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Abstract. In this paper we obtain a classification of hypersurfaces in the
Euclidean sphere having two principal curvatures; for some of the results
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1. Introduction and Statements of Results

Let Mn, n ≥ 3, be an oriented Riemannian n-manifold and Ric its Ricci
curvature. Let f : Mn −→ S

n+1 be a hypersurface, where S
n+1 is the Euclid-

ean unit sphere. Let S
k
c be the sphere with constant sectional curvature c and

let ˜Mn be the universal covering of Mn. Consider

Λ := {r ∈ R : ∃x ∈ Mn, ∃λ such that λ(x) = r},

where λ is a principal curvature of f and Λ± := Λ∩R
±. In [9] (see also [10]) the

authors (see Theorem 1.3) classified compact hypersurfaces f with constant
scalar curvature and two distinct principal curvatures λ and μ of multiplicity 1
and n−1, resp., such that 1+λμ ≤ −1 in Mn. In [4] the authors obtained the
classification of minimal hypersurfaces f with two principal curvatures such
that S ≥ n, where S is the square of the norm of the second fundamental form
of f . In particular, the condition S ≥ n in [4] implies that 1 + λμ ≤ −1, thus
0 �∈ Λ. In the following we apply the condition (∗):
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If there exist x ∈ Mn and two principal curvatures λ, μ of f such that
λ(x) ∈ Λ+ and μ(x) ∈ Λ− then 1 + λ(x)μ(x) ≤ 0.

In what follows we restrict the dimension to n ≥ 3. Our first result is the
following theorem.

Theorem 1. Let f : Mn ↪→ S
n+1 be a complete oriented hypersurface such that

the condition (∗) holds. If 0 �∈ Λ then ˜Mn (f̃(Mn), resp.) is homeomorphic
(isometric, resp.) to one of the following manifolds:

S
n, R

n, f(Mn) = S
r
c1

× S
n−r
c2

, f̃(Mn) = R × S
n−1
c2

.

Notice that Theorem 1 should be compared with Theorem B of [1]. An
consequence of the Theorem B of [1] is the following.

Theorem 2. Let f : Mn −→ S
n+1 be complete and oriented, where Mn has

Ricci curvature Ric ≥ 0. If Mn is compact and has infinite fundamental group
then f(Mn) = S

1
c1

× S
n−1
c2

. If Mn is non compact and has at least two ends

then f̃(Mn) = R × S
n−1
c2

.

Let us consider hypersurfaces with two principal curvatures. In view of
the Classification Theorem in [7] (p. 438), the Corollaries 3.3 and 3.6 in [7],
and finally Theorem 2.2 in [5], we have:

Let f : Mn −→ S
n+1 be a hypersurface, where Mn is a n-dimensional,

oriented and connected Riemannian manifold. If f has two distinct principal
curvatures then there exists a diffeomorphism β : Mn −→ A, where A is an
open part of one the following manifolds

S
r × S

n−r, S
r × R

n−r, S
r × H

n−r,

and where H
n−r is the hyperbolic space.

With this we have our main result:

Theorem 3. Let f : Mn −→ S
n+1 be a complete and oriented hypersurface such

that f has two principal curvatures λ, μ. Let K be the sectional curvature
of Mn and Ric its Ricci curvature.
a) If Mn is compact, K ≥ 0 in Mn and λ �= μ in Mn then f(Mn) =

S
r
c1

× S
n−r
c2

.
b) If Mn is compact and for all x ∈ Mn and if there exists a two plane

P ⊂ TxM such that K(P ) ≤ 0 then f(Mn) = S
r
c1

× S
n−r
c2

.
c) If Mn is compact with Ric ≥ 0 in Mn and λ and μ have multiplicities 1

and n − 1, respectively, then f(Mn) = S
1
c1

× S
n−1
c2

.
d) If Ric ≥ 0 in Mn and if, for all x ∈ Mn, there exists v ∈ TxM, |v| = 1,

such that Ric(v) = 0 then f(Mn) = S
1
c1

× S
n−1
c2

or f̃(Mn) = R × S
n−1
c2

.
e) If Ric ≥ 0 and f has constant mth mean curvature Hm, if furthermore

λ and μ have multiplicities 1 and n − 1, resp., then f(Mn) = S
1
c1

× S
n−1
c2

or f̃(Mn) = R × S
n−1
c2

.
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Corollary 4. There is no compact hypersurface f : Mn −→ S
n+1, n ≥ 3, with

only two distint principal curvatures in each point of Mn such that Mn has
scalar curvature τ ≤ 0 everywhere.

Remark 5. i) The Cartan hypersurface in S
n (see [6]) has three distinct

principal curvatures and has scalar curvature τ = 0.
ii) In the proof of Theorem 3 we use several arguments of T. Otsuki [8].

The Codazzi-arguments used in the proof of the Theorem 3 appear in
the papers [2] and [3] of A. Derdzinski.

iii) Taking into account Theorem 3 e), d), let i : S
1 × S

n−1 → S
n+1 be

the inclusion, Mn = R × S
n−1 and π : Mn → S

1 × S
n−1 the covering

map. Then f = i ◦ π : Mn → S
1 × S

n−1 is a complete non compact
hypersurface with two principal curvatures and f̃(Mn) = R × S

n−1.

Proof of Theorem 1. Consider f : Mn −→ S
n+1 complete oriented such 0 �∈ Λ

and the condition (∗) holds. Then the Gauss map N : Mn −→ S
n+1 is a com-

plete hypersurface with principal curvatures 1/λi, i = 1, . . . , n, where the λi

are the principal curvatures of f . Let i �= j and x ∈ Mn. Then we have only
the possibilities :

(i) λi(x) > 0 and λj(x) > 0,
(ii) λi(x) < 0 and λj(x) < 0,
(iii) λi(x) < 0 and λj(x) > 0.

Thus the condition (∗) implies (λi(x)λj(x))−1 + 1 ≥ 0 and N has nonnegative
sectional curvature. Then Theorem 1 follows from Theorem B of [1]. �

Proof of Theorem 3. a) Let Mn compact with sectional curvature K ≥ 0.
By Theorem B of [1] and in view of the Clasification theorem in [7] we
have that f(Mn) is isometric to S

r × S
n−r.

b) Let Mn be compact such that ∀x ∈ Mn there exists a two-plane
P ⊂ TxM with K(P ) ≤ 0. Consider x ∈ Mn and λ and μ the principal
curvatures of f (in x) such that λ and μ have multiplicities r and n − r,
resp. Then the sectional curvatures in corresponding 2-plane directions
of TxM are λ2 + 1, λμ + 1 and μ2 + 1 > 0. If λμ + 1 > 0 then Mn has
positive sectional curvature in x (contradiction). So, λμ+1 ≤ 0 and con-
dition (*) holds. Note that λ �= 0, μ �= 0 and λ �= μ. Then the Gauss map
N : Mn −→ S

n+1 is a compact hypersurface with nonnegative sectional
curvature. Using the same arguments as in the proof of Theorem 1 (a)
we have that f(Mn) = S

r
c1

× S
n−r
c2

.
c) Let Mn compact and assume that f has two principal curvatures of mul-

tiplicities 1 and n − 1, resp. It is easy to see that Mn has nonnegative
sectional curvature; by Theorem 1 we have f(Mn) = S

1
c1

× S
n−1
c2

.
d) Let Mn be complete with Ric ≥ 0 and assume that ∀x ∈ Mn, there

exists v ∈ TxM, |v| = 1 with Ric (v) = 0. Consider x ∈ Mn and let
λ and μ the principal curvatures of f (in x), of multiplicities n and n− r,
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respectively. Then the eigenvalues of the Ricci curvatures of M (in x)
are:

(λ2 + 1)(r − 1) + (λμ + 1)(n − r) ≥ 0

and

(μ2 + 1)(n − r − 1) + (λμ + 1)r ≥ 0.

Since there exists v ∈ TxM, |v| = 1 with Ric (v) = 0, we have

(λ2 + 1)(r − 1) + (λμ + 1)(n − r) = 0

or

(μ2 + 1)(n − r − 1) + (λμ + 1)r = 0.

Assume that r > 1 and (n − r) > 1 and consider the sets

M1 := {x ∈ Mn; (λ2 + 1)(r − 1) + (λμ + 1)(n − r) = 0}
and

M2 := {x ∈ Mn; (μ2 + 1)(n − r − 1) + (λμ + 1)r = 0}.

Let A be the Weingarten operator of f , X ∈ Dλ := {X ∈ TM | AX =
λX} and Y ∈ Dμ = {Y ∈ TM | AY = μY }. It follows from the Codazzi
equation that the distributions Dλ and Dμ are differentiable, involutive,
and that X(μ) = Y (λ) = 0. Notice that Mn = intM1 ∪ int M2 ∪ M3

where intM3 = Ø. Let x ∈ intM1 and Y ∈ Dμ. Then Y [(λ2 + 1)(r −
1) + (λμ + 1)(n − r)] = 0 and this implies that Y (μ) = 0 near of x. Since
μ is constant near x then X(λ) = 0 (in x), if X ∈ Dλ. Similarly, if x ∈
intM2, we can see that μ and λ are contant near x. By continuity, λ and
μ are constant in Mn, and in this case f(Mn) = S

r
c1

× S
n−r
c2

, where r > 1
and n − r > 1, which contradicts the fact of that Ric (v) = 0. So r = 1
or n − r = 1, 1 + λμ = 0 and Theorem 3 (d) follows from Theorem 1.

e) The proof of Theorem 3 (e) is similar to the proof of Theorem 3 (d).
�
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