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We investigate multifractal properties for an Abelian directed model of self-organized
criticality that describes the growth of droplets inside a cloud and the subsequent rainfall.

The probability distribution of events of the model satisfies finite-size scaling. We obtain
the singularity spectra f(α) associated with temporal records for avalanche size and for
the potential energy, defined by the total sum of the product between mass and height of
each site. The measure defined by avalanche size has a clear cut multifractal character,
while the obtained f(α) for potential energy may include a spurious branch.
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1. Introduction

Self Organized Criticality (SOC) theory1 seeks to provide an explanation for the

occurrence of scaling phenomena observed for open systems in the stationary out-

of-equilibrium regime. The power law behavior of the probability distributions of

eventa size (e.g. Gutemberg–Richter’s law for distribution of earthquakes) has been

the most important feature of SOC systems. The usual approach within this frame-

work is based on very simple models encompassing the essential physical mecha-

nisms underlining the investigated phenomena, which are expected to be responsible

for the observed scaling properties. A model which takes into account the details

of single events, whatever it may be, corresponds to a much more complex issue,

that can hardly be accomplished by SOC models.

Since only a small number of SOC models has shown to be amendable to exact

analytical solutions,2 actual investigation relies mainly on numerical integration of

aUsually called avalanche.
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the equations of motion and/or of cellular automata that describe their time evo-

lution. As the so obtained results depend on the size (L) of the used system, it

is important to infer the behavior of an infinite system in the L → ∞ thermody-

namical limit. The most simple way to reach this task is to carry on a finite size

scaling3 analysis of the data, that turns out to be successful for some models, like the

(exact solvable) Dhar and Ramaswamy2 and the Manna4 models. However, some

SOC models, e.g. the very first one proposed by Bak, Tang and Wiesenfeld (BTW

model),5 do not satisfy finite size scaling,3 but require a multi-scaling formalism6

for an accurate description of the system when L → ∞. Thus, multifractal approach

is presented as a valuable tool within SOC framework.

The knowledge of the probability distribution of events does not exhaust the

statistical information of a SOC model, since it does not take into account the

dynamic properties encoded in the time evolution records, whose structure might be

uncovered by suitable correlation functions. Recent results for the time correlation

C(t, L)7 of successive waves within avalanches indicate that this function is sensitive

to the presence of multi-scaling in the probability distribution of this measure.

For BTW model, C(t, L) decreases slowly with time, while the models which obey

finite size scaling are uncorrelated. It is important to observe that, for BTW model,

C(t, L) does not obey finite size scaling.

The above discussion suggests that finite size scaling method alone is sufficient

to accurately describe some basic properties of a set of models with the special

property that each site can topple only once during an avalanche, e.g. the set

directed Abelian models. In this work we investigate a directed Abelian model,8

looking for possible occurrence of other properties or measures that, in contrast

to those analyzed so far, require multi-scaling and/or multifractal approach for its

characterization.

Instead of looking at the time correlations, we will evaluate the singularity

spectrum f(α)9 for two related measures associated with avalanches triggered from

random perturbations, which are extracted from the time evolution records. If the

related properties are single scaling, one expects the spectrum to converge to a single

isolated point. On the other hand, if f(α) consistently converges to a concave shape

with robust, distinct extreme values, αmin and αmax, we can identify the presence

of a multifractal measure.

The rest of this paper is so organized: In Section 2 we briefly describe the model

as well as its main properties. In Section 3 we discuss the choice of the quantities

whose multifractal properties are investigated, while the results and concluding

remarks are presented in Section 4.

2. Abelian SOC Models

The present investigation considers a cellular automata two-dimensional model,8

proposed to describe certain aspects of the hyperbolic statistical distributions of

rain events and suggested from the analysis of historical records from meteorologi-
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cal stations.10,11 It is important also to recall that many other scaling properties of

rain fields have been reported by many authors.12,13 We point out that this simple

model is based on a very simple description of the essential aspects of condensation,

coalescence, and break-up of water droplets inside a rain cloud. The whole descrip-

tion of these aspects requires much more complex theories of vapor condensation,

drop downward motion in the Stokes regime, stochastic coagulation (Smoluschovsky

equation) and drop breakup.14

The model is defined on a rectangular lattice of N = H (height) × L (length)

sites with horizontal periodic boundary conditions and vertical non-periodic ones.

An integer variable mi is defined on each site i = (h, l), which represent the liq-

uid water content around a cloud condensation nuclei. The addition of mass on

a randomly chosen site i, mi → mi + 1, mimics the growth of cloud droplets, by

condensation of water vapor. An internal avalanche (flip), usually called avalanche,

is triggered when the mass mi of the perturbed site i reaches a threshold value mth.

In this case the site topples, distributing the excess mass mth to the three nearest

neighbors in the row h−1 : (h−1, l−1), (h−1, l), (h−1, l+1). Thus, it belongs to

the class of directed models. The original two-dimensional directed model proposed

by Dhar and Ramaswamy2 is obtained if the amount of mass that would topple

to site (h − 1, l) is set to zero. The avalanche continues until all sites of a given

row become stable, or when it reaches the open lower edge of the lattice. In this

case, there is a rain event or an external avalanche whose size is defined as the total

mass that falls out the lattice. The avalanche size a is the number of critical sites

(mi > mth) during the avalanche process. This model can also be exactly solved,

leading to the probability distribution of the number a of flips that characterizes

the avalanche, ρ(a) ∼ a−β, with the same exponent β = 4/3 found for the quoted

model.2 This has been corroborated by numerical simulations.8 Thus, it is a SOC

model.

It belongs to the class of Abelian models since its final state (configuration of

the lattice) after two successive perturbations (addition of mass and relaxation) on

any randomly chosen sites (say i and j) is the same if the order of the perturbations

is inverted. Some of these models are amenable to exact analytical solutions, from

which the scaling exponent of the probability distribution of avalanche sizes can

be evaluated. Even though Abelian models with toppling conditions which depend

on a critical height are not a realistic representation of actual sandpiles (where the

toppling criterion depends on a critical gradient), due to its mathematical proper-

ties, they have been investigated in many different aspects. This “rainfall” model

is an interesting application of model for which the toppling depends on a critical

value of the automaton variable (the water content).

3. Multifractal Measures

It is well known that strange attractors, the limit sets of chaotic dynamical sys-

tems, present a multifractal behavior. Though less explored, multifractal proper-
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ties of some discrete lattice models, such as cellular automata, have already been

considered in the literature (see Ref. 15 and references therein for the multifrac-

tal aspects of space patterns for simple cellular automata). More recently, in the

context of sandpile cellular automata, investigations on multi-scaling properties for

BTW and Manna models6,7 have been reported. Within this approach, the mea-

sure associated with the f(α) spectra is the number of toppling sites in the waves

into which a given avalanche is split. The probability distribution of waves counts

the relative number of occurrences of waves of a given size, and the resulting f(α)

spectrum is linear for the system following finite size scaling. For the rainfall model,

each avalanche of size a is formed by a single wave, so that its wave probability

distribution multifractal spectrum must be a linear function. Moreover, since its

avalanche probability distribution of avalanches ρ(a, L) satisfies finite size scaling,

it can be written as

ρ(a, L) = a−βg(a/Lb) (3.1)

where the parameter b is the scaling factor associated with the lattice size L.

Now we turn our attention to other measures, and ask if they require multifractal

analysis even for ρ(a, L). As the projection of the time distribution of events into

ρ(a, L) destroys any possible avalanche clustering, which could display a multifractal

character, it is wise to consider the actual dynamics of events. Consider the time

evolution record of length Nt produced by the model and define the record a(τ)

by the magnitude of successive avalanches. Note that the value assumed by τ is

different from the usual time t that count the time steps for the evolution of the

automata, as τ increases only after a relaxation event, so that the total number of

events of a(τ) record is Nτ < Nt. Now we define a new measure as

µa
τ (ε) =

τ+ε∑

i=τ−ε

a(i)

and inquire whether it shows multifractal properties. It means that the singularity

spectrum f(α) for the measure µa
τ (ε), in an interval ε around the point a, has a

non-trivial (non-single scaling) behavior, when considering time series of the internal

avalanche size a when a 6= 0. This procedure is equivalent to that developed for

the analysis of multifractal properties for the local magnetization of spin models in

suitably defined lattices,16,17 where the time τ now plays the role of the position

of the spins on the lattice, τ ∈ [1, Nτ ]. In those analyses, f(α) is able to detect the

presence of sites where the magnetizations vanish with different Holder exponents at

the critical temperature, while in the ferromagnetic phase the local magnetization is

single scaling. Analogously, the present analysis is able to detect different avalanche

clustering within the time record. In other words, the probability pi(ε) of a(τ) in the

hyper-sphere of radius ε with center at τ , diverges with different values of exponents

when ε → 0.
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We also observe that, after each avalanche of intensity a(τ), the total potential

energy associated with the whole lattice, defined by

U(τ) =
∑

(h,l)

m(h,l)h , (3.2)

is decreased by the amount a(τ). So, we have also scrutinized the time record for

the potential energy, looking for further evidences of multifractal behavior for the

measure µU
τ (ε) defined by U(τ) in an analogous way as µa

τ (ε):

µU
τ (ε) =

τ+ε∑

i=τ−ε

U(i) ,

where U(τ) is given by (3.2). The potential energy provides global information of

water content through the lattice, which is not provided by the avalanche size.

4. Results and Concluding Remarks

The singularity spectra f(α) for the two measures µz
τ (ε), z = a or z = U , discussed

above were analyzed with a routine based on the Chabbra–Jensen algorithm,18

which amounts to evaluate α and the spectrum f(α) in terms of a parameter q as:

α(q) = − lim
Nτ→∞

1

ln Nτ

Nτ∑

τ=1

ξτ (q, ε) ln[µτ (q, ε)] ,

f(α(q)) = − lim
Nτ→∞

1

ln Nτ

Nτ∑

τ=1

ξτ (q, ε) ln[ξτ (q, ε)] ,

(4.1)

where

ξτ (q, ε) =
µτ (ε)q

∑
τ [µτ (ε)]q

, (4.2)

and the superscripts for a and U were omitted for the sake of simplicity. For the

same reason, the explicit dependence of the quantities f(α(q)) and α(q) on the

length Nτ of the record and on the size L of the lattice has been left out.

The Chhabra–Jensen method has proven to be quite reliable for the investiga-

tion of the multifractal properties of multi-scaling sets.19 It is a precise and easily

performed procedure that converges faster than the one based on the directed identi-

fication of points for which the measure µτ (ε) scales. In certain sense it is equivalent

to evaluating f(α) from a Legendre transform of the generalized dimensions D(q),

i.e. f(α) = αq − (q − 1)Dq.

We considered lattices with several different sizes, all of them with the same

aspect ratio r = H/L. Time records were prepared in two different ways:

(i) R1: starting with random values for mi < mth, ∀i;

(ii) R2: starting with the completely charged lattice.
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In the first procedure we run the program keeping track of the moment when the

system reaches the stationary SOC state where the total mass of the lattice fluctu-

ates around an average value. Then we discard the transient part of the record, and

analyze the multifractal aspects of its stationary regime. In the second approach,

we keep in the record the very large avalanches produced by the first perturba-

tions. This procedure is necessary in order to obtain well defined extreme values,

αmin and αmax, for the f(α) spectrum, which correspond to the largest and the

smallest avalanches respectively. The stationary state encompasses avalanches of

all sizes, including those of the size of the system itself. However, as such events

are very rare in the first procedure, they were not likely to be observed for our

available CPU computing time. Using records prepared the second way guarantees

that these events will indeed be taken into account.

Our results are illustrated on Figs. 1 and 2. The spectrum for µa
τ becomes very

well defined for Record R2 (see Fig. 1b). The value αmin = 0.46 ± 0.01 does not

depend on the lattice size L, since Record R2 includes the largest avalanches for

that specific lattice size. On the other hand, αmax ∼ log(N) is associated to the

relative frequency of smaller avalanches, increasing logarithmically with the size L

(see inset of Fig. 1b). For Record R1 (see Fig. 1a), we observe the same behavior

for αmax, but the left branch, associated with αmin becomes size dependent and

fluctuates, as we cannot be sure of the presence of the very large events.

For the measure µU
τ , we observe the inverse effect. The spectrum is better defined

for Record R1 (see Fig. 2a), with a size independent αmin = 0.92 ± 0.02, which

is related to the high populated lattice states. The size dependent right branch,

expressed by αmax ∼ log(N), is related to the states with sparse site occupation.

For Record R2 (see Fig. 2b), the left branch shows slight size dependent fluctuations,

as the very high initial populated states influence the spectrum in different ways.

The value for αmax now decreases with the lattice size.

A closer observation of the spectra for µa
τ reveals that the points of the singular-

ity spectrum are regularly spaced and frequent with respect to the q parameter in

the Chhabra–Jensen algorithm, indicating in a very convincing way the measure’s

multifractal character. On the other hand, the same feature is absent in the spectra

for µU
τ , which may give rise to questions whether this measure is actually multifrac-

tal. Indeed, the points become irregularly spaced in the right branch of the spectra,

much in the way of the spectra obtained within Chhabra–Jensen method for actual

single scaling, smooth input data.19 Furthermore, we note that the value for αmin is

very close to 1 (see Fig. 2), the value for the dimension of the support of the data.

So it is wise to collect further evidences before making definite statements on the

multifractality of U .

Summarizing, we have found robust indications for the existence of (at least

one) multifractal measure for an Abelian directed SOC model, for which the prob-

ability distribution ρ(a, L), associated with avalanche size a for a lattice size LH ,

satisfies finite size scaling. This behavior is related to a time dependent clustering

of avalanches that is destroyed when we collapse the data to yield ρ(a, L). The
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Fig. 1. Singularity spectra for the measure µa(τ), with initial conditions R1 (case a) and R2

(case b). In the first case, the spectra depend on the size of the systems for both right and left
size branches. In the second case the left side of the spectra is well-defined and does not depend
on the size of the lattice. The right side moves to larger α regions when the size increases. The
inset indicates that αmax ∼ log(N) for both cases.
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Fig. 2. The same as in Fig. 1 for the measure µU (τ). The left branch of the spectra becomes
better defined for initial conditions R1, while for R2 it is possible to note a weak dependence on
the size of the system. In the right branch, the points of the spectra get sparse, and they move to
the right logarithmically with size.
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identification of a multifractal measure for this directed model is rather interesting,

as it shows a more complex behavior not revealed by the single scaling ρ(a, L).

The approach used in this work is different from that one used for the multi-

fractal properties of wave distribution for non-directed models. We expect that it

will indicate multifractal clustering avalanches for other directed models as well as

for the Manna model, for which the wave correlation function also proved to obey

finite size scaling.

Finally we stress that finding multifractal properties for this SOC model is

important as it relates two distinct properties observed for rain fields:

(i) The distribution of events seems to follow hyperbolic laws, as predicted by the

SOC framework;10,11

(ii) There are strong evidences that several meteorological properties present multi-

scaling behavior.12
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