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Abstract. The objective of this study is to design a procedure to characterize chaotic dynamical systems,
in which they are mapped onto a complex network. The nodes represent the regions of space visited by the
system, while the edges represent the transitions between these regions. Parameters developed to quantify
the properties of complex networks, including those related to higher order neighbourhoods, are used in
the analysis. The methodology is tested on the logistic map, focusing on the onset of chaos and chaotic
regimes. The corresponding networks were found to have distinct features that are associated with the
particular type of dynamics that generated them.

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.Hc Networks and genealogical
trees – 02.10.Ox Combinatorics; graph theory

1 Introduction

Chaotic dynamical systems are characterized by several
measures that quantify how irregular, albeit determinis-
tic, the trajectories are. The set of Lyapunov exponents [1]
provides a measure of the dependence of the trajectories
of the dynamical systems on the initial conditions, while
information theory may be used to characterize such sys-
tems in terms of the production of entropy. In fact, a dy-
namical system with chaotic behaviour may be regarded
as an example of Shannon’s concept of an ergodic in-
formation source [2], since the Kolmogorov-Sinai entropy
is equal [3] to the sum of the positive Lyapunov expo-
nents. Further measures used to describe a chaotic system
include fractal dimensions and singularity spectra [4,5].
This formalism applies only when the system has at least
one positive Lyapunov exponent. However, several authors
have studied the particular situation of the quadratic lo-
gistic map when its Lyapunov exponent vanishes [6–9]. In
this case, the distance between trajectories that are very
close at t = 0 fluctuates over time. Depending on the value
of t, the distance either increases or decreases, since the
envelope of the fluctuations of this distance is composed
of two branches, one increasing and the other decreasing
as power laws [7–9]. This particular situation may be con-
sidered typical of other systems with a larger number of
equations in which the largest Lyapunov exponent van-
ishes. These situations are usually found at the onset of
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chaos, when an infinitesimal change of a control param-
eter drives the system into either a regular or a chaotic
regime. These investigations revealed some of the features
regarding the sensitivity to the initial conditions [6], en-
tropy production per unit time [10], multifractal geometry
of the attractor [11], relaxation to the system attractor [12]
and multifractal dynamics at the onset of chaos [13].

Recently, the investigation of complex networks has
set up a new framework for the analysis of systems with
many degrees of freedom. Within this framework, access
is obtained to the properties of the topological structure
underlying the mutual interactions among the compo-
nents of the system. This approach has been applied to
a large variety of actual systems, ranging from social in-
teractions, biological data, internet and electrical power
distribution [14,15].

This paper defines a procedure to map a dynamical
system onto a network. The network properties can then
be used to display new features to characterize the tra-
jectory of the system. The network nodes correspond to
coarse-grained regions (cells) of the phase space visited
by the trajectory. Two nodes r and s are linked when,
during the time evolution, the trajectory jumps from cell
r to cell s. Although this naturally offers a construction
procedure for a directed network, in this paper only undi-
rected networks are considered. In this approach, novel
geometric and topological properties of the phase space
are evaluated through the measures that have been re-
cently developed to characterize complex networks. The
dynamical system defined on the time domain is mapped
onto a node domain, which represents the regions of the
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phase space visited by the trajectory. As it is based on
the division of phase space into boxes, this process follows
construction procedures similar to those considered in the
evaluation of the fractal dimension of attractors and the
Kolmogorov-Sinai entropy.

It should be mentioned that some previous studies
have already tried to combine some ideas of dynamical
systems and complex networks. As this paper shows, how-
ever, our approach is rather different, as the previous con-
tributions consider synchronization under the assumption
of a certain regularity in the connection topology [16,17].
The use of a network to represent the phase space evo-
lution of discrete time dynamical systems has also been
suggested [18].

In this report, we restrict to the analysis of the
quadratic map [19] described by

xt+1 = 1 − ax2
t (t = 0, 1, 2, 3...) (1)

where xt ∈ [−1, 1] and a ∈ [0, 2]. Equation (1) leads to
a variety of distinct dynamical situations, the properties
of which are expected to be manifested in the networks
from which they originate. In particular, three regimes are
investigated: the onset of chaos, which proceeds through
a bifurcation cascade; the immediate neighbourhood of an
intermittency transition; and the fully developed chaos.

2 Network characterization

An indirected network R is defined only by the number of
nodes (N) and links (L), represented by an assembly of
unordered pairs SR(r, s), r, s ≤ N , indicating which pairs
of nodes are directly connected. This information provides
a full description of the network, leading to computation
of the average number of links per node 〈k〉, the average
clustering coefficient C, the mean minimal distance among
the nodes 〈d〉, the diameter D, and the probability distri-
bution p(k) of nodes with k links. Other measures, such as
the assortativity degree [20] and the distribution of clus-
tering coefficients C(k) of individual nodes with respect
to their degree k, have also been introduced, but they will
not be discussed in this paper.

R may be described in terms of its adjacency matrix
M(R). This is not the most concise representation of a
network, but it opens the possibility of evaluating its spec-
tral properties and, as recently indicated, the higher or-
der neighbourhoods R�, � = 1, 2, ..., D [21]. This is done
in a straightforward way, by means of the set of matrices
{M�}, so defined that (M�)r,s = 1 only if the shortest dis-
tance along the network between the nodes r and s is �.
Otherwise, (M�)r,s = 0. Although all the information on
the network is contained in SR(r, s) or in M(R), each M�

condenses information on R that is extracted from M(R)
within the quoted framework. This formalism is also con-
sistent with the recently proposed procedure to evaluate
the fractal dimension of the network dF,R [22], as it nat-
urally leads to the set {N�} required for this evaluation.
Here, each N� counts the number of pairs of nodes that
are � steps apart.

Within this framework, each node is considered the
only zeroth order neighbour of itself, and we express this
by defining M0 = I, where I indicates the identity matrix.
In addition, it is assumed that M1 = M . Since the only
possible values of the matrix elements of M(R) are 0 or 1,
the other matrices M� of the set are recursively evaluated
using Boolean operations [21]. Further use will be made of
a matrix that condenses all information in {M�(R)}. As
previously discussed, given any two nodes r and s, it is
clear that (M�)rs = 1 for just one value of �. Therefore, if
we define a matrix

̂M =
�max
∑

j=0

jMj, (2)

it will provide direct information on the number of steps
between any two nodes in the network. Furthermore, this
information in ̂M may be used to graphically illustrate
the structure of a network with the use of colour or gray
scale plots.

It should also be mentioned that this framework opens
the door to a more precise characterization of the network,
if we consider each R� as an independent network. There-
fore, several of the aforementioned properties used to char-
acterize R may also be used for the evaluation of R�. This
is discussed in the next section, specifically with respect
to the degree distribution and clustering coefficient 〈k〉�
and C(�).

3 An algorithm to map a dynamical system
onto a network

In order to map a dynamical system onto a network R, we
use the framework of an algorithm introduced some time
ago [23], which was originally conceived to efficiently eval-
uate the generalized fractal dimensions of fractal struc-
tures by the box counting method.

With respect to a dynamical system with m variables
one may consider, without loss of generality, a set of points
Z ⊂ �m consisting of the vectors z(i), i = 1, ..., T , T � 1,
which represent the coordinates of the dynamical system.
The components of these vectors, zδ(i), δ = 1, ..., m, are
assumed to belong to the interval [0, 1). A graining in
phase space is defined by dividing each phase space axis
into W equally sized disjoint intervals, so that the whole
phase is spanned by a set of Wm boxes. This also repre-
sents the maximum possible number of nodes in a network,
for example, in the case of an ergodic system. Of course,
the choice of W defines the graining, and the size of the
region represented by a node. In the next section the effect
of W on the obtained networks is evaluated.

Based on [23], each point z(i) of the trajectory is
mapped onto a node of R according to

n(i) =
m

∑

δ=1

W δ−1floor(Wzδ(i)), (3)
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where floor(x) is a function that evaluates the largest in-
teger less than x. In fact, this is merely a simple way of di-
viding the region [0, 1)m into equal parts. The nodes of the
network thus constructed represent a box in the coarse-
grained phase space of the system. After the mapping is
complete, the boxes that were not visited by the trajectory
are eliminated from the network, as they constitute nodes
with zero degree (k = 0), which do not provide any useful
information on the dynamical system. The edges are built
as described in the following procedure. Suppose that z(i)
and z(i + 1) be two consecutive points of the dynami-
cal system, and that these points were previously mapped
onto the nodes n(r) and n(s), where 0 < r, s ≤ Wm. Then,
one introduces an edge connecting n(r) and n(s). Here, it
is considered that there is only one edge linking n(r) to
n(s) and that self-links are not allowed.

This procedure may lead to directed and weighted net-
works; however, this paper focuses on the simplest situ-
ation of undirected and unweighted networks, since our
main purpose is to address the problem and show that
useful information may be extracted from it.

4 Results

This study concentrated on values of a in three different
regions, a = ac = 1.40115518909..., a ∈ [1.749, 1.75) and
a = 2, which correspond, respectively, to the first period
doubling transition, the region close to the tangent bifur-
cation to the period-three window, and the fully developed
chaotic state.

Representative networks for the different chaotic at-
tractors are generated for different values of the graining
W . Only trajectories that start on the attractor were con-
sidered in order to avoid spurious nodes (those visited only
once) that depend on initial conditions. For a fixed value
W , the network grows as the trajectory evolves in the
phase space with respect to the number of iteration steps
t. There is no a priori criterion to decide the time tF after
which the network is complete. In this study, we followed
the way in which N and L increase with respect to t, for a
given W . tF is defined as the smallest value of t for which
N(tF ) = N(2tF ) and L(tF ) = L(2tF ).

First let us discuss the effect of W on N and L. To
present a full neighbourhood analysis of the networks, we
have selected here values of W that lead to the maximal
number ≈10 000 nodes in the network. The choice of W
clearly depends on a. Indeed, due to the strategy adopted
for the construction of the networks, N grows with W
according to a power law mediated by the fractal dimen-
sion of the attractor dF,A. This is shown in Figure 1a, in
which points are drawn, in logarithmic scale, for a = ac,
ac + 10−3, 1.749999 and 2. For ac, the slope is 0.54 . . . ,
which agrees with the known value of dF,A of the period
doubling attractor. In all other cases, the slope is 1 within
an accuracy of 2%, even for a = ac + 10−3, which lies al-
ready in the chaotic regime. This is in accordance with the
fact that dF,A changes in a discontinuous way at a = ac.
When a corresponds to a periodic solution, the network
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Fig. 1. (a) Dependence of N with respect to W for a = ac

(circles), a = ac + 10−3 (diamonds), a = 1.749999 (down tri-
angles), and a = 2 (up triangles). The the same convention
is used in all other figures. The different slopes indicate the
values of dF,A. (b) Power law dependence of 〈d〉 (hollow sym-
bols) and D (solid symbols) with respect to N for a = ac and
a = ac +10−3. The inset shows logarithmic dependence among
the same quantities when a = 1.749999 and a = 2.

becomes finite, so that N and L do not depend on W ,
provided this parameter is large enough.

Although we are primarily interested in the proper-
ties of the complete network, it is also possible to follow
the dependency of N and L with respect to t, for a fixed
value of W . Assuming N ∼ Lz, this defines a dynamical
exponent z in the early stages of evolution of the network.
The analyzed data indicate that z 
 1 for all values of a.
Nevertheless, in the immediate chaotic neighbourhood of
a = 1.75, the laminar phases in the intermittent regime are
found to trap the trajectory for long intervals, demanding
a large time of integration to complete the network.

The network properties will now be discussed in accor-
dance with the aforementioned methodology and param-
eters. Whenever appropriate, this discussion is extended
to include properties of higher order neighbourhoods in
the network. Different network structures are found if
we consider the chaotic regime or the onset of chaos.
With respect to the mean minimal distance 〈d〉 and di-
ameter D, in the case of the chaotic regime, these are
found to grow with respect to W (and N), in a logarith-
mic way, similar to that of small-world networks [24]. If
〈d〉 = α log10 W , then α 
 2.4 and 3.7, respectively, for
a = 2 and a ∈ [1.749, 1.749999], as illustrated in the inset
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Fig. 2. Degree distribution of nodes at ac (circles) and in the
a = 2 chaotic regime, (up triangles). Behaviour close to tangent
bifurcation, a = 1.75–10−4 , (not shown) is quite similar to
a = 2.

of Figure 1b. As D only assumes integer values, a simi-
lar power law pattern, that would be expected, appears
only in an approximate way, with equally sized steps in
D × log10 W plots. Therefore, assuming D = β log10 W ,
the result is β 
 4 for a = 2 with a very high level of
accuracy. In the interval [1.749, 1.749999], we noticed the
presence of fluctuations in the size of the steps, which in-
creases when we approach the threshold a = 1.75. The
results for a = ac behave completely differently: 〈d〉 and
D increase as power laws with respect to W , as illustrated
in the main panel of Figure 1b. For a = ac+10−3, the same
type of dependence prevails. The exponents obtained for
〈d〉 and D are, respectively, 0.67 and 0.73 for ac, and 0.35
and 0.38 for a = ac + 10−3. 〈d〉 and D increase smoothly
for a = ac +10−3. However, at a = ac, discontinuities and
steps appear in the plots of these parameters. The results
shown in Figure 1b indicate that, unlike the properties of
the attractor, reflected by the sudden change in the value
of dF,A, the network properties change slowly when the
chaotic regime is reached.

The distribution p(k) vs. k was evaluated in each one
of the different regimes. In the case of a = ac, as shown
in Figure 2, k does not reach large values (kmax 
 30).
Therefore, it is not possible to identify a power law decay
in this range. For a = 2 (and also a = 1.749999) nodes
with larger values of k may be found, but p(k) does not
follow a power law either.

This distinctive behaviour is also present when we an-
alyze the fractal dimension of the network dF,R [22]. Fig-
ure 3 shows that the a = ac networks have a well defined
scaling behaviour, which extends extremely precisely over
more than two decades. On the other hand, there is no evi-
dence of a fractal dimension for the networks in the chaotic
regime. First, the small values of D reduces the region of
possible scaling behaviour. In addition, deviations to the
expected power-law regime can be clearly observed.

With respect to the clustering coefficient, we obtain
C ≡ 0 when a = ac, indicating the complete absence
of triangles in the network. In the case of a = 1.749999
or a = 2, C is small and decays with N according to a
power law with exponent ≈ 0.95, what is far from the
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Fig. 3. Clear power law behaviour for N(�) × � when a =
ac, with dF,R = 1.47. Finite size effects blur this dependence
when � � D. In the chaotic regime, for a = 2, dF,R can not
be evaluated. For a = ac + 10−3, the points illustrate a slow
transition between the two regimes.
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Fig. 4. (a) Behaviour of C(�) with respect to � for chaotic
regime and at the onset of chaos. The inset shows a peculiar
power law behaviour C(�) at the onset of chaos. (b) Behaviour
of 〈k〉�×�. The onset of chaos shows a slowly increasing value of
〈k〉� over a large interval of �, interrupted by finite size effects
already present in Figure 3. In contrast with this picture, the
chaotic regime shows a sharp increase in 〈k〉�.

value of 0.75 observed for the Albert-Barabasi scale-free
network [14]. However, these small values indicate that the
network has only a small number of triangles.

Other features of the network may be drawn if we con-
sider the clustering coefficient of higher order neighbour-
hoods [21]. To obtain a clearer picture of this analysis
consider, for instance, the regular Cayley tree where each
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Fig. 5. Colour scale plots (gray scale in the paper version) of
̂M for a = 2 (a) and a = ac (b). Scale ranges from black and
blue (� = 0 and � = 1) to red (� = D). Number of levels in (a)
is much smaller than in (b). Neighbourhood structure changes
abruptly in the distinct regimes.

site has coordination 3. The � = 2 network is formed by
triangles, in much the same way as the Husimi cactuses,
resulting in a correspondingly large value for C(� = 2).
The following odd and even numbered neighbourhoods
are characterized, respectively, by values of C(�) = 0 and
C(�) > 0, whereby the values of C(�) for a subset of even
neighbourhoods decrease monotonically. A similar situa-
tion is found with respect to the networks investigated
here. In Figure 4a the sequence of C(�) is summarized for
the three situations under investigation. For a = 2 and
a = 1.4999, the oscillatory behaviour was found to last
only until � = 5 and 10, respectively. In addition, the odd
numbered C(�) was found to increase until reaching values
as high as those of the even numbered neighbourhoods. On
the other hand, the a = ac network has C(�) = 0 for all
odd numbered neighbourhoods. The inset shows that the
C(�=even number) decays with � according to a power
law, with exponent α 
 1.

The average degree 〈k〉� was also analyzed as a function
of the neighbourhood �. Here again, the behaviour of the
chaotic regime and the onset of chaos were found to have
distinct features, as shown in Figure 4b.

Finally, the information in ̂M was used to obtain in
colour or gray scale images of the network neighbour-
hood structure. These images provide clear, simple visu-
alization of their distinct properties of the attractor. For
a = 2, the first order neighbourhood is distributed along
the parabola described by the r.h.s. of (1) (see Fig. 5a).
This illustrates how the second and higher order neigh-
bourhood evolve according to the higher order iterates of
the quadratic map. However, mixing and finite size effects
stemming from a finite graining blurs the higher order it-
erates. The situation is different in the case of ac, when
the attractor is a dF,A = 0.54... dust spread out in the
[−1, 1] interval. Only boxes containing part of the dust re-
main in the network, so that contiguous numbered nodes
are not actually neighbours in phase space. The resulting
image (Fig. 5b) displays a fine, intertwined tessitura that
reflects a very peculiar behaviour of the trajectories at the
onset of chaos [7–9].

5 Conclusion

In this paper, the idea of mapping chaotic systems onto
complex networks is explored. Networks are constructed
according to a well defined methodology, and results using
the logistic map indicate how their properties are associ-
ated with those of the attractor in phase space. Trajec-
tories in distinct dynamical regimes are investigated in
order to show how the major differences in phase space
are reflected in the networks. The networks show several
features of small-world and scale-free networks, but these
features do not completely match those generated by the
specific algorithms described in [24,25]. The analysis of
the networks in the neighbourhood of ac reveals that the
N × W dependence, measured by dF,A, undergoes sharp
transition at the onset of chaos. Therefore, the distinct
character of the trajectories in phase space is indeed re-
flected in the network. However, with the exception of C,
the results for the other indices (〈d〉, D and p(k)) change
in a much smoother way with respect to changes in the
parameter a.

This work was supported by the Brazilian Agencies CNPq and
FAPESB.
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