initio points using a single NN.

Preliminary work in this direction is under way and
will be the subject of a forthcoming publication.
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