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Abstract
A configuration interaction (CI) model to treat confined many-electron systems
is presented. Our model proposes a spatially confined linear combination
of configuration interaction (LCCI) functions, built from basis functions that
do not satisfy confinement boundary conditions. As an application we have
calculated total energies for the He ground state, assuming that the atom is
enclosed within a spherical cavity with infinite potential walls. Comparisons
with other results in the literature are made in order to verify our model.

The problem of a spatially confined system has been subject of interest in many branches of
physics and chemistry since the early years of quantum mechanics. In 1928, the problem for
an electron in a uniform magnetic field confined by a harmonic oscillator type potential had
already been solved by Fock [1], and in 1940, Schrödinger [2] analysed hydrogen-like atoms
in a hyperspherical curved space, that is, confined by a cotangent-type potential. At the present
time, investigations on confined systems in physics [3–5] have focused especially on the study
of artificial atoms, also known as quantum dots (essentially a number of electrons confined in
a potential well). In quantum chemistry, the confined models have been used to study a series
of chemical phenomena that occur in cavities, such as cages or channels in zeolite molecu-
lar sieves [6,7], adsorption in heterogeneous catalysis [8], and endohedral complexes, such as
atoms and ions inside fullerene cages [9–11]. A review by Jaskólski [12] gives a broad account
of these studies prior to 1996 and a complete list of later works concerning confined atoms
may be found in a very recent paper by Connerade et al [13]. An analysis of these studies
shows that several of them are concerned with one-electron systems or with many-electron
atoms described at the Hartree–Fock level.
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However, a large theoretical motivation for the study of enclosed systems is to understand
in detail the electron correlation effects on the properties of those systems. This letter is
proposing an approach to determine energy and correlated state functions for confined systems.
Our method is based on the variational principle and imposes that a linear combination
of configuration interaction (LCCI) functions must vanish at the cavity border via a set of
constraint equations for the expansion coefficients. In other words, we represent the confined
exact state function as a linear combination of N -electron trial configuration interaction (CI)
functions. We illustrate the method by applying it to CI energies for the helium atom inner
spherical box with infinite potential well.

We begin by constructing determinantal functions from the self-consistent field (SCF)
orbitals obtained by solving the Hartree–Fock–Roothaan equations for the unenclosed system.
Next, we determine a basis set of occupied {φi}ji=1 and virtual (or unoccupied) {φi}ri=j+1, j < r ,
orbitals and we compose the configuration state functions (CSFs), e.g. Slater determinants
�k or combinations of them, involving excitations from the occupied to virtual orbitals and
satisfying the spin symmetry [14]. With those CSFs we obtain


 =
∑
k

Dk�k (1)

solutions of the general CI matrix equation

HD = ESD (2)

where the matrix elements of H , S and D† are, respectively,

Hkl =
∫
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i �=j

1

rij
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The solutions of equation (2) give a set, {
i}si=1, of CI-state functions, ground and excited
ones, and its corresponding eigenvalues E1, E2, . . . , Es describing the non-confined system.
Hence, we consider theseN -electron functions as a basis setB in which we expand the confined
exact many-electron function 
̃, i.e. we propose the trial function


̃ =
n∑

j=1

Cj
j (7)

with
{
Cj

}n

j=1 being a set of variational parameters to be determined under confinement
conditions. In fact, as the CI-state functions
j (j = 1, 2, . . . , n) do not satisfy the confinement
boundary conditions, we must impose those conditions on the expansion (7). This is done by
applying the linear variation method to the functional 〈
̃|H|
̃〉c inside the confinement region
Cω and satisfying the constraints

〈
̃|
̃〉c =
∫

Cω


̃∗
̃ dr1 dr2 . . . drN = 1 (8)


̃(r1 = r(k), r2 = r(k), . . . , rN = r(k)) ≡ 
̃(ri = r(k)) = bk, k = 1, 2, . . . , m (9)
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where r(k) represents the coordinates ri (i = 1, 2, . . . , N) at the kth boundary of Cω, and bk

is the value that the 
̃ takes at this boundary. The index c indicates the integrals are evaluated
inside the region Cω.

Using the functional 〈
̃|H|
̃〉c and the constraints (8) and (9) we write

L[Ci, E,�k] = 〈
̃|H|
̃〉c − E{〈
̃|
̃〉c − 1} +
m∑

k=1

{�k[
̃(rk) − bk] + �∗
k[
̃∗(rk) − b∗

k ]}

(10)

where E and �k are Lagrange’s undetermined multipliers, and so the necessary condition for
extremum values of (10) are obtained from

δL[Ci, E,�k] = 0. (11)

It means
n∑

i=1

δC∗
i

{
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ij − ESc
ij

]
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∗
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}
+ c.c. = 0. (12)

Since δC∗
i is arbitrary, we obtain the set of conditions

n∑
j=1

Hc
ijCj − ESc

ijCj +
m∑

k=1


∗
i (r(k))�

∗
k = 0 (13)

and the expansion of 
̃ obeys the constraint equation

n∑
j=1

Cj
j (r(k)) − bk = 0. (14)

For problems where all of the bk are zero (Dirichlet boundary conditions) we have,
from (13) and (14), the generalized eigenvalue problem(

Hc Ψ†

Ψ 0

) (
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)
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0 0

) (
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for which we define
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and Hc is the n× n Hamiltonian matrix, Sc is the n× n overlap matrix (here, all integrals are
evaluated in the confinement region Cω), C is the column vector of the coefficients and Λ∗

is the conjugated vector of the Lagrange undetermined multipliers �∗
i . However, we should

note, as in our procedure the CI basis functions 
j are chosen to be eigenfunctions of H, the
matrix elements of Hc can be calculated as

Hc
ij =

∫
Cω


∗
i H
j dr1 dr2 . . . drN = Ej

∫
Cω


∗
i 
j dr1 dr2 . . . drN = EjS

c
ij (16)

where the matrix elements of Sc are given, explicitly, by

Sc
ij =

∑
a

∑
b

D∗
aiDbj 〈�a|�b〉c (17)
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with each element 〈�a|�b〉c written as

〈�a|�b〉c =
∫

Cω

φ∗
a1(r1)φ

∗
a2(r2) . . . φ

∗
aN(rN)

×
∑

P

εPPφ∗
b1(r1)φ

∗
b2(r2) . . . φ

∗
bN(rN) dr1 dr2 . . . drN (18)

and φai(ri ) and φbi(ri ) being single-particle functions which compose the Slater determinants
�a and �b, respectively. P is the permutation operator and εP is the parity of the P th
permutation.

From the formalism above, the non-trivial solutions of equation (15) are obtained solving
the determinantal equation

det

[
Hc − ESc Ψ†

Ψ 0

]
= 0 (19)

which is a polynomial equation of order (n − m) in E , i.e. the total energy for the confined
many-electron systems. In addition, as our space is restricted to the confined region Cω, the
Hamiltonian matrix elements must be made symmetric by replacing Hc

ij by 1
2 (H

c
ij + Hc

ji).
The computational effort to implement our model for confined many-electron systems

requires, initially, an ordinary CI calculation (full or truncated) for the unenclosed system
in order to obtain a basis set B of state functions, which composes the trial confined state
function 
̃. In this letter we have solved the full CI problem for the helium atom through the
ground and first excited states generated with the so-called 6-311G atomic basis set [15, 16].
Therefore, our trial function is chosen to be composed of two eigenfunctions of the Hamiltonian
H corresponding to the unenclosed atom. If we choose the confinement region as being a sphere
of radius r = R, there exists only one constraint equation, i.e. 
̃(R) = 0. Thus, equation (19)
becomes ∣∣∣∣∣∣

Hc
11 − ESc

11 Hc
12 − ESc

12 
∗
1 (R)

Hc
21 − ESc

21 Hc
22 − ESc

22 
∗
2 (R)


1(R) 
2(R) 0

∣∣∣∣∣∣ = 0 (20)

where Hc
ij and Sc

ij are given, respectively, by (16) and (17). Due to spherical symmetry, the
evaluation of Sc

ij is simple, with all of them reducing themselves to a linear combination of
integrals of the general form∫ R

0
exp(−αr2)r2 dr. (21)

We have calculated the total energies, E , of the helium atom placed at the centre of
spheres with different radii, R. The results are compared with two different methods in the
literature [17, 18], as shown in table 1. In the first method, developed by Gimarc [17], the
author has used a state function which includes some radial correlation. Such a function
is multiplied by a cutoff factor and gives a value of −2.8757 Hartrees for the total energy
of the helium ground state at R = ∞. The second method has been proposed by Ludeña
and Gregori [18] and requires a previous Hartree–Fock (SCF) calculation with atomic basis
functions also multiplied by cutoff factors. In this case the authors have used an atomic
basis set which includes s-, p- and d-functions, and have obtained an energy of −2.9025
Hartrees for the ground state of the non-confined helium atom. On the other hand, our method
does not require cutoff factors in the functions, i.e. it is not necessary that the basis functions
satisfy confinement boundary conditions. Here, it should be noted that our basis functions
B are chosen as eigenfunctions of the Hamiltonian H in all regions of space. To illustrate
the method for the confined helium atom, we have considered, as explained above, the basis
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Table 1. Energy in Hartrees of the confined He(1S0) atom in a spherical box of radii R (au). Our
results are obtained by using a LCCI composed of two full-CI states generated with the 6-311G
basis set.

This paper
R (LCCI results) Ref [17] Ref [18]

1.30 −1.5495 −1.1924
1.40 −1.6011 −1.5792 −1.6156
1.50 −1.6914 −1.8692
1.60 −1.8250 −2.0891 −2.1250
1.70 −1.9954 −2.2576
1.80 −2.1814 −2.3876 −2.4230
1.90 −2.3567 −2.4887
2.00 −2.5028 −2.5678 −2.6026
2.20 −2.6947 −2.6791
2.40 −2.7902 −2.7491
2.60 −2.8358 −2.7936
2.80 −2.8570 −2.8222
3.00 −2.8684 −2.8407 −2.8708
4.00 −2.8764 −2.8716 −2.8988
5.00 −2.8764 −2.8755 −2.9020
∞ −2.8764 −2.8757 −2.9025

set B formed by two CI-state functions {
1, 
2}, generated by the usual atomic basis set
6-311G [16]. For the unenclosed helium atom, the eigenvalues of these CI functions are,
respectively, E1 = −2.8764 and E2 = −1.5249 Hartrees. Then, we have used equation (7)
for n = 2 and solved equation (20) to obtain the energies of the confined system. Our
results are in agreement with both methods cited above [17, 18], although the nature of the
confined functions and methodologies are different. For instance, while the other authors
have utilized Slater functions in their calculations, we have used Gaussian functions. It is
well known in the literature that Gaussian functions, far from the core, are more contracted in
comparison with Slater functions [19], and therefore they are less sensitive to the variations
of the cavity radius for some values of R. Our energy values are influenced by this property
of the atomic basis set: they are highly increased near the core, whereas for larger values
of R the energy converges quickly for the non-confined value. Such behaviour can be
analysed in table 1, where it is observed that LCCI energies increase slightly for a cavity
with radius larger than 2.40 au. It is also seen in table 1 that our values (notice the energy
differences between two consecutive values) are more sensitive to the compression in the
range from 1.60–2.00 au, in comparison with values presented by Gimarc [17] and Ludeña
and Gregori [18].

In summary, we have presented in this letter a theoretical procedure to study confined
many-electron systems. This procedure is a generalization of the formalism of linear variation
basis functions that do not satisfy boundary conditions proposed by Goodfriend [20] for one-
electron systems. As its main advantage, our methodology does not require calculations
of two-electron integrals in the cavity, while in the cited methodologies [17, 18] these
integrals should be modified due to introducing a cutoff factor in the basis functions, which is
necessary to fulfil the confinement boundary conditions. In this context, the proposed model
is general and may be applied to many-electron confined systems since the state functions
describing the corresponding unenclosed system are given. Our intention in the present
letter has not been to obtain the best energy for the confined helium atom at the full CI
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level. Our numerical results can be improved by adding higher angular momentum functions
to the atomic basis set; the addition of atomic functions improves the CI-state functions,
i.e. the basis set B, and in consequence the energy values obtained from equation (20)
for the enclosed system become better. Instead, we are interested in presenting a feasible
solution to the confined atomic problem through a new formalism. In particular, the
procedure presented here could be used to understand the nature and physical significance
of many-body effects in confined electronic systems, such as artificial atoms, for example.
Work in this direction is in progress and the results will be presented in a forthcoming
paper.

This work was supported by CAPES and CNPq, Brazilian agencies.
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