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We solve the Klein-Gordon equation for a massive, nonminimally coupled scalar field, with a

conformal coupling, undergoing cosmological evolution from a radiation-dominated phase to a future

sudden singularity. We show that, after regularization, the energy of the created particles is zero and the

backreaction from quantum effects does not change the evolution of the Universe near the future

singularity and cannot prevent the finite-time sudden singularity.
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I. INTRODUCTION

The combined data from the anisotropy of the cosmic
microwave background radiation, supernovae type Ia, bar-
yonic acoustic oscillations and matter power spectrum
indicate that the dominant component of the mass-energy
content of the universe must be gravitationally repulsive
and driving the acceleration of the universal expansion. In
general, such a component can be represented by a fluid
with an equation of state p ¼ !�, with !<� 1

3 . If ! is

constant and the spatial sections of the Universe is flat, the
recent results of seven years of WMAP observations in-
dicate that ! ¼ �1:10� 0:14 [1] at 1�. This indicates
that the null energy condition is violated, and the expand-
ing Universe may hit a universal singularity in its future
evolution, after a finite proper time. This type of future
singularity has been named ‘‘big rip,’’ when there is a
divergence in the density of the exotic dark energy fluid,
while the scale factor goes to infinity [2]. This strange
behavior is connected with the violation of the null energy
condition. The possibility that the null energy condition
(�þ p � 0) is violated, and cosmological singularities
may occur in the future evolution of the Universe, has
been evoked frequently in the literature in the last years.
The possibility of future singularities was pointed out for
the first time in Ref. [3] and their occurrence does not
require the violation of the energy conditions. There is also
a later discussion in Ref. [4]. A recent example of future
singularities which does not violate the null energy condi-
tion is the ‘‘big brake’’ singularity, which emerges from the
DBI action [5,6]. The big brake singularity has the curious
property that it can be traversed by a pointlike particle [7].

A milder type of finite-time singularity is the so-called
‘‘sudden singularity.’’ The sudden future singularity occurs
without violation of any energy condition (so �þ p � 0
and �þ 3p � 0 at all times). This singularity is charac-
terized by a finite value for the scale factor, its first time
derivative, and for the density, while the second derivative
of the scale factor and the pressure diverge at finite time
[3]. They are singularities of the weak sort discussed by
Tipler [8] and Krolak [9].
In general, it is believed that the fate of the universe near

a singularity (past or future) must be affected by quantum
effects arising in the extreme conditions that exist in its
spacetime neighborhood. In the case of the big rip, this
problem has been treated, for example, in Refs. [10–12]. In
these investigations, it was found that the quantum effects
are important. But, the conclusions concerning the back-
reaction of the quantum effects on the evolution of the
Universe were harder to decide unambiguously. In the case
of the sudden singularity, quantum effects were studied in
Refs. [13,14], and the results indicated that quantum ef-
fects did not change the evolution near the singularity.
These results were all obtained for a massless scalar field.
It is important to extend these results to the case of

massive scalar fields. Here, we extend earlier studies to
the case of a massive scalar field, nonminimally coupled to
gravity, with a conformal coupling parameter, in a universe
which possesses a sudden singularity when quantum ef-
fects are absent. We will show that the singularity is
unscathed by the backreaction from the quantum field.
The complexity of the background evolution of the sudden
singularity restricts the possibility of a complete analytical
solution. Hence, we simplify the model by considering two
phases: a primordial radiative phase and a sudden singular
phase. Under these conditions, we can determine the evo-
lution of the quantum fields. In particular, we can calculate
the Bogoliubov coefficients and determine the energy den-
sity of the particles created by quantum effects near the
singularity. After regularization, we find a null result

*jdb34@damtp.cam.ac.uk
†abrasilb918@gmail
‡fabrisjc@yahoo.com.br
§sthoundjo@yahoo.fr. Present address: ICRA-CBPF, RJ,

Brazil
kgiuseppe.dito@u-bourgogne.fr

PHYSICAL REVIEW D 84, 123518 (2011)

1550-7998=2011=84(12)=123518(6) 123518-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.84.123518


implying that the sudden singularity persists, unaffected,
by the quantum effects due to the massive scalar field.

The paper is organized as follows. In the next section,
we determine the master equation for the massive, non-
minimally coupled, scalar field. In Sec. III, we set out the
cosmological background containing a sudden singularity,
and in Sec. IV, the master equation is solved. The
Bogoliubov coefficients are determined in Sec. V. In
Sec. VI, we regularize the expression for the energy den-
sity, and show that the final result is zero. In Sec. VII, we
discuss our conclusions.

II. THE MASTER EQUATION

We shall investigate quantum creation of massive parti-
cles near a sudden cosmological singularity at finite time.
We aim to determine if these quantum effects are strong
enough to change the evolution of the Universe near a
classical sudden singularity. In order to do this, we must
construct a specific model. We will concentrate on the
evolution of a massive scalar field, �, nonminimally
coupled to gravity, described by the following Lagrangian:

L ¼ 1

2
�;��

;� � 1

2
m2�2 þ 1

12
R�2: (1)

The presence of mass takes us one step further than pre-
vious work concerning particle production near sudden
singularity [13], which considered only massless scalar
particle production. The nonminimal coupling should
strengthen any quantum effects near the singularity, and
also introduces some technical features that facilitate ob-
taining exact solutions to the problem.

By variation of the Lagrangian with respect to �, we
obtain the field equation

h�þm2�� R

6
� ¼ 0: (2)

Under variation with respect to the metric, the Lagrangian
also gives the momentum-energy tensor

T�� ¼ 2

3
�;��;� � 1

6
g���;��

;� þ 1

2
m2g���

2

��

3
ð�;�;� � g��h�Þ þ 1

6
G���

2;

where

G�� ¼ R�� � 1

2
g��R

is the Einstein tensor.
If we use Eq. (2) together with the flat Friedmann-

Lemaı̂tre-Robertson-Walker (FLRW) metric for the
Universe,

ds2 ¼ dt2 � a2ðtÞðdx2 þ dy2 þ dz2Þ; (3)

where aðtÞ is the expansion scale factor, we find

€�þ 3
_a

a
_�þ

�
k2

a2
þm2 þ

�
€a

a
þ

�
_a

a

�
2
��
� ¼ 0;

where over-dots denote derivatives with respect to the
comoving proper time, t. This equation can be rewritten
in terms of the conformal time, �, defined by dt ¼ ad�, as

�00 þ 2
a0

a
�0 þ

�
k2 þma2 þ a00

a

�
� ¼ 0:

The primes denote derivatives with respect to the confor-
mal time.
Redefining the scalar field as

� ¼ �

a
;

we obtain the following equation for �:

�00 þ ðk2 þm2a2Þ� ¼ 0: (4)

This is the principal equationwewillworkwith fromnowon.

III. TWO COSMOLOGICAL ERAS

The sudden singularity can be described by the follow-
ing expression for the expansion scale factor [15–17]:

aðtÞ ¼
�
t

ts

�
qðas � 1Þ þ 1�

�
1� t

ts

�
n
; (5)

where ts is the time where the sudden singularity occurs,
and as is the value of the scale factor at this moment.
Moreover, 0< q � 1 and 1< n< 2 where q and n are
free constants and no relation is assumed between the
pressure p and the density �. We have two asymptotic
phases:
(i) Primordial phase, t ! 0:

a !
�
t

ts

�
qðas � 1Þ; (6)

_a ! q

ts

�
t

ts

�
q�1ðas � 1Þ; (7)

€a ! q

t2s
ðq� 1Þ

�
t

ts

�
q�2ðas � 1Þ: (8)

(ii) Singular phase, t ! ts:

a ! as; (9)

_a ! q

ts
ðas � 1Þ; (10)

€a ! � n

t2s
ðn� 1Þ

�
1� t

ts

�
n�2

: (11)

There is a radiation-dominated primordial phase if q ¼
1=2. On the other hand, in the singular phase, the scale
factor and its first derivative approach constants, and the
second derivative, €a, diverges as t ! ts, since n < 2.
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In terms of the conformal time, d� ¼ a�1dt, we have
for the scale factor evolution to leading order:

(i) Radiation phase:

a ¼ a0�: (12)

(ii) Singular phase:

a ¼ as: (13)

The scale factor and its first derivative must be continu-
ous during the transition of one phase to another. If as is the
scale factor value at the moment of the transition, and H0

the corresponding Hubble parameter, then the transition
moment is given by �t ¼ 1=ðH0asÞ and a0 ¼ H0a

2
s .

The isotropic and homogeneous form we have assumed
for the cosmological evolution of the scale factor, aðtÞ,
towards a sudden singularity captures the essential features
of the general solution near such a singularity. On approach
to the sudden singularity as t ! ts, the FLRW solution has
the linear asymptotic form

a ! as þ qð1� asÞ
�
1� t

ts

�
:

We can generalize it to an inhomogeneous metric of the
form

ds2 ¼ dt2 � ða�	 þ 
b�	 þ 
nc�	 þ . . . :Þdx�dx	 (14)

on approach to a sudden singularity at 
 � t� ts ¼ 0,
where a�	, b�	 and c�	 with �, 	 ¼ 1, 2, 3 are functions

of the space coordinates and n is a constant such that
1< n< 2. In the absence of an equation of state, nine
components of the symmetric a�	, b�	 and c�	 tensors are

left independent and arbitrary by the field equations as

 ! 0 and so (14) is characteristic of part of the general
solution of the Einstein equations in the vicinity of a
sudden singularity [18]. A stability analysis of the FLRW
solution has also been performed by Barrow and Lip [19].
For other studies of sudden singularities of this type, in
general relativity and related theories of gravity, see
Refs. [20–32].

IV. THE SOLUTIONS FOR THE
MASTER EQUATIONS

Let us return to the master equation (4). First, note that if
the mass is zero, m ¼ 0, then during both phases the
equation becomes

�00 þ k2� ¼ 0: (15)

The solution is the same during these two phases, and they
can be written in the form of plane waves. Since the
solution must be continuous, there is no final effect in the
singular phase, for the trace anomaly or for particle
production.

If the mass is nonzero, the equation during the singular
phase takes the form

�00 þ ðk2 þm2a2sÞ� ¼ 0: (16)

The solution is still of plane wave form, but with a fre-
quency that is affected by the presence of the mass term.
During the radiative phase, the equation is

�00 þ ðk2 þm2a20�
2Þ� ¼ 0 (17)

which can be rewritten as

€�þ
�
!þ x2

4

�
� ¼ 0;

where x ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2ma0

p
�, ! ¼ k2=2ma0, with dots now denot-

ing derivatives with respect to x. This is a parabolic cylin-
der equation, and the solutions can be written as

� ¼ e�iðx2=4Þ
�
c11F1

�
r; s; i

x2

2

�
þ c2x1F1

�
p; q; i

x2

2

��
;

(18)

where the 1F1 are confluent hypergeometric functions
(Kummer functions) [33], with

r ¼ i
!

2
þ 1

4
; s ¼ 1

2
; (19)

p ¼ i
!

2
þ 3

4
; s ¼ 3

2
; (20)

where c1;2 are constants.
The confluent hypergeometric functions may be ex-

pressed as a series:

1F1ðr; s; zÞ ¼ 1þ r

s
zþ 1

2

rðrþ 1Þ
sðsþ 1Þ z

2 þ . . . :

The series represented by the constant c1 is even, while the
solution represented by the constant c2 is odd.
Let us rewrite the solution as

� ¼ c1�1 þ c2�2: (21)

Considering the series expansion described above, we find

�1 ¼ 1�!
x2

2
� 1

4

�
1

12
�!2

6

�
x4 þ . . . ; (22)

�2 ¼ x�!
x3

6
� 1

4

�
1

20
�!2

30

�
x5 þ . . . : (23)

An important detail is that if we want to take into account
the mass in Eq. (17) we must consider the series at least
until order x5 (x4 for the even series), while if the mass is
not taken into account we can stop at order x3 (x2 for the
even series). The initial conditions are imposed for � ! 0
(x ! 0) when the mass is negligible. Considering the
expansion for the massless case, and going back to the
notation in terms of the conformal time, we find
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�¼c1�1þc2�2�c1

�
1�k2�2

2

�
þc2

ffiffiffiffiffiffiffiffiffiffiffiffi
2ma0

p
k

�
k��k3�3

6

�

(24)

� c1 cosk�þ c2

ffiffiffiffiffiffiffiffiffiffiffiffi
2ma0

p
k

sink�: (25)

Choosing

c1 ¼ 1ffiffiffiffiffi
2k

p ; c2 ¼ kffiffiffiffiffiffiffiffiffiffiffiffi
2ma0

p iffiffiffi
k

p ; (26)

the solution for � ! 0 can be written as

�� 1ffiffiffiffiffi
2k

p e�ik�; (27)

corresponding to the vacuum initial state.
With those choices for the constants c1 and c2, we now

have the solution at any time, also for the massive case

� ¼ 1ffiffiffiffiffi
2k

p e�iðx2=4Þ
�
1F1

�
r; s; i

x2

2

�
þ i

ffiffiffi
a

p
x1F1

�
p; q; i

x2

2

��
;

(28)

where we have restored the mass in the expressions.

V. THE BOGOLIUBOV COEFFICIENTS

Suppose that we approximate the solution during the
radiation era by a massless field. This is equivalent to
assuming that we have the massive solution shown above,
but in the limit � ! 0. Hence, we have the following
solutions corresponding to the two phases:

�kð�Þ ¼ eik�ffiffiffiffiffi
2k

p ðprimordial phaseÞ; (29)

�kð�Þ ¼ �01e
i ~!� þ �02e

�i ~!� ðsingular phaseÞ; (30)

where �01;02 are constants and ~! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a20

q
.

Now we impose the matching conditions for these two
solutions at � ¼ �c by requiring continuity of the function
and of its first derivative. We obtain the following relations:

�01 ¼ 1

2

1ffiffiffiffiffi
2k

p
�
1þ k

~!

�
eiðk� ~!Þ�c ; (31)

�02 ¼ 1

2

1ffiffiffiffiffi
2k

p
�
1� k

~!

�
eiðkþ ~!Þ�c : (32)

We notice that whenm ¼ 0, �01 ¼ 1=
ffiffiffiffiffi
2k

p
and �02 ¼ 0 and

so the solution is the same in the two phases and there are
no particle production effects.

On imposing the quantization, we find the following
expressions for the two phases:

�kð�Þ ¼ eik�ffiffiffiffiffi
2k

p aþ e�ik�ffiffiffiffiffi
2k

p ay ðprimordial phaseÞ; (33)

�kð�Þ¼ ð�01e
i ~!�þ�02e

�i ~!�Þaþð��
01e

�i ~!�þ��
02e

i ~!�Þay
ðsingular phaseÞ; (34)

where a and ay are the creation and annihilation operators.
These solutions (and their derivatives) are continuous at
� ¼ �c. They can be rewritten as

�kð�Þ ¼ eik�ffiffiffiffiffi
2k

p aþ e�ik�ffiffiffiffiffi
2k

p ay ðprimordial phaseÞ; (35)

�kð�Þ ¼ ei ~!�ffiffiffiffiffiffiffi
2 ~!

p bþ e�i ~!�ffiffiffiffiffiffiffi
2 ~!

p by ðsingular phaseÞ: (36)

Hence, we have

b ¼ ffiffiffiffiffiffiffi
2 ~!

p ð�01aþ �02a
yÞ:

In this way, we find expressions for the Bogoliubov coef-
ficients that connect the quantum modes during the differ-
ent phases [34]:

� ¼ ffiffiffiffiffiffiffi
2 ~!

p
�01; 	 ¼ ffiffiffiffiffiffiffi

2 ~!
p

�02:

The normalization condition,

��� � 		� ¼ 1; (37)

is satisfied. When the mass is zero (i.e., a conformally
coupled scalar field), we have � ¼ 1 and 	 ¼ 0. The
coefficient 	 is associated with the created particles [34].
Hence, the number of created particles for each mode k is

Nk ¼ 		� ¼ 1

4

�
1� k

~!

�
2
; (38)

while the energy of each mode is

�k ¼ kNk: (39)

An integration over all k-modes gives

� ¼
Z 1

0
�kd

3k ¼ �
Z 1

0
k2 ~!

�
1� k

~!

�
2
dk: (40)

This expression clearly diverges so it is necessary to regu-
larize it. But, heuristically, since it is a polynomial expres-
sion, it seems clear that after regularization we must obtain
zero. Hence, the particle production should not contribute
to the energy-momentum tensor and the sudden singularity
is unaffected by these quantum effects.
Note that the integral (40) admits an analytical solution:

Z
�kd

3k ¼ �
Z

k2 ~!

�
1� k

~!

�
2
dk

¼ �

�
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ �m2

p �
k2

2
� �m2

4

�
� k4

2

þ �m2

4
ln½2ðkþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ �m

p
Þ�
�
; (41)

with �m ¼ ma0. There is no infrared divergence, but there is
a logarithmic divergence when k ! 1 (ultraviolet limit).
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VI. REGULARIZING THE ENERGY

In order to regularize the expression of the energy, we
use the n-wave method expounded in Ref. [35]. This
method is based on the Pauli-Villars technique used for
quantum field theory in Minkowski spacetime. First, let us
write the energy as

� ¼
Z 1

0
�kðk;mÞk2dk: (42)

Let us define

�ðnÞ
k � 1

n
�kðnk; nmÞ; (43)

where n is a parameter that characterizes the order
of the divergence. From this expression, we construct the
quantities

Ep
k ¼ lim

n!1
@p�ðnÞ

k

@ðn�2Þp : (44)

The expression for the regularized energy is given by

�
reg
k ¼ �k � E0

k � E1
k �

1

2
E2
k; (45)

where E0
k eliminates the logarithmic divergence, E1

k the

quadratic divergence, and E2
k the quartic divergence—all

those that are normally present in the energy-momentum
tensor. This regularization of the energy corresponds to a
full renormalization of the coupling constants, as described
in [36,37].

We have,

�k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ �m2

p
� 2kþ k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ �m2
p : (46)

It follows that

�ðnÞ
k ¼ �k: (47)

Hence, only the zero-order term survives, and leads to

�ren
k ¼ �k � E0

k ¼ �k � �k ¼ 0: (48)

As we suspect, the renormalized energy is zero. There is no
effect, and the quantum phenomena associated with the
cosmological dynamics do not change the character of the
sudden singularity or prevent its occurrence.

VII. CONCLUSIONS

In this work, we have investigated the fate of the uni-
verse near a future sudden singularity due to quantum
particle production effects by a massive scalar field that
is nonminimally coupled to gravity. We have used the
method of calculating Bogoliubov coefficients and the

expression obtained for the energy of the created particles
near the singularity is divergent. This divergence is cured
using the standard n-wave method and the final result after
regularization is exactly zero. Hence, we can conclude
that the sudden singularity is robust against quantum
effects due to the presence of a massive scalar field.
We have used a simple description for the background
cosmological evolution toward a sudden singularity at
finite time that shares the same time evolution as part of
the general solution of the Einstein equations near such a
singularity.
An interesting consequence of this result concerns

the trace anomaly. A massless scalar field conformally
coupled to gravity is a particular case of the problem
studied here. For this particular case the result is the
same, with no quantum effects. Hence, the trace anomaly
is absent near the singularity, as had been speculated in
Ref. [13]. It must also be stressed, concerning this massless
limit, that the same regularization method can be used
since there is no infrared divergence even when the mass
is zero.
Other fields should be considered to test the robustness

of a classical sudden singularity with respect to quantum
effects. However, since the scalar field and its first deriva-
tive are both constant at the sudden singularity, the Klein-
Gordon equation implies that in general there will only be a
change in the frequency of the quantum modes as the
sudden singularity is approached. This frequency change
alone is unable to create influential quantum effects.
Hence, we can surmise that perhaps the result found here
and in Refs. [13,14] can be generalized further, and they
can be applied to other types of fields.
One such a generalization arises if we consider a non-

conformal coupling, with a Klein-Gordon equation given
by

h�þm2�� �R� ¼ 0: (49)

For a flat FLRW metric, this equation reduces to

�00 þ 2
a0

a
�0 þ

�
k2 þm2a2 þ 6�

a00

a

�
� ¼ 0: (50)

For the radiative phase, the scenario is the same as that
studied above, since a00 ¼ 0. For the sudden singularity
phase, the situation is more involved since there is a singu-
larity in a00. However, a transformation of the type � ¼
a�6�� (which reduces to our previous transformation for
� ¼ 6—the conformal coupling) can eliminate this singu-
larity, leading to a regular equation with a damped (anti-
damped) harmonic oscillator equation for � > 1

6 (� < 1
6 ).

This new term seems to be harmless since the dissipation
(antidissipation) effect lasts only for a finite time until the
singularity is reached. Hence, we expect that our previous
results hold even in this more general case.
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Another way to consider the problem of quantum avoid-
ance of future singularities is to solve to Wheeler-de Witt
equation in universes containing future singularities. For
big rip and big brake singularities, this question has been
analyzed in Refs. [38,39], with some indications that, at
least for the big brake case, the singularity can be avoided
due to quantum effects. For the big rip case the situation is

less clear, see also Refs. [40,41]. It is a natural step to

perform such an analysis for the sudden singularity case, an

issue we hope to consider in the future.
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