
Classical and Hologram QSAR Studies on a Series of Inhibitors of
Trypanosomatid Glyceraldehyde-3-Phosphate Dehydrogenase

Rafael V. C. Guidoa, Marcelo S. Castilhob, Sabrina G. R. Motab, Glaucius Olivaa and Adriano D. Andricopuloa*
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Abstract
Leishmaniasis and trypanosomiasis are major causes of morbidity and mortality in both
tropical and subtropical regions of the world. The current available drugs are limited,
ineffective, and require long treatment regimens. Due to the high dependence of trypano-
somatids on glycolysis as a source of energy, some glycolytic enzymes have been
identified as attractive targets for drug design. In the present work, classical Two-
Dimensional Quantitative Structure –Activity Relationships (2D QSAR) and Hologram
QSAR (HQSAR) studies were performed on a series of adenosine derivatives as
inhibitors of Leishmania mexicana Glyceraldehyde-3-Phosphate Dehydrogenase
(LmGAPDH). Significant correlation coefficients (classical QSAR, r2¼0.83 and q2¼0.81;
HQSAR, r2¼0.91 and q2¼0.86) were obtained for the 56 training set compounds,
indicating the potential of the models for untested compounds. The models were then
externally validated using a test set of 14 structurally related compounds and the
predicted values were in good agreement with the experimental results (classical QSAR,
r2

pred ¼ 0:94; HQSAR, r2
pred ¼ 0:92).

1 Introduction

Parasitic diseases are the foremost threat to human health
and welfare around the world. In tropical and subtropical
regions of the world, the consequences of parasitic infec-
tion are devastating both in terms of human morbidity and
mortality, reaching dangerous levels which threaten future
social stability and economic development of these areas.
The currently available drugs for most of the parasitic dis-
eases are inadequate, poorly tolerated, and ineffective [1 –
3]. A group of tropical diseases, including leishmaniasis
and trypanosomiasis, is neglected and lie outside of the
world pharmaceutical market. On one hand, it is estimated
that 12 million people are currently affected by leishma-
niasis in its different forms, with about 350 million living in
risk areas. The most severe form, visceral leishmaniasis or

kala azar, is a serious disease that affects 500000 people
resulting in the death of over 65000 every year [4]. On the
other hand, ChagasF disease (also called American trypa-
nosomiasis) is a tropical parasitic disease which occurs in
Latin America, particularly in South America, where ap-
proximately 16 – 18 million people are infected causing
over 45000 deaths each year [5, 6].
Since safe, effective, and affordable chemotherapeutic

agents against trypanosomatids are urgently needed, the
identification of new macromolecular targets and small-
molecule modulators is of utmost importance. The blood-
stream form of trypanosomatids has no functional tricar-
boxylic acid cycle and is highly dependent on glycolysis for
ATP production [7, 8]. The crucial dependence on glycoly-
sis as a source of energy makes the glycolytic parasite en-
zymes promising targets for drug design. Glyceraldehyde-
3-Phosphate Dehydrogenase (GAPDH, Enzyme Commis-
sion 1.2.1.12) is a key enzyme in the glycolytic cascade,
which catalyzes the reversible oxidative phosphorylation
of the substrate Glyceraldehyde-3-Phosphate (GAP) to
1,3-diphosphoglycerate in the presence of the cofactor
Nicotinamide Adenine Dinucleotide (NADþ) and inor-
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ganic phosphate. The glycolytic GAPDH enzymes from
the pathogenic protozoan parasites Trypanosoma brucei
[9], T. cruzi [10], and Leishmania mexicana [11] are quite
similar to each other (about 90% sequence identity) and
have important structural differences when compared to
their human counterpart [12] (about 45% sequence identi-
ty). Comparisons between parasite and human GAPDH
crystal structures revealed significant differences in the
neighboring of the NADþ (adenosine moiety) binding
site, which have been explored for the development of
new selective inhibitors of the trypanosomatid enzymes
[13 – 17].
Quantitative Structure –Activity Relationships (QSAR)

have been successfully employed as a valuable tool to as-
sist the design of compounds of pharmaceutical interest
[18 – 20]. As part of a research program aimed at the de-
sign of selective GAPDH inhibitors [21 – 24], and in order
to evaluate the quantitative relationships of a large series
of adenosine derivatives, we have created predictive 2D
QSAR models employing both classical and hologram
QSAR (HQSAR) methods [25 – 27].

2 Experimental Section

2.1 Data Sets

The data set used for the QSAR studies contains 70 inhibi-
tors of GAPDH (adenosine derivatives), which were se-
lected from the literature [13 – 17]. The structures and cor-
responding pIC50 (� log IC50; where IC50 is the concentra-
tion required for 50% inhibition of GAPDH) values for
the whole set of inhibitors are included in Table 1. The
complete data set was divided into training (compounds
1 – 56, Table 1) and test (compounds 57 – 70, Table 1) sets
in the ratio of 5:1 (20%). A statistical cluster analysis was
carried out with Tsar 3D version 3.3 (Accelrys, San Diego,
USA) using the complete linkage clustering method (Eu-
clidean distances) with no data standardization. The clus-
ter analysis grouped the compounds into two major clus-
ters, with a relatively well-balanced distribution of training
and test set compounds. Considering that the structural di-
versity of the data set is mostly represented by adenine
analogues of moderate structural diversity, the composi-
tion of the QSAR training and test sets is necessarily rep-
resentative of the whole data set in terms of chemical simi-
larity.

2.2 Descriptors Calculation and Selection

Classical 2D QSAR studies require the calculation of a va-
riety of molecular descriptors that are used as independent
variables in QSAR modeling. In the present work, these
studies were carried out using the DRAGON 5.4 (Talette
SRL, Milan, Italy), BUILDQSAR [28], and PIROUETTE
3.11 software (Infometrix, Washington, USA). The 2D

molecular descriptors, including topological descriptors,
connectivity indices, 2D autocorrelation descriptors, Bur-
den eigenvalues indices, among others, were computed us-
ing the software DRAGON 5.4 and used as independent
variables in the QSAR analyses. Approximately 930 mo-
lecular descriptors were subjected to the following selec-
tion criteria. Descriptors with constant values or found to
have poor correlation to biological property were discard-
ed (r2<0.10). This strategy afforded 800 descriptors. Then,
the BUILDQSAR software was employed to systematical-
ly search for models of up to 4 variables that give rise to
MLR models with r2>0.70. All descriptors present in the
MLR models were pooled together, autoscaled, and used
for the Partial Least Square (PLS) analysis performed
with the PIROUETTE software.

2.3 HQSAR Analysis

The HQSAR modeling analyses, calculations, and visuali-
zations were performed using the SYBYL 7.3 package
(Tripos Inc., St. Louis, USA) running on Red Hat Linux
7.3 workstations, as previously described [25, 27]. This
method requires selecting values for parameters that spec-
ify the length of the hologram as well as the size and type
of the fragments that are to be encoded [25, 27]. The gen-
eration of the molecular holograms was carried out using
several combinations of the following fragment distinction:
atoms (A), bonds (B), connections (C), hydrogen atoms
(H), chirality (Ch), and donor and acceptor (DA). The
fragment size default (4 – 7) was used to generate the
QSAR models. HQSAR analysis was performed over the
12 default series of hologram lengths of 53, 59, 61, 71, 83,
97, 151, 199, 257, 307, 353, and 401 bins. The influence of
fragment size, which controls the minimum and maximum
length of fragments to be included in the hologram, was
further investigated by using 6 distinct fragment sizes over
the 12 default series of hologram lengths values ranging
from 53 to 401 bins. The patterns of fragment counts from
the training set inhibitors were then related to the experi-
mental biological data using the PLS analysis.

2.4 QSAR Model Validation

All QSAR models were investigated using full cross-vali-
dated r2 (q2) PLS. Leave-One-Out (LOO) cross-validation
was applied to determine the number of components that
yield optimally predictive models. Leave-Many-Out
(LMO) with 10 (LMO10) and 5 (LMO5) randomly selected
groups was used as a more rigorous test to assess model
stability and statistical significance. Each random cross-
validation run was repeated 25 times to obtain mean val-
ues for q2 and the corresponding Standard Error of Predic-
tion (SDEP). External validation was performed with a
test set of 14 compounds which were not considered for
QSAR model generation.
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Table 1. Chemical structures and corresponding pIC50 values for a series of inhibitors of LmGAPDH.

Training set compounds

Compound Structure pIC50 Compound Structure pIC50

1 3.30 2 2.52

3 3.15 4 2.40

5 2.80 6 2.22

7 3.40 8 3.60

9 3.12
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Table 1. (condinued)

Training set compounds

Compound R1 R2 R3 pIC50

10 CH3 H H 2.22
11 H H 2.40

12 H H 2.43

13 H H 3.15

14 H H 3.15

15 H H 2.74

16 H H 3.44

17 H H 3.47

18 H H 3.62
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Table 1. (cont.)

Training set compounds

Compound R1 R2 R3 R4 R5 R6 pIC50

19 H H H H H H 2.48
20 H H H H C6H5 H 3.70
21 H H H OCH2CH3 H H 3.40
22 H H H OCH3 OH H 3.30
23 H Br H H H H 2.52
24 H H H OH OH OH 3.60
25 H H H OH H OH 3.19
26 H H OCH3 H OCH3 4.70

27 H H OCH3 H H 4.80

28 H H OCH3 H OCH3 4.60

29 H H OCH3 H H 4.60

30 H H OCH3 H OCH3 4.60

Training set compounds

Compound R1 R2 R3 R4 R5 R6 pIC50

31 H H OCH3 H H 4.60

32 H H OCH3 H H 5.26
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Table 1. (cont.)

Training set compounds

Compound R1 R2 R3 R4 R5 R6 pIC50

33 H H OCH3 H H 3.82

34 H H OCH3 H H 4.10

35 H H Cl H H 5.00

36 H H OCH3 H OCH3 5.70

37 H H Cl H Cl 4.92

38 H H OAc H OAc 5.00

39 H H OH H OH 5.30

40 H H H OAc H 4.00

Training set compounds

Compound R1 R2 R3 R4 R5 R6 pIC50

41 H H H OH H 4.10

42 H H OAc OAc H 4.60
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Table 1. (cont.)

Training set compounds

Compound R1 R2 R3 R4 R5 R6 pIC50

43 H H OH OCH3 H 4.43

44 H H OCH3 OH H 5.00

45 H H N(CH3)2 H H 4.60

46 H H OCH3 H OCH3 5.70

47 H H Cl H Cl 4.60

48 H H OCH3 H OCH3 4.22

49 H H OCH3 H H 5.22

50 H H Cl H H 5.40

Training set compounds

Compound R1 R2 R3 R4 R5 R6 pIC50

51 H H OCH3 H OCH3 5.70

52 H H Cl H Cl 4.60

53 H H OCH3 H H 5.70
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Table 1. (cont.)

Training set compounds

Compound R1 R2 R3 R4 R5 R6 pIC50

54 H H Cl H Cl 4.60

55 H H OCH3 H H 5.30

56 H H OCH3 H H 4.08

CompoundStructure pIC50CompoundStructure pIC50CompoundStructure pIC50

57 2.62 58 3.52 59 3.30

60 3.22 61 3.07 62 3.82
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Table . (cont.)

CompoundStructure pIC50CompoundStructure pIC50CompoundStructure pIC50

63 5.30 64 5.40 65 5.70

CompoundStructure pIC50CompoundStructure pIC50CompoundStructure pIC50

66 4.30 67 4.60 68 4.00

69 4.74 70 5.00
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3 Results and Discussion

3.1 Chemical and Biological Data

Classical QSAR and HQSAR models were derived for a
series of 70 inhibitors of trypanosomatid GAPDHs listed
in Table 1 [13 – 17]. The family of adenosine derivatives ex-
amined has moderate structural diversity. The bulk of the
structural diversity lies in the nature of the substituent
linked to the N6- and 9-position of the adenine system.
The in vitro IC50 values of LmGAPDH employed in this
work were measured under the same experimental condi-
tions [13 – 17], a fundamental requirement for QSAR stud-
ies [29, 30]. The generation of consistent statistical models
is dependent on the adequacy of the training and test sets.
Therefore, from the original data set, 56 inhibitors (com-
pounds 1 – 56, Table 1) were selected as members of the
training set for model generation, whereas the other 14 in-
hibitors (compounds 57 – 70, Table 1) were held as mem-
bers of the test set for external validation. A statistical
cluster analysis confirmed that structurally diverse mole-
cules possessing activities of wide range were included in
both training and test sets. The pIC50 values used as depen-
dent variables in the QSAR analyses span about three and
a half orders of magnitude and are acceptably distributed
across the range of values. Thus, the data set is appropriate
for the purpose of QSAR model development.

3.2 Classical QSAR Analysis

The strategy used in this work with the program DRAG-
ON 5.4 resulted in the selection of 12 descriptors (Table 2)
that were then explored using more robust statistical
methods such as Principal Component Analysis (PCA)
and PLS, as implemented in the PIROUETTE software.
The PCA results indicated that three principal compo-

nents accounted for 95% of total variance, while other ad-
ditional components did not significantly contribute to
these models. The first PC broadly accounts for potency,

while PC2 roughly describes molecular steric properties.
The less potent inhibitors have negative PC1 values where-
as the most potent ones display positive values. These pre-
liminary results prompted us to use the selected descrip-
tors for QSAR modeling studies. PLS QSAR models were
created using the LOO cross-validation procedure, and
the results are shown in Figure 1. As it can be seen, the
best statistical model has substantial correlation within the
training set as shown by the high values of r2 (0.83) and q2

(0.81). The use of the LMO cross-validation protocols did
not lead to considerable quantitative changes in the pa-
rameters of the final models (LMO5 q

2¼0.81, and LMO10

q2¼0.80), thus confirming the stability and statistical sig-
nificance of the model generated with LOO.
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Table 2. Descriptors selected for QSAR model developmenta.

Symbol Definition and description

Har2 Square reciprocal distance sum index
dZ Pogliani index
SRW01 Self-returning walk count of order 01
RHyDp Reciprocal hyper-distance-path index
HaR Harary H index
CID Randic ID number
Pol Polarity number
EPS0 Edge connectivity index of order 0
EEig02d Eigenvalue 02 from edge adjacency matrix weighted by dipole moments
O-058 Atom centered fragments corresponding to carbonyl
O-060 Atom centered fragment corresponding to Al�O�Ar/Ar�O�Ar�R�O�R/R�O�C¼X
TPSA(NO) Topological polar surface area using Nitrogen and oxygen polar contributions

aDescriptors considered in the final model are highlighted in Table, and were selected according to the regression vector score.

Figure 1. Plot of predicted vs. experimental values of pIC50 for
the training (open squares) and test (black triangle) set
GAPDH inhibitors for the best classical QSAR model.
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Although cross-validation protocols give a suitable rep-
resentation of the internal consistency and predictive pow-
er of QSAR models, they may lead to very optimistic sta-
tistics [27 – 29]. The predictive power of the best QSAR
model derived using the 56 training set molecules (com-
pounds 1 – 56, Table 1) was assessed by predicting the bio-
logical property for 14 test set compounds (57 – 70, Ta-
ble 1). The results of the external validation process are
listed in Table 3. The predicted values fall close to the ex-
perimental pIC50 values, not deviating by more than 0.42
log units. No outliers were detected in this series of
GAPDH inhibitors. The good agreement between actual
and predicted pIC50 values for the test set compounds sug-
gests that the constructed model is reliable and has predic-
tive power for new inhibitors within this structural class.
In addition to their ability to predict the biological prop-

erty of interest, QSAR models should also provide useful
chemical insights for drug design. In this context, Figure 2
illustrates the influence of the descriptors over the regres-
sion vector, which can be regarded as a weighted sum of
the loadings included in the final model. This information
was used to select the six most relevant descriptors during
the development of the QSAR models, highlighted in Ta-
ble 2.
It can be noted that Har2 and EEig2d represent, respec-

tively, the most important positive and negative contribu-
tions to the final QSAR model. Descriptors with small co-
efficients did not significantly affect the QSAR model.
Har2 [31, 32] is a topological descriptor derived from dis-
tance matrix which accounts for through-bond interactions
in molecular systems. Due to its reciprocal nature, central
atoms have larger influence than the external ones on the
final summed value. This is clearly observed in our data
set once the structurally related and nearly equipotent
compounds 46, 51, and 53 show different Har2 values (192,

201, and 207, respectively). This result indicates that struc-
tural modifications that do not significantly alter the main
scaffold have minor effects on the inhibitory potency. Ad-
ditional insight into the influence of molecular shape on
the inhibitory potency comes from the interpretation of
the EEig02 values [33, 34]. While the most potent inhibi-
tors have the same EEig02d index (3.49), decreases in the
inhibitory potency were observed for larger or smaller val-
ues. Although the classical QSAR analysis has extracted
valuable SAR data, the topological descriptors (e.g., Har2,
EEig02d) provide only information about the character of
the whole molecule. Accordingly, the information collect-
ed does not differentiate major and minor accounts from
individual molecular fragments to the inhibitory potency.
In the present work, in order to gain further insight into
the fragment-based structure – activity relationships for
this series of GAPDH inhibitors, and also for the better
understanding of the synergies and challenges between
these approaches, we have employed the HQSAR method
[25, 27].

3.3 HQSAR Analysis

The specialized fragment fingerprint (called molecular
hologram) consists of structural fragments of a molecule
that are counted in bins of a fixed length array. The bins
represent all of the unique fragments included within a
particular molecule and are assigned by a cyclic redundan-
cy check (CRC) algorithm. The bin occupancies of the mo-
lecular hologram are structural descriptors (independent
variables) encoding compositional and topological molec-
ular information. Accordingly, the hologram includes in-
formation on the quantity and type of each fragment in
each molecule. HQSAR encodes all possible molecular
fragments (i.e., linear, branched, and overlapping) without
requiring any explicit 3D information of the ligands (e.g.,
determination of 3D structure, putative binding conforma-
tions, and molecular alignment). The generation of molec-
ular holograms was carried out using the fragment size de-
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Table 3. Experimental and predicted activities (pIC50) with re-
sidual values for the 14 test set compounds.

Com-
pound

Experi-
mental

Classical QSAR HQSAR

Predicted Residuala Predicted Residuala

Test set
57 2.62 2.51 0.11 2.63 �0.01
58 3.52 3.26 0.26 3.35 0.17
59 3.30 3.33 �0.03 3.32 �0.02
60 3.22 3.42 �0.20 3.27 �0.05
61 3.07 2.80 0.27 3.17 �0.10
62 3.82 3.72 0.10 3.71 0.11
63 5.30 4.88 0.42 5.31 �0.01
64 5.40 5.36 0.04 5.12 0.28
65 5.70 5.96 �0.26 5.75 �0.05
66 4.30 4.50 �0.20 4.91 �0.61
67 4.60 4.27 0.33 4.87 �0.27
68 4.00 4.27 �0.27 4.66 �0.66
69 4.74 4.43 0.31 4.72 0.02
70 5.00 5.12 �0.12 4.99 0.01

aThe difference between experimental and predicted values.

Figure 2. Descriptors score to regression vector.
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fault (4 – 7), the 12 default series of hologram lengths (53 –
401), and the following combinations of fragment distinc-
tion: AB, ABC, ABCH, ABCHCh, ABCHChDA, ABH,
ABCCh, ABDA, ABCDA, ABHDA, ABCHDA, and
ABHChDA. The statistical results from the PLS analyses
for the 56 training set inhibitors using several fragment dis-
tinction combinations are summarized in Table 4.
Statistical models of very good quality were obtained us-

ing different combinations of fragment distinction as re-
vealed by their high q2 and r2 values. The best statistical re-
sults were obtained for models 6, 10, and 12 (Table 4),
which were derived using A/B/H, A/B/H/DA, and A/B/H/
Ch/DA, respectively. The influence of different fragment
sizes, which control the minimum and maximum length of

fragments to be included in the hologram, was further in-
vestigated for the three best HQSAR models as shown in
Table 5. As it can be seen, the variation of the fragment
size let to the generation of slightly better HQSAR models
(models 16, 22, and 28, generated with the fragment size
5 – 8).
In order to investigate the statistical significance and

stability of the models, a more consistent cross-validation
test was carried out for the three best HQSAR models us-
ing 10 and 5 groups (LMO10 and LMO5, respectively).
Each model was evaluated 25 times by measuring its accu-
racy in predicting the activity of the remaining about 10
and 20% dataset compounds. The results of the LMO
analyses are presented in Table 6, confirming the stability
and robustness of the models generated with LOO.
The predictive ability of the models was assessed using

the same test set compounds employed in the classical 2D
QSAR studies (compounds 57 – 70, Table 1). In order to
select the best predictive statistical model, values of r2

pred

(predictive-r2) were calculated for the three models 16, 22,

QSAR Comb. Sci. 27, 2008, No. 6, 768 – 781 www.qcs.wiley-vch.de H 2008 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim 779

Table 4. HQSAR analysis for various fragment distinctions on
the key statistical parameters using fragment size default (4 – 7).

Model Fragment
distinction

q2 SDEP r2 SEE HL PC

1 A/B 0.831 0.439 0.885 0.355 257 3
2 A/B/C 0.835 0.436 0.888 0.350 353 3
3 A/B/C/H 0.836 0.429 0.884 0.362 307 3
4 A/B/C/H/Ch 0.835 0.432 0.887 0.357 353 3
5 A/B/C/H/Ch/DA 0.823 0.447 0.886 0.359 353 3
6 A/B/H 0.851 0.409 0.895 0.343 151 3
7 A/B/C/Ch 0.832 0.437 0.884 0.356 353 3
8 A/B/DA 0.834 0.435 0.894 0.345 97 3
9 A/B/C/DA 0.827 0.442 0.886 0.359 199 3
10 A/B/H/DA 0.848 0.414 0.896 0.342 151 3
11 A/B/C/H/DA 0.821 0.449 0.876 0.374 151 3
12 A/B/H/Ch/DA 0.855 0.405 0.903 0.331 307 3

Fragment distinction: A, atoms; B, bonds; C, connections; H, hydrogen
atoms; Ch, chirality; DA, donor and acceptor. q2, cross-validated correla-
tion coefficient; SDEP, standard error of prediction; r2, noncross-validated
correlation coefficient; SEE, noncross-validated standard error; HL, holo-
gram length; PC, optimal number of components.

Table 5. HQSAR analysis for the influence of different fragment sizes on the statistical parameters.

Fragment distinction Model Fragment size q2 SDEP r2 SEE HL PC

A/B/H 13 2 – 5 0.837 0.428 0.880 0.368 61 3
14 3 – 6 0.845 0.418 0.888 0.355 257 3
15 4 – 7 0.851 0.409 0.895 0.343 151 3
16 5 – 8 0.864 0.391 0.905 0.326 59 3
17 6 – 9 0.840 0.422 0.892 0.348 353 3
18 7 – 10 0.835 0.431 0.883 0.362 353 3

A/B/H/DA 19 2 – 5 0.835 0.431 0.887 0.357 71 3
20 3 – 6 0.837 0.428 0.889 0.354 257 3
21 4 – 7 0.848 0.414 0.896 0.342 151 3
22 5 – 8 0.857 0.399 0.895 0.344 307 3
23 6 – 9 0.836 0.429 0.888 0.355 97 3
24 7 – 10 0.838 0.427 0.884 0.360 257 3

A/B/H/Ch/DA 25 2 – 5 0.839 0.426 0.889 0.354 71 3
26 3 – 6 0.843 0.420 0.894 0.345 97 3
27 4 – 7 0.855 0.405 0.903 0.331 307 3
28 5 – 8 0.860 0.397 0.897 0.340 97 3
29 6 – 9 0.821 0.449 0.870 0.383 71 3
30 7 – 10 0.808 0.465 0.858 0.400 71 3

Table 6. Mean values of q2 and SDEP obtained after 25 inde-
pendent runs of LMO cross-validation protocol.

Fragment distinction Model LMO10
a LMO5

b

q2 SDEP q2 SDEP

A/B/H 16 0.861 0.396 0.858 0.399
A/B/H/DA 22 0.839 0.425 0.840 0.424
A/B/H/Ch/DA 28 0.838 0.427 0.841 0.422

Fragment distinction: A, atoms; B, bonds; H, hydrogen atoms; Ch, chirali-
ty; DA, donor and acceptor.
a Mean value of q2 and SDEP obtained after 25 independent runs of
cross-validation protocol with 10% of compounds left out.
b Mean value of q2 and SDEP obtained after 25 independent runs of
cross-validation protocol with 20% of compounds left out.
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and 28, which presented r2
pred of 0.92, 0.83, and 0.85, respec-

tively. The results of the external validation for the best
predictive model (16, r2

pred ¼ 0:92) are shown in Table 3,
and the graphic results for the experimental versus predict-
ed for both training and test sets are shown in Figure 3. As
can be seen, the test set compounds are well predicted
within the range of values, not deviating by more than 0.66
log units. Therefore, the model presents good correlative
and predictive abilities.
Besides predicting the property value of interest of un-

tested molecules, HQSAR models should also provide
hints about the relationships of different molecular frag-
ments to biological activity [25, 27]. HQSAR models can
be graphically represented in the form of contribution
maps where the color of each molecular fragment reflects
the contribution of an atom or a small number of atoms to
the activity of the molecule under study. The colors at the
red end of the spectrum (e.g., red, red – orange, and or-
ange) reflect poor (or negative) contributions, while colors
at the green end (e.g., yellow, green – blue, and green) re-
flect favorable (positive) contributions. Atoms with inter-
mediate contributions are colored white. For example, the
most important fragments of compound 36 (one of the
most potent inhibitor of the data set) are shown in Fig-
ure 4. The HQSAR contribution map shows that the sub-
stituted benzamide ring has a favorable contribution to the
inhibitory activity. This observation is in good agreement
with previously reported results [14], and it is further sup-
ported by the fact that when the benzamide ring is re-
placed by the quinoline ring, biphenyl rings (1, 2) or is ab-

sent (8 – 18), it causes a significant decrease in potency.
Furthermore, the contribution maps of compounds (19 –
56) indicate that a different substitution pattern around
the benzamide moiety is tolerable by the receptor (maps
not shown) as previously described [17], and simultaneous-
ly, suggest a positive influence of meta substituents for the
inhibitory potency. This can be seen, for instance, in the
analysis of compound 36 (IC50¼2 mm) for which the incor-
poration of a methoxy substituent at the meta-position of
the benzamide ring results in 50- and 40-fold increase in
potency when compared to the para-substituted com-
pounds 40 (IC50¼100 mm) and 41 (IC50¼80 mm), respec-
tively.
HQSAR is an important drug design technique which

encodes useful information that combines the fragment-
based and topological description of molecular structures.
Nevertheless, for a more robust QSAR analysis, it is im-
portant to incorporate additional detailed description of
molecular properties that are relevant for activity (e.g.,
physicochemical parameters). For this reason, the integra-
tion of classical and HQSAR methods are complementary
in nature, especially because vital components such as ster-
ic or electrostatic play a major role towards the inhibitory
potency of series of compounds. In this context, it can be
demonstrated that compound 36 has higher Har2 index
(59.51) than compounds 40 (50.86) and 41 (52.81), whereas
the EEig02d value is optimal for all the three compounds
(3.49). These results are confirmed by the HQSAR contri-
bution maps, and also suggest that meta substituted benza-
mide adenosine analogs have a sterical component that is
favorable for potency and hence show increased inhibitory
potency, confirming previously reported findings [35].
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Figure 4. HQSAR contribution map for the GAPDH inhibitor
36.

Figure 3. Plot of predicted vs. experimental values of pIC50 for
the training (open squares) and test (black triangle) set
GAPDH inhibitors for the best HQSAR model.
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4 Conclusion

The classical and hologram QSAR models described in
this work exhibit both good internal and external consis-
tency, with substantial predictive power. It is worth noting
that we have employed the same combination of training
and test sets for both QSAR analyses. The highly consis-
tent results confirmed that investigations can be carried
out concomitantly to search for synergies between 2D
QSAR technologies, revealing a potential of shedding
some light on the effects of the substitution pattern over
molecular fragments within the data set compounds. Final-
ly, as the models reported herein have been internally and
externally validated employing different 2D QSAR ap-
proaches, they appear to be valuable tools for ligand-based
enzyme inhibitor design.
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