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Abstract
The unrestricted Pople–Nesbet approach for real atoms is adapted to
quantum dots under applied magnetic field. Gaussian basis sets are used
instead of the exact single-particle orbitals in the construction of the
appropriated Slater determinants. Both system chemical potential and
charging energy are calculated, as well as the expected values for total spin
and its z-component. We have verified the validity of the energy shell
structure as well as the Hund rule for state population at zero magnetic field.
Above given fields, we have observed a violation of the Hund rule by the
suppression of triplet and quartet states at the 1p-energy shell, taken as an
example. We have also compared our present results with those obtained by
using the LS-coupling scheme for low electronic occupations. We have
focused our attention on ground-state properties of GaAs quantum dots
populated up to 40 electrons.

The influence of spatial confinement on physical properties
such as electronic spectra of 0D structures is a topic of
growing interest. Among such structures one could select
carriers and impurity atoms in metallic or semiconductor
mesoscopic structures [1], as well as atoms, ions and molecules
trapped into microscopic cavities [1–5]. In these systems,
the confinement becomes important whenever a quantum size
equals the cavity length. However, the energy spectrum of
these systems is not only determined by the spatial confinement
and its geometrical shape, but also by environmental facts
such as electric and magnetic fields that break or lower
general symmetries. Finally, many-body effects such as
electron–electron interaction may even be more important than
the confinement itself. In any case, a correct description
of physical properties of the problem requires that the
wavefunction must reflect both the form of the confinement
and the appropriated boundary conditions.

Interesting confined systems are the semiconductor
quantum dots (QDs), also referred to as artificial atoms, which
are built in low-dimensional electronic gases when crystalline

translation invariance is broken in all three spatial dimensions;
such 3D confinement gives origin to discrete energy states, as
it occurs in real atoms. Various are the approaches that have
been used to deal with many-particle QDs. Among them, one
can cite the charging model [6–9], correlated electron model
[10], Green functions [11], Lanczos algorithm [12], Monte
Carlo method [13], Hartree–Fock (HF) calculations [14–17],
and density functional theory [18]. The charging model, where
the electron–electron interaction is assumed as a constant, can
reproduce well experimental findings for metallic dots. On the
other hand, with much lower electronic density, semiconductor
dots require a microscopic point of view to treat the electron–
electron interaction.

Here we will consider a QD defined by a hard
wall spherical volume, which is more appropriate for
semiconductor dots grown inside glass matrices. Some of the
commonly studied topics in such systems are the formation of
energy shells in their spectra [19], the control of their electronic
correlations [20], the formation of Wigner molecules [21],
and the influence of the Coulomb interaction in their
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spectra [22, 23]. In these spherically defined artificial atoms
both spin and orbital angular momenta are good quantum
numbers, and the low occupation many-particle eigenstates
can be labelled according to the LS-coupling scheme [24].
For higher occupation numbers, the LS-coupling scheme
becomes extremely cumbersome and, because of that, we have
chosen to work within the unrestricted Pople–Nesbet matrix
approach [25] of the single determinant self-consistent HF
formalism; by using it, we were able to treat open and closed
shell configurations of QDs containing up to 40 electrons,
and the total spin expected values, chemical potential and
charging energy could be calculated. We show in this letter
the changes induced by the magnetic field on such approach
by using a set of Gaussian basis. Then we discuss our main
results by focusing on how the magnetic field determines the
Zeeman splitting and induces violation of the Hund rule in the
population of the QD levels.

Within the unrestricted Hartree–Fock formalism (UHF),
the α (spin-up) and β (spin-down) spin orbitals χi(x)

may have different spatial components, that is, χi(x) ={
ψα

j (r)α(ω), ψ
β

j (r)β(ω)
}
, where the respective spatial

orbitals are
{
ψα

j

∣∣j = 1, . . . , k
}

and
{
ψ

β

j

∣∣j = 1, . . . , k
}
.

Therefore, an UHF wavefunction has the general form

|�UHF〉 = ∣∣ψα
1 ψ

β

1 · · · 〉 (the upper bar means spin-down),
which represents open shell configurations once no spatial
orbital can be doubly occupied. The closed shell solutions
can also be obtained [25]; however, UHF functions are not
necessarily system eigenstates having well-defined L and S
values. Yet, the number of carriers N must equal the sum of
spin-up and spin-down electrons, given as N = Nα +Nβ . The
integration of the spin degrees of freedom [25] in this approach
yields two coupled HF equations that must be simultaneously
solved. They have the form f α/β

∣∣ψα/β

j

〉 = ε
α/β

j

∣∣ψα/β

j

〉
, where

the respective Fock operators are given by

f α/β = hj +
Nα/β∑

a

[
J α/β

a − Kα/β
a

]
+

Nβ/α∑
a

J β/α
a . (1)

Both f α and f β include kinetic (hj ), direct
(
J

α/β
a

)
and

exchange
(
K

α/β
a

)
terms between electrons with same spin, and

also a direct term
(
J

β/α
a

)
between electrons with opposite spin.

The interdependence among f α(f β) and ψ
β

j

(
ψα

j

)
requires

the simultaneous solution of the two HF equations. They
yield the sets

{
ψα

j

}
and

{
ψ

β

j

}
that should minimize the energy

EUHF
0 of the unrestricted ground-state,

∣∣�UHF
0

〉
, given by

EUHF
0 =

Nα∑
a

hα
aa +

Nβ∑
a

hβ
aa +

1

2

Nα∑
a

Nα∑
b

[
J αα

ab − Kαα
ab

]
+

1

2

Nβ∑
a

Nβ∑
b

[
J

ββ

ab − K
ββ

ab

]
+

Nα∑
a

Nβ∑
b

J
αβ

ab . (2)

In this expression, hα
aa = 〈

ψα
a

∣∣ha

∣∣ψα
a

〉
, J

αβ

ab = 〈
ψα

a

∣∣J β

b

∣∣ψα
a

〉 =〈
ψ

β

b

∣∣J α
a

∣∣ψβ

b

〉 = J
βα

ba , J αα
ab = 〈

ψα
a

∣∣J α
b

∣∣ψα
a

〉 = 〈
ψα

b

∣∣J α
a

∣∣ψα
b

〉 =
J αα

ba , and Kαα
ab = 〈

ψα
a

∣∣Kα
b

∣∣ψα
a

〉 = 〈
ψα

b

∣∣Kα
a

∣∣ψα
b

〉 = Kαα
ba .

The Pople–Nesbet approach transforms the UHF
equations into a matrix formulation by expanding ψ

α/β

i in
a set of known basis functions {φν |ν = 1, . . . , k},

ψ
α/β

i =
∑

ν

C
α/β

νi φν, (3)

where the expansion coefficients C
α/β

νi become the parameters
to be iterated. When equation (3) is inserted into equation (1)
one obtains the characteristic k × k Pople–Nesbet coupled
matrix equations,

Fα/βCα/β = SCα/βεα/β, (4)

where S is the positive defined overlap matrix (Sµν = 〈φµ|φν〉)
of basis functions, Cα/β are the expansion coefficient matrices
whose columns describe each spatial orbital ψα/β

i , εα/β are the
diagonal matrices of the orbital energies ε

α/β

i and Fα/β are the
Fock matrices with respective elements given by

Fα/β
µν =

∫
d3r φ∗

µ(r)f α/βφν(r). (5)

At this point it becomes convenient to introduce the
charge density for the spin-up and spin-down electrons, defined
as ρα/β(r) = ∑Nα/β

a

∣∣ψα/β
a (r)

∣∣2 = ∑
µ

∑
ν P

α/β
µν φµ(r)φ∗

ν (r),
where the elements of the respective density matrices are
P

α/β
µν = ∑Nα/β

a C
α/β
µa C

α/β∗
νa . Thus, one can define two new

quantities: (i) the total charge density, ρT (r) = ρα(r)+ρβ(r),
that yields N when integrated over all space; (ii) the spin
density, ρS(r) = ρα(r) − ρβ(r), that yields 2MS after
integration over all space. This last fact shows that UHF
wavefunctions are eigenfunctions of SZ , but not necessarily
of S2. One can then define the total charge (PT = Pα + Pβ)

and spin (PS = Pα − Pβ) density matrices for the system.
The elements of the two Fock matrices are obtained as
F

α/β
µν = Tµν + G

α/β
µν , where Tµν = −h̄2/(2m)〈φµ|∇2 |φν〉

and G
α/β
µν = e2/ε

∑
λ

∑
σ

[
P T

λσ 〈φµφσ ||r1 − r2|−1|φνφλ〉 −
P

α/β

λσ 〈φµφσ ||r1−r2|−1|φλφν〉
]
, with m and ε being the material

effective mass and dielectric constant.
The self-consistency of this approach lies in the fact that

both F and P depend on C, while the coupling of spin-up
and spin-down equations occurs since Fα(Fβ) depends on
Pβ(Pα) through PT . The procedure of solving equation (4) is:
(i) given a confinement potential, one specifies N and {φν};
(ii) the integrations on Sµν and Tµν are performed; (iii) an
initial guess is used for Pα/β and PT, the two-electron integrals
in G

α/β
µν are performed, and the Fock matrices are constructed;

(iv) Fα/β is diagonalized to obtain Cα/β and εα/β , and a new
Pα/β is formed; (v) this iteration is repeated until the desired
convergence for EUHF

0 be reached. The Pople–Nesbet ground-
state energy can be written as

EUHF
0 = 1

2

∑
µ

∑
ν

[
P T

νµTµν + P α
νµFα

µν + P β
νµFβ

µν

]
. (6)

UHF functions are not, in general, eigenstates of S2 (only of
SZ); an estimation for the total spin expected values is found
from [25]

〈S2〉UHF =
(

Nα − Nβ

2

) (
Nα − Nβ

2
+ 1

)
+ Nβ

−
Nα∑
a

Nβ∑
b

[∑
µ

∑
ν

Cα∗
µaC

β

νbSµν

]2

, (7)

〈SZ〉UHF = 1

2

∑
µ

∑
ν

(
P α

νµ − P β
νµ

)
Sµν. (8)
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As an application of the Pople–Nesbet approach, we
consider a QD with radius R0 confined to an infinite spherical
potential in the presence of a magnetic field B = (0, 0, B0) and
populated up to 40 electrons. Its single-particle Hamiltonian
is

H0 = h̄2

2m

(
k +

e

h̄c
A

)2
+ g

µB

h̄
B · S, (9)

where µB is the Bohr magneton, g is the bulk g-factor, and we
use the symmetric gauge, A = (B × r)/2. Using atomic units,
E0 = e2/(2a0) for energy and a0 = h̄2/(m0e

2) for length, the
Hamiltonian H0 can be written in the dimensionless form

H0 = 1

m̃

a2
0

R2
0

[
− 1

x2

∂

∂x

(
x2 ∂

∂x

)
+

L2

x2

+
R2

0

2l2
B

(LZ + m̃gSZ) +
R4

0

4l4
B

x2 sin2(θ)

]
, (10)

where m̃ = m/m0, lB = √
h̄c/(eB0) is the magnetic length

and x = r/R0. Without magnetic field, the normalized spatial
eigenfunctions of H0 are given by

φν(r) =
[

2

R3
0

1

[jl+1(αnl)]
2

]1/2

jl (αnlx) Yl,ml
(θ, φ). (11)

The boundary condition at the surface, r = R0 (or x = 1),
determines αnl as the nth zero of the spherical Bessel function
jl(αnlx), while Yl,ml

(θ, φ) is the spherical harmonic.
The Hamiltonian for the electron–electron interaction in

atomic units becomes Hee = (a0/R0)2/(ε |x1 − x2|), where
the usual multipole expansion for |x1 − x2|−1 is used in our
calculations.

The spatial orbitals considered in ψ
α/β

i define six
lowest energy shells (1s, 1p, 1d, 2s, 1f, 2p) without magnetic
field [26]. Thus, the index ν ≡ n, l,ml can assume up
to 40 (20 spin-up and 20 spin-down) possible values for
those shells. Certainly, the magnetic field lifts both spin and
orbital degeneracies. We consider a GaAs QD, a wide-gap
semiconductor having m̃ = 0.065, g = 0.45 and ε = 12.65.

The inclusion of a magnetic field requires modifications
on the UHF equations. The spin-independent linear and
quadratic magnetic terms of equation (10) are easily added
to the definition of h in both f α/β and Tµν . However, the
inclusion of the spin-dependent linear term (∼B0SZ) to h in
f α/β requires decomposition of the kinetic matrix into T

α/β
µν .

Thus, under a magnetic field one should make the substitution
P T

νµTµν ⇒ P α
νµT α

µν + P β
νµT β

µν in EUHF
0 (equation (6)).

Another important detail refers to the orbital basis
{φν |ν = 1, . . . , k} used. Instead of the exact spherical Bessel
functions of equation (11), the radial part of each orbital is
decomposed in a sum involving five Gaussians confined to the
region x � 1, while the angular part is maintained as defined
by the orbital symmetry, that is, the basis is

φn,l,ml
(x, θ, φ) = Nnl(1 − x)nxl

n−1∏
i=1

(̃αil − x)

×
5∑

k=1

Vke
−DkR

2
0x2

Yl,ml
(θ, φ), (12)

where Nnl is the normalization, the polynomial (1 − x)n nulls
functions at the boundary x = 1, the polynomial in xl is
required for l > 0 states at the origin x = 0, the product

in (̃αil − x) nulls functions at the zeros α̃il of the respective
spherical Bessel function transposed to the interval 0 � x � 1,
and the last sum involves the expansion into five Gaussians.
Higher order expansion did not show any improvement in
our results for N � 40. The Gaussian coefficients Vk

and exponents Dk are determined for each value of R0, by
maximizing the superposition between equations (11) and
(12). Once Vk and Dk are determined, we run the UHF code
for a given value of R0 and N, and find the parameters C

α/β

νi

that better describe equation (3) and give the minimal energy
in equation (6).

At last, we have calculated two quantities that will be
used later in the description of our results. The first one is
the QD chemical potential, which yields the energy difference
between two successive ground states,

µdot(N) = E0(N) − E0(N − 1). (13)

The second one is the QD charging energy, which yields the
energy cost to add an extra electron to the system,

Echar(N) = E0(N + 1) − 2E0(N) + E0(N − 1). (14)

From these two last equations, one can also see that Echar(N) =
µdot(N + 1) − µdot(N).

We show in figure 1 the results of a UHF Pople–Nesbet
calculation for a GaAs QD having R0 = 100 Å, at zero
magnetic field. In the left upper panel we have compared
the non-interacting electron problem and the UHF results as
function of QD occupation. The shell structure occurs for
magic numbers N = 2, 8, 18, 20, 34 and 40. It is observed
that the electron–electron interaction decreases (increases)
the non-interacting ground-state energy when the occupation
corresponds to a shell less (more) than half-filled. At exactly
half-filled cases, N = 5, 13, 27 and 37, the interacting and
non-interacting energies are approximately equal.

In the left bottom panel of figure 1 we show both QD
chemical potential (left scale, equation (13)) and charging
energy (right scale, equation (14)), where the respective values
of E0 are obtained from the unrestricted calculation presented
in the left upper panel. Note that µdot linearly increases as
the occupation increases inside a given shell. When such
a shell is totally filled, there is an abrupt change in µdot

indicating that the following shell starts its occupation. The
higher the occupation, the more abrupt is the change. An
anomalous behaviour seems to occur with the 2s shell, whose
µdot value is larger than the 1f shell, which has higher energy.
The charging energy is another form to verify not only the
presence of shell structure in the spectrum, but also the validity
of Hund’s rule for the filling of such shells. In principle,
Echar must present larger (smaller) peaks when the total (half)
occupation of a shell is achieved. The first fact is due to the
higher difficulty in adding an electron to a QD in a filled shell
state, while the second one refers to Hund’s rule, which states
that electrons must be added to the system with their spin
being parallel, until all possible orbitals inside a given shell be
occupied, making the total energy of the system be decreased
because of the maximized exchange contribution. However,
some discrepancies are verified in Echar: the smaller peak of
N = 27 occurs at N = 26, and the larger peak of N = 20 is
negative.

The right bottom and upper panels of figure 1 show
respectively the N-evolution of the total spin S and its
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Figure 1. Unrestricted ground-state energies for a R0 = 100 Å GaAs QD without magnetic field. In the left upper panel we compare UHF
and non-interacting energies, where the QD energy shell structure is visible. The left bottom panel shows QD chemical potential (left scale)
and charging energy (right scale). The former displays abrupt change always when a new shell starts to be filled, while the latter presents
larger (smaller) peaks when a shell is fully (half) filled, a direct consequence of the Hund rule. The right bottom and upper panels show,
respectively, the N-evolution of the expected values of total spin and its z-projection.

Figure 2. Violation of the Hund rule induced by magnetic field in the R0 = 100 Å GaAs QD of the previous figure. Panels show successive
occupation (indicated in the right upper corner) of the 1p shell, assuming that the 1s shell remains populated by one spin-up and one
spin-down electron. The possible spin configurations for a given N are indicated by + (spin-up) and − (spin-down). At B0 = 0 the spin
sequence is 1/2 − 1 − 3/2 − 1 − 1/2 − 0, while at fields higher than 3 T it changes to 1/2 − 0 − 1/2 − 0 − 1/2 − 0. Energy triplets and
quartets are suppressed by the field.

projection MS as calculated from equations (7) and (8) for the
unrestricted energies shown in the left upper panel. Note that,
with no magnetic field, the Hund rule seems to be followed;
the MS expected value oscillates from 0 in a filled shell to
its maximum in a half-filled shell, when it starts to decrease
again on the way to the closing of the shell; the maxima
are MS = 1/2, 3/2, 5/2 and 7/2 for s, p, d and f shells,
respectively. The S expected value yielded by the unrestricted
formalism is also very reasonable; discrepancies are only
observed at N = 24, where S > 2, and at N = 21, where
S > 1/2. We believe that both discrepancies related to the

2s shell or to its surroundings, µdot larger than the one of 1f

shell, negative peak for N = 20 in Echar and almost doubled S
expected value for N = 21, are caused by the non-reasonable
Gaussian reproduction of this orbital [27].

By focusing on the 1p shell we show in figure 2, for the
same QD of the previous figure, how a finite magnetic field is
able to violate the Hund rule in the system. Panels from left
to right and from top to bottom show the successive ground-
state energies from N = 3 to N = 8 as this shell is filled,
always considering that the 1s shell remains fully occupied
by two electrons, one spin-up and one spin-down; the distinct
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possible spin configurations for each N are indicated by + (up)
and − (down). In addition to the small Zeeman effect present
in all occupations, there is a changing of ground-state spins
at N = 4, 5 and 6 as the field is increased. Note that at zero
field the spin sequence is 1/2 − 1 − 3/2 − 1 − 1/2 − 0; in
a field above 3 T (for the considered radius and material) it
becomes 1/2−0−1/2−0−1/2−0, meaning that quartets and
triplets are suppressed by the magnetic field, and the ground
state starts to oscillate only between singlets and doublets at
high fields as N increases. When this 1p shell is half-filled
(N = 5), the ground state goes from a quartet to a doublet
at B0 	 2 T; when it has one electron more (N = 6) or less
(N = 4) than that, it goes from a triplet to a singlet at B0 	
3 T. This same behaviour is expected to occur for every p shell.

At last, in order to prove the efficiency of the Pople–
Nesbet approach, we compared the results from the UHF self-
consistent matrix formulation with those obtained from the
LS-coupling scheme used in [28], where a GaAs QD having
R0 = 90 Å was considered, and the quadratic term in B0

was neglected since only small fields were considered; also,
only N = 2 and N = 3 occupations were treated, since the
states were exactly built (not only a single Slater determinant),
and the electron–electron interaction was included by using
perturbation theory, justified at such radius. At zero field
the energies for N = 2 are 16.5 meV (LS) and 16.1 meV
(UHF), while for N = 3 they are 34.8 meV (LS) and
33.9 meV (UHF); so, the formalism here used indeed gives
smaller ground-state energies than the LS perturbative scheme.
We have also checked the validity of neglecting the quadratic
term in B0 for fields smaller than 2 T. One should emphasize
that a disadvantage of the UHF approach is that, in principle,
it is not sure that one obtains trustable information about the
L and S expected values of QD states; on the other hand,
the applicability of the LS scheme is highly decreased as the
QD occupation increases. Certainly, an extension for a CI
(configuration interaction) calculation is necessary in order to
account for correlation energies.

We have shown how the unrestricted Pople–Nesbet
approach applied to a spherical QD under a magnetic field
yields a reasonable description of its energetic spectrum, where
a maximum occupation of 40 electrons has been considered.
We have seen how both QD chemical potential and charging
energy reproduce the filling and half-filling structures of the
energy shells at zero field. With the total spin expected value
for each occupation in a given radius, we have seen that
the Hund rule is satisfied at zero field. However, under a
finite field, we have shown that it is violated and, at given
field values which depend on QD parameters, transitions that
change ground-state symmetries are observed.
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