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2D Quantitative structure–activity relationship studies on a series
of cholesteryl ester transfer protein inhibitors
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Abstract—Coronary heart disease (CHD) is one of the major causes of human death. The most successful therapeutic approach
available is based on the reduction of low density-lipoprotein cholesterol (LDL-C). However, it is believed that the next paradigm
in CHD treatment will rely on increased HDL-C levels. One of the most promising strategies for this goal is the inhibition of
cholesteryl ester transfer protein (CETP). In the present work, robust classical 2D QSAR (r2 = 0.76, q2 = 0.72) and hologram QSAR
(r2 = 0.88, q2 = 0.70) models were developed for a series of 85 CETP inhibitors (N-N-disubstituted trifluoro-3-amino-2-propanol
derivatives). These models are complementary in nature and highlight important structural features for the design of novel CETP
inhibitors with improved potency.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Although coronary heart disease (CHD) mortality has
been diminishing in Western Europe and North Amer-
ica for the past decades, it remains one of the major
causes of human death.1,2 In the past two decades, the
most successful therapeutic approach for the treatment
of this disease is based on the reduction of low den-
sity-lipoprotein cholesterol (LDL-C) levels.3 Accord-
ingly, statins have become the gold standard treatment
for patients with, or at risk for, CHD.4 However, despite
the great benefits of statins, the outcome of many trea-
ted patients is still unsatisfactory, requiring immediate
attention.5 Furthermore, epidemiologic studies have
identified that low levels of high density-lipoprotein cho-
lesterol (HDL-C) are a higher risk for CHD than LDL-
C, total cholesterol or plasma triglycerides (TG).6

Therefore, it is believed that the next frontier in CHD
treatment should rely on increased HDL-C levels.7
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Nevertheless, the available drugs for CHD management
have poor effects on HDL-C levels (Fig. 1): niacin has by
far the best profile, raising the level of HDL-C by as
much as 30%, however, its cutaneous flushing side-effect
limits the patient compliance8; Fibrates (e.g., gemfibro-
zil, fenofibrate) increase HDL-C by 15–25% in patients
with hypertriglyceridemia, but have little effect (<10%)
on other patients; statins (e.g., atorvastatin, simvastatin)
produce only modest effect on HDL-C levels (approxi-
mately 5%).9–11 This fact highlights the importance of
probing more effective strategies to increase HCL-C lev-
els.5,6,8 This goal can be achieved through the inhibition
of cholesteryl ester transfer protein (CETP). However,
recent clinical trials moderated the perspectives on
CETP inhibition as a good target for CHD patients.
Although torcetrapib, an irreversible inhibitor of CETP,
in association with atorvastatin substantially increased
HDL-C and decreased LDL-C when compared with
atorvastatin monotherapy, no significant reduction in
the progression of coronary atherosclerosis was ob-
served.12 Although the use of torcetrapib was associated
with increased blood pressure, there are a number of
CETP inhibitors that do not show similar effects. There-
fore, there is an increasing interest in the study of new
classes of CETP inhibitors aimed at developing thera-
pies to raise HDL cholesterol levels.12
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Figure 1. Drugs currently used for CHD management.
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CETP is a glycoprotein that binds to HDL and is in-
volved in the transfer of lipoprotein particles and neu-
tral lipids, including cholesteryl ester, phospholipids,
and triglyceride. Accordingly, CETP crystallographic
structure revealed a noteworthy size and highly hydro-
phobic binding site capable of simultaneously binding
four lipid molecules.13 Among the several inhibitors
described in the literature,8 N-N-disubstituted trifluo-
ro-3-amino-2-propanol derivatives pose themselves as
interesting small-molecule targets for drug design due
to their synthetic accessibility and high potency. The
first crystallographic structure of CETP was made avail-
able very recently,13 thus allowing new possibilities for
QSAR studies associated with structure-based drug de-
sign strategies. This was not possible previously, leading
to the appearance of QSAR studies employing 3D
alignments based on spatial conformations of minimum
energy.14 In the present study, a data set of N-N-disub-
stituted trifluoro-3-amino-2-propanol derivatives, con-
sidered as CETP inhibitors, was used to develop 2D
QSAR models employing easily derived topological
descriptors and hologram QSAR (HQSAR), which
afforded reliable and predictive QSAR models.
2. Results and discussion

The data set of 85 N-N-disubstituted trifluoro-3-amino-
2-propanol derivatives used for the QSAR analyses was
selected from the literature.15–18 Chemical structures
and biological properties for the complete set of com-
pounds (divided in the corresponding training and test
sets) are listed in Table 1. The IC50 values employed in
this work (varying from 20 to 65,000 nM), measured un-
der the same experimental conditions, are acceptably
distributed across the range of values (Fig. 2). Thus,
the data set is appropriate for the purposes of QSAR
model development. The IC50 values were converted to
the corresponding pIC50 (�logIC50) and used as depen-
dent variables in the QSAR investigations.
From the original data set of 85 CETP inhibitors, 68
compounds (compounds 1–68, Table 1) were selected
as members of the training set for QSAR model devel-
opment, and the remaining 17 compounds (compounds
69–85, Table 1) were considered as members of the test
set for external validation. A statistical cluster analysis
carried out with PIROUETTE confirmed that structur-
ally diverse molecules possessing activities of wide range
were included in both training and test sets (data not
shown).

Classical 2D QSAR studies require the calculation of
molecular descriptors, such as connectivity indices, 2D
autocorrelation descriptors, and Burden eigenvalues,
which are used as independent variables in QSAR mod-
eling. The DRAGON 5.4 software was used to generate
the descriptors for the QSAR studies. This procedure
afforded 929 descriptors which were subjected to the fol-
lowing selection strategy. Descriptors possessing con-
stant values as well as those with poor correlation to
biological property (r2 < 0.10) or that are more than
0.99 correlated were discarded. To further reduce the
number of descriptors, BuildQSAR software was em-
ployed to systematically search for multiple linear
regression (MLR) models of up to four variables with
correlation coefficients r2 > 0.70.

The best model shows moderate statistical values
(r2 = 0.73, q2 = 0.69, s = 0.50, F = 43.60, SPRESS =
0.54) but lacked predictive ability when challenged
against test set compounds (data not shown). This sce-
nario could be the result of an incomplete description
of the binding event by the selected descriptors or an
optimistic evaluation of leave-one-out cross-validation
procedure. At this point, none of the obtained MLR
models succeed to correlate the biological property for
the training set compounds within 1.0 log unit errors.
These results lead us to consider exploring the statistical
principal component analysis (PCA) and partial
least squares (PLS) methods. For that purpose, all



Table 1. Chemical structures and corresponding IC50 values for a series of CETP inhibitors
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Training set

Compound R1 IC50 (lM) Compound R1 IC50 (lM) Compound R1 IC50 (lM) Compound R1 IC50 (lM)
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Training set

Compound Structure IC50 (lM) Compound Structure IC50 (lM) Compound Structure IC50 (lM)
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Test Set
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Table 2. Descriptors selected for QSAR model development

Symbol Definition and description

SPI Superpendentic index

S1K 1-Path Kier alpha-modified shape index

D/Dr06 Distance/detour ring index of order 6

T(N . . .O) Sum of topological distance between N . . .O

MATS3p Moran autocorrelation—lag3/weighted by atomic

polarizabilities

EEig04r Eigenvalue 04 from edge adjacency matrix

weighted by resonance integrals

MATS3v Moran autocorrelation—lag3/weighted by atomic

van der Waals volumes

BELe4 Lowest eigenvalue N.4 of Burden matrix/weighted

by atomic Sanderson electronegativities

GGI10 Topological charge index of order 10

VEA1 Eigenvector coefficient sum from adjacency matrix

BEHm5 Highest eigenvalue N.5 of Burden matrix/

weighted by atomic masses

QZZe Qzz COMMA2 value/weighted by Sanderson

electronegativities

RDF060v Radial distribution function �6.0/weighted by

atomic van der Walls volumes

RDF065p Radial distribution function �6.5/weighted by

atomic polarizabilities

SPAN Span R

RDF065v Radial distribution function �6.5/weighted by

atomic van der Walls volumes

RDF060p Radial distribution function �6.0/weighted by

atomic polarizabilities

RDF030m Radial distribution function �3.0/weighted by

atomic masses

RDF060e Radial distribution function �6.0/weighted by

atomic Sanderson electronegativities
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descriptors from the MLR models with r2 > 0.70 (Table
2) were pooled together, autoscaled, and employed for
PCA and PLS analysis within the PIROUETTE
software.

According to the PCA results, four principal compo-
nents accounted for 85% of total variance, whereas
further components contribute with less than 5%. The
first PC explains molecular shape features, whereas the
relative potency varies according to both first and
second PC. Less bulk compounds have negative values
in PC1, while bulkier compounds have positive values.
The most potent compounds are grouped in the far
right-hand side of PC1 and have negative values in
PC2. Thus, training set compounds can be broadly
separated into three groups. These preliminary results
prove that selected descriptors have good discriminating
power and can be used for QSAR modeling studies.

In addition, PLS QSAR models were created using the
leave-many-out (LMO) cross-validation procedure. As
seen in Figure 3, the best statistical model shows
moderate correlation within the training set (r2 = 0.76,
q2 = 0.72, with two components).

The predictive power of the best QSAR model derived
using the 68 training set molecules was assessed by pre-
dicting pIC50 values for 17 test set compounds (69–85,
Table 1), not used for QSAR model development. The
external validation process can be considered the most
reliable validation method, as cross-validation proce-
dures may lead to very optimistic statistics.19–21 The re-
sults of the external validation are listed in Table 3, and
the graphic results for the experimental versus predicted
activities of both training set and test set are displayed in
Figure 3.

Besides demonstrating statistical significance, QSAR
models should also provide useful chemical insights for
drug design. For this reason, an acceptable interpreta-
tion of the QSAR results is provided below. There is
some criticism about using topological descriptors in
QSAR modeling, as some of them lack adequate physi-
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Figure 2. Distribution of the pIC50 values for the data set compounds.
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(filled diamonds, training set compounds; open squares, test set

compounds).
cal interpretation. However, traditional descriptors (e.g.,
logP and pKa) have also their own limitations, because
some may be more correlated with pharmacokinetic
properties, whereas others may be more related to affin-
ity. Besides, traditional descriptors often are whole-mol-
ecule descriptors that convey little information on
particular structural differences relevant for enzyme
affinity and inhibitory potency. Nevertheless, it would
be cumbersome to explain the influence of all topologi-
cal descriptors over CETP inhibitors, potency. Instead,



Table 3. Classical 2D QSAR experimental and predicted activities

(pIC50) with residual values for the 17 test set compounds

Compound pIC50

Experimental Predicted Residuala

69 6.15 6.44 �0.28

70 5.60 6.54 �0.94

71 6.40 6.61 �0.21

72 7.05 6.86 0.18

73 6.70 6.83 �0.13

74 7.22 6.64 0.58

75 6.52 6.32 0.21

76 7.00 6.53 0.47

77 7.10 6.71 0.39

78 5.11 5.53 �0.42

79 5.20 5.16 0.05

80 5.89 6.45 �0.56

81 6.00 5.84 0.16

82 7.15 6.91 0.24

83 4.92 5.24 �0.32

84 5.44 5.02 0.43

85 5.40 5.75 �0.35

a The difference between experimental and predicted values.

Figure 4. Regression vectors to PC1.
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we decided to focus on the three most significant ones to
PC1 (50.38% of variance), which are SPI, BELe4 and
RDF030m (Fig. 4).

• BELe422,23 is a low-dimensional metric, derived from
the Burden matrix, which accounts for electrostatic
interactions. Analysis of BELe4 values reveals a
bell-shaped correlation to potency, weak inhibitors
lie in the left (BELe4 value < 1.20) and right (BELe4
value > 1.50) tails and strong potent inhibitors are
placed in the center (BELe4 value = 1.46). This result
suggests that CETP inhibition depends on a delicate
charge balance for interaction with key residues in
the CETP active site.

• SPI24 is a topological descriptor derived from a subm-
atrix of distance matrix that accounts for shape fea-
tures in CETP inhibitors. This descriptor is linearly
correlated to potency and indicates that inhibitors
that fit in the active site have a better inhibitory pro-
file. However, some compounds have already
exceeded the optimal volume (compounds 64, 67,
104 (SPI value > 30) vs compound 2 (SPI
value = 27.10)).
• RDF030m25 is a 2D descriptor calculated from radial
distribution function code and represents the proba-
bility distribution to find an atom in a spherical vol-
ume of radius r. Thus, this descriptor also accounts
for steric and shape aspects of CETP inhibitors. As
a consequence, it is correlated to SPI (r2 = 0.59) and
behaves accordingly.

Although the classical 2D QSAR model provided some
useful information and showed a good predictive ability,
topological descriptors used for model development
convey little information on which moieties are particu-
larly important to CETP inhibition. In order to shed
some light on this subject, we resorted to a modern ap-
proach named hologram QSAR (HQSAR), a 2D QSAR
method that has shown predictive ability comparable to
those of more sophisticated 3D QSAR techniques.26–29

HQSAR generates specialized molecular holograms that
incorporate information about each 2D fragment (i.e.,
linear, branched, and overlapping), and each of its con-
stituent subfragments, implicitly encoding 3D structural
information that is important for binding affinity.26–29

HQSAR results are strongly linked to parameters con-
cerning hologram generation, including hologram
length, fragment size, and fragment distinction.26 The
generation of molecular fragments was carried out using
the following fragment distinctions: atoms (A), bonds
(B), connections (C), hydrogen atoms (H), chirality
(Ch), and donor and acceptor (DA). Several combina-
tions of these parameters were considered using the frag-
ment size default (4–7), as follows: A/B, A/B/C, A/B/C/
H, A/B/C/H/Ch, A/B/C/H/Ch/DA, A/B/H, A/B/C/Ch,
A/B/DA, A/B/C/DA, A/B/H/DA, A/B/C/H/DA, and
A/B/H/Ch/DA. HQSAR analysis was performed over
the 12 default series of hologram length values ranging
from 53 to 401 bins. The patterns of fragment counts
from the 68 training set inhibitors were then related to
the experimental biological data using PLS analysis.
The statistical results are summarized in Table 4.

As shown in Table 4, fragment distinction parameters
have considerable effects on the quality of the models
as expected. For instance, models 8 and 10 were derived
using A/B/DA and A/B/H/DA, respectively. Accord-
ingly, the inclusion of hydrogen as distinction parame-
ters was detrimental for biological activity prediction
of excluded molecules during the internal validation
procedure (LOO) as indicated by the decrease of �5%
in q2 value. This result is in good agreement with previ-
ous results26,28,30 which suggest that both options should
not be used together due to the substantial increase in
the number of fragments generated when both fragment
distinctions are considered in the model construction.

The best statistical result among all models (Table 4)
was obtained for model 8 (r2 = 0.87, q2 = 0.70, with five
components), derived using A/B/DA as fragment dis-
tinction. The influence of different fragment sizes,
which control the minimum and maximum length of
fragments to be included in the hologram, was further
investigated for the best HQSAR model as depicted in
Table 5.



Table 5. HQSAR analyses for the influence of various fragment sizes on the key statistical parameters

Model Fragment size q2 r2 SEE HL N

13 2–5 0.62 0.83 0.39 199 5

14 3–6 0.66 0.86 0.35 257 5

15 4–7 0.70 0.87 0.33 257 5

16 5–8 0.69 0.80 0.42 59 4

17 6–9 0.70 0.88 0.32 353 4

18 7–10 0.70 0.87 0.34 353 4

Table 4. Results of HQSAR analyses for various fragment distinctions on the statistical parameters using fragment size default (4–7)

Model Fragment distinction q2 r2 SEE HL N

1 A/B 0.64 0.87 0.35 257 5

2 A/B/C 0.57 0.87 0.33 401 5

3 A/B/C/H 0.59 0.83 0.38 401 5

4 A/B/C/H/Ch 0.62 0.83 0.39 151 5

5 A/B/C/H/Ch/DA 0.67 0.88 0.33 307 5

6 A/B/H/ 0.59 0.85 0.37 353 5

7 A/B/C/Ch 0.58 0.86 0.35 151 5

8 A/B/DA 0.70 0.87 0.33 257 5

9 A/B/C/DA 0.67 0.90 0.30 401 5

10 A/B/H/DA 0.65 0.89 0.32 257 5

11 A/B/C/H/DA 0.63 0.81 0.41 61 5

12 A/B/H/Ch/DA 0.67 0.89 0.32 307 5

Table 6. HQSAR experimental and predicted activities (pIC50) with

residual values for the 17 test set compounds

Compound pIC50

Experimental Predicted Residuala

69 6.15 6.11 0.04

70 5.60 6.40 �0.80

71 6.40 6.87 �0.47

72 7.05 6.93 0.12

73 6.70 7.00 �0.30

74 7.22 6.99 0.23

75 6.52 6.28 0.24

76 7.00 6.59 0.41

77 7.10 6.76 0.34

78 5.11 5.88 �0.77

79 5.20 5.50 �0.30

80 5.89 5.56 0.33

81 6.00 5.73 0.27

82 7.15 7.21 �0.06

83 4.92 4.94 �0.02
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This analysis revealed that, fragment size variation did
not improve the statistical parameters. However, slightly
simpler models were generated when fragment sizes of
6–9 (r2 = 0.88, q2 = 0.70 and SEE = 0.32) and 7–10
(r2 = 0.87, q2 = 0.70, and SEE = 0.34) were investigated.
In order to select the best and more robust model,
an external validation procedure was carried out.
Accordingly, the predictive ability of models 17 and 18
was assessed by predicting pIC50 values for the same
test set molecules previously used in classical 2D
QSAR studies (compounds 69–85, Table 1). Model 17
presented predictive-r2 value of 0.71, whilst model 18
presented predictive-r2 value of 0.61 (data not shown).
The results of both training and test set for the best
generated model (model 17) are displayed in Figure 5
and Table 6. The good agreement between experimental
and predicted values for the test set compounds indi-
cates the reliability of the HQSAR model (r2 = 0.88
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Figure 5. Predicted versus experimental values of pIC50 for the training

and test of CETP inhibitors obtained by the best HQSAR model. Filled

diamonds, training set compounds; open squares, test set compounds.

84 5.44 4.64 0.80

85 5.40 5.82 �0.42

a The difference between experimental and predicted values.
and SEE = 0.32). The predicted values fall close to the
experimental pIC50 values, within 0.80 log units. This
result is slightly better than those obtained for the clas-
sical 2D QSAR model, which fails to predict compound
70 by almost a log unit.

Besides improved statistical robustness, the HQSAR
model is able to provide useful insights into the relation-
ship between structural fragments and biological activ-
ity, which can be visualized through contribution
maps. For example, analysis of the HQSAR contribu-
tion maps (Fig. 6) for compounds 56 (IC50 = 25.0 lM)
and 45 (IC50 = 1.0 lM) clearly revealed different frag-
ment contributions to biological activity.



Figure 6. Contribution maps of compounds 56 (left panel) and 45

(right panel). The color scheme represents fragment contribution to

CETP inhibitors, potency.
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This result shows structural features that are related to
activity, but does not provide a straightforward physico-
chemical explanation for the differences in potency of
these compounds, for instance, the different color
scheme might be a consequence of steric or electrostatic
contribution or even both. However, when classical
QSAR descriptors are considered as well, it can be seen
that both molecules have optimal electrostatic proper-
ties (BELe4 value = 1.46), but different steric properties,
as observed for their RDF30m values (compound
45 = 8.23 and compound 56 = 12.1). Accordingly, the
data suggest that the lower inhibitory activity of com-
pound 56 is possibly associated to steric restraints within
the active site. This confirms previous results from Dur-
ley and colleagues15,17 indicating that the para substitu-
tion pattern of the benzamine moiety is detrimental to
activity. In addition, our QSAR models afforded a
quantitative stand point of view on this subject and
underscored the facts that due to sterical restraints com-
pound 56 is prevented from binding properly in CETP
active site.
3. Conclusion

The use of both molecular holograms and topological
descriptors, along with the standard and reproducible
high quality biological data, allowed the generation of
robust QSAR models for this series of CETP inhibitors.
A synergic approach, using information from the
HQSAR contribution maps and also from a careful
interpretation of the topological descriptors from classi-
cal 2D QSAR, shed some light on the effect of the sub-
stitution pattern over fragments that should be sterically
constrained. Therefore, the QSAR models described
herein are complementary in nature and shall be useful
for the design of structurally related CETP inhibitors
with improved potency.
4. Materials and methods

4.1. Data set

The data set of 85 CETP inhibitors used in the QSAR
analyses was collected from the literature.15–18 A statis-
tical cluster analysis was carried out with PIROUETTE
software (Infometrix, Washington, USA). Accordingly,
the data set was split into training (compounds 1–68,
Table 1) and test (compounds 69–85, Table 1) sets in
the ratio of 5:1 (20%). The test set of 17 compounds
was selected in such a way to provide an appropriate
representation of the training set in terms of structural
composition and activity range. The pIC50 values were
treated as dependent variables during the Partial Least
Squares (PLS) analyses.

4.2. Classical QSAR studies

The 2D molecular descriptors, such as topological
descriptors, connectivity indices, 2D autocorrelation
descriptors, Burden eigenvalue indices, and so on, were
computed using the software DRAGON 5.4 (Talette
SRL, Milan, Italy) and used as independent variables
in the classical QSAR studies. A total of 929 molecular
descriptors was then subjected to the following selection
criteria; descriptors with constant values or found to
have poor correlation to biological property were
discarded (r2 < 0.10). This strategy afforded 536 descrip-
tors. BuildQSAR19 software was employed to systemat-
ically search for models of up to four variables that give
rise to multiple linear regression (MLR) models with
r2 > 0.70. All descriptors present in MLR models were
pooled together, autoscaled, and used for PLS analysis
in PIROUETTE software.

4.3. HQSAR modeling

The HQSAR modeling analyses, calculations, and
visualizations were performed with SYBYL 7.2 pack-
age (Tripos Inc., St. Louis, USA), running on Red
Hat Enterprise Linux workstations. Several combina-
tions of fragment distinction were considered during
the QSAR modeling runs. Holograms were generated
using six distinct fragment sizes over the 12 default
series of hologram lengths (53, 59, 61, 71, 83, 97,
151, 199, 257, 307, 353, and 401 bins). The molecular
holograms generated were used as independent vari-
able during the PLS regression analyses to derive the
HQSAR models.

4.4. Statistical analyses

The several statistical models generated in our studies
were investigated using the PLS leave-many-out
(LMO) method. The predictive ability of the models
was assessed by their full cross-validated r2 (q2) values.
Internal validation methods leave-one-out and LMO
(with 10 groups of compounds) were used to determine
the optimum number of PLS components and the sta-
bility of the models. The number of components used
in the final nonvalidated model was optimized to give
the highest q2 value and the lowest standard error of
prediction. The noncross-validated models were as-
sessed by the conventional correlation coefficient r2

and F-values. External validation was performed with
a test set of 17 compounds, which were not included
in the training set during the process of QSAR model
generation.
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