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Estimating the Longitudinal Prevalence of Diarrhea
and Other Episodic Diseases

Continuous Versus Intermittent Surveillance

Wolf-Peter Schmidt,* Stephen P. Luby,† Bernd Genser,‡ Mauricio L. Barreto,‡ and Thomas Clasen*

Background: Longitudinal prevalence (ie, the proportion of time
with the disease) is used to describe morbidity from diarrhea and
other episodic conditions. The aim of this analysis was to compare
estimates of longitudinal prevalence based on intermittent sampling
at regular intervals with 24- or 48-hour recall, with estimates based
on continuous surveillance.
Methods: Based on 2 real datasets from Brazil and Guatemala, we
developed a simulated dataset representing the diarrhea morbidity of
10,000 individuals followed over 365 days.
Results: Both the model and the real datasets showed that the
standard deviation of the longitudinal prevalence increases with
decreasing numbers of days sampled, so that a study sampling only
a fraction of days would require a larger sample size. However, due
to the correlation of diarrhea between consecutive days, sampling at
7- to 14-day intervals results in relatively small loss of precision and
power compared with daily morbidity records, especially when the
average diarrheal episode is long. A study based on morbidity data
for every seventh day may require only a 5%-24% larger sample size
than a study with daily records, depending on the average duration
of episodes. Using a recall period of 48 hours instead of 24 hours
increases power if the average episode is short.
Conclusions: The results question the necessity of continuous
surveillance to estimate longitudinal prevalence. In addition to
savings in cost and staff time, intermittent sampling of morbidity
may improve validity by minimizing recall error and reducing the
influence of surveillance on participants’ behavior.

(Epidemiology 2007;18: 537–543)

Longitudinal prevalence (ie, the proportion of time with the
disease in an individual) is an increasingly common out-

come measure to assess diarrhea morbidity in observational
and intervention studies.1–5 Longitudinal prevalence has been
suggested as a better predictor of nutritional status and
mortality than diarrhea incidence.6 Further, measuring longi-
tudinal prevalence avoids analytic problems in defining dis-
ease episodes7,8 and the occurrence of repeated episodes that
arise when using disease incidence as an outcome measure.6

However, little work has been done on the question of
whether longitudinal prevalence should be estimated based
on continuous morbidity surveillance or on sampling days of
observation at intervals.9

Using continuous diarrhea surveillance is problematic.
Diarrhea has been shown to be underreported if the recall
period is longer than 2 or 3 days.10–12 Some investigators
have used frequent household visits (2 to 3 per week) to
shorten the recall period and minimize the potential for
under-reporting.2,13,14 However, household visits are highly
resource-intensive. Also, close disease surveillance by fre-
quent visits may affect the risk and reporting behavior of the
study participants (ie, the Hawthorne effect). Where surveil-
lance includes treatment or referral to treatment for ethical
purposes, it may change the natural course of disease (ie,
prevent mild episodes from becoming severe). The burden of
participation may also compromise the willingness of house-
holds to cooperate. A number of studies have noted a decline
of disease occurrence over time that could not fully be
explained by seasonal variation, suggesting that motivation to
report disease may decrease during the course of a study.15–17

Reporting fatigue may be particularly pronounced if the
method of disease assessment is time-consuming for the
participants.

Morris and colleagues9 pointed out that it may not be
necessary to obtain a record of all days of observation to
estimate the longitudinal prevalence. They found that a sam-
ple of 72 days of observation of a total of 365 days actually
observed was adequate to reliably estimate the longitudinal
prevalence in an individual. However, most recent interven-
tion studies of diarrheal illness using the longitudinal preva-
lence as the outcome measure have calculated only the
population-level longitudinal prevalence, without looking at
the individual level. Our aim was to explore the effect of
sampling a fraction of days on the precision of the population
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estimate of the longitudinal prevalence and the implications
for the sample size.

METHODS
We addressed the study objectives by developing a

simulated dataset based on the methods published by Morris
and colleagues.8 The simulated dataset reflected the diarrhea
occurrence in a population, with episodes being randomly
distributed over time, but highly clustered in individuals, with
the majority of individuals having a small number of episodes
and few people experiencing many episodes. The model was
parameterized based on 2 real datasets with daily morbidity
data over the course of at least 1 year. The first dataset was
based on 2 longitudinal cohort studies conducted in 1997–
1999 and 2000–2002 in Salvador de Bahia in Brazil in
children under the age of 5.14,18,19 Diarrhea was assessed by
twice-weekly household visits, ie, recall periods of 3–4 days.
We combined the 2 cohorts into one dataset, matched by
calendar date to preserve the seasonal pattern of diarrhea
occurrence. The dataset was reduced to 365 days of observa-
tion to enable comparability with the simulation. The study
represented an open cohort. The number of days of observa-
tion varied among individuals. In the reduced dataset (n �
1839), the mean number of days under observation was 263
days (range, 2–365). The weighted mean number of epi-
sodes per individual in the reduced dataset (weighted by
the number of days of observation) was 3.7. The mean
episode duration was 2.5 days, whereas the weighted mean
longitudinal prevalence (weighted by the number of days
of observation) was 2.9%.

The second dataset was from a randomized-controlled
trial studying the effect of different household water treat-
ment techniques on diarrhea occurrence in rural Guatemala.20

This study was a closed cohort (n � 2982) with equal
follow-up time of just over 365 days, with disease being
assessed in all age groups by weekly visits (ie, recall periods
of around 7 days). We reduced the dataset to 365 days of
observation, again ensuring that each day in the dataset
represented one calendar day. All 5 study arms were

combined. The mean number of episodes per individual in
the reduced dataset was 1.7. The mean episode duration
was 5.1 day, and the mean longitudinal prevalence was
2.5%. Thus, the 2 real datasets differed in the distribution
of the number of episodes and the episode duration (pre-
sumably due to differences in age range, study setting or
procedures) while being similar with regard to the mean
longitudinal prevalence.

Development of the Simulated Dataset
We generated a dataset representing the daily diarrhea

experience of 10,000 individuals over a period of 365 days.
First, we created a variable that defined the number of
diarrhea episodes per individual following a gamma distribu-
tion (a distribution suitable to represent highly skewed data
such as diarrhea incidence).8 The parameters of the gamma
distribution were chosen so that the distribution of the
number of episodes was within the bounds of the 2 real
datasets (Fig. 1A); the parameters chosen for this default
model were � � 0.48 (shape parameter) and � � 6 (stretch
parameter). This resulted in a mean number of 2.9 episodes
per individual, which was less than assumed by Morris et
al8 based on data from Peru (mean number of episodes 9.0,
� � 1.5, � � 6).

In the next step we distributed the episodes of each
individual randomly over the period of 365 days. Each
episode was then randomly allocated an episode duration
following an exponential distribution y � exp(kx) with k �
�0.32, which resulted in a distribution of episode durations
between the 2 real datasets (Fig. 1B), with a mean duration of
3.8 days and a mean longitudinal prevalence of 2.7%.

Different episodes were allowed to overlap. Thus, the
average ”observed” number of episodes in the simulated
dataset was slightly lower than the number of episodes as
given by the gamma distribution (2.6 vs. 2.9). Likewise, the
average “observed” episode duration was slightly longer
then determined by the negative exponential distribution
(3.8 vs. 3.6).

FIGURE 1. Distribution of the (A)
number and (B) duration of epi-
sodes in the default model and for
Brazil and Guatemala. For compari-
son, episodes were regarded as dis-
tinct if separated by at least 1 day;
for the number of episodes the sim-
ulation assumes a gamma distribu-
tion with � � 0.48 (shape) and � �
6 (stretch parameter); the simulated
episode durations follow an expo-
nential distribution (y � exp
(�0.32x).
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Choice of Outcome Measures
Unlike the conventional definition of prevalence, the

longitudinal prevalence is a continuous variable. An individ-
ual can experience a longitudinal prevalence between 0% and
100%. For diarrhea, the distribution of the individual values
of the longitudinal prevalence is highly skewed, with most
individuals experiencing a longitudinal prevalence of up to
one percent (Fig. 2, highest bars in each panel), and few
individuals having a high longitudinal prevalence. Thus, the
mean longitudinal prevalence may at first sight not seem to be
an appropriate outcome measure to describe the longitudinal
prevalence on population level. However, the mean longitu-
dinal prevalence in a population is equal to the average
diarrhea point prevalence over the study period (ie, the mean
of the daily point prevalences) if each point prevalence is
based on the same number of individuals. The mean longi-
tudinal prevalence is also equal to the proportion of diarrhea
days among all days observed in the study population, pro-
vided that all individuals were followed for the same number
of days. If the follow-up time varies among participants, then
the weighted mean longitudinal prevalence (weighted by the
number of days of observation) is equal to the mean point
prevalence over time weighted by the number of individuals
contributing to the daily point prevalence. This again is equal
to the proportion of days with diarrhea in the population,
which certainly is an outcome measure of interest.

To describe precision, we used the standard deviation
(SD), which allows straightforward sample size calculations
for studies using the longitudinal prevalence as an outcome
measure. With decreasing days of observation per individual,
the SD of individual longitudinal prevalence values is ex-
pected to rise, indicating the loss of precision with fewer days
of observation per individual. The increase of the SD with
fewer numbers of visits is proportional to the increase of the
standard error of the mean longitudinal prevalence (SD/�n),
since the overall number of individuals remains unchanged.

The loss of precision of the longitudinal prevalence estimate
has implications for the required sample size of a study using
the longitudinal prevalence as an outcome measure. We
applied a standard formula for the comparison of 2 means
(n � (0.84 � 1.96)2 (2*SD2)/(mean1 � mean2)2), because
most diarrhea studies compare 2 or more groups. For illus-
tration, we assumed a 30% reduction of the mean longitudinal
prevalence, 80% power and � � 0.05.

Simulation Procedures
We simulated the assessment of the longitudinal prev-

alence by assuming increasing intervals between visits over
365 days. At each visit, we simulated a 24-hour and a 48-hour
recall period, which have been suggested as the optimum
periods to achieve a high level of recall.10–12 For simplicity,
we assumed perfect recall.

To determine the robustness of our findings to changes
in the model assumptions, we varied the parameters of the
default simulation by assuming plausible high and low values
for number of episodes and duration of illness as suggested
by the 2 datasets from Brazil and Guatemala and by the
parameterization used by Morris et al.8 We also explored the
effect of seasonal variation of illness incidence by relocating
one-third of the episodes at random from the second half of
the simulated time period to the first half, resulting in a
diarrhea incidence that was twice as high during the first half
of the year as in the second half. Simulations and analyses
were performed with STATA 9.0 (StataCorp, College Sta-
tion, TX).

RESULTS
Figure 3 shows the association between number of days

of observation and SD of the longitudinal prevalence for the
simulation model. It demonstrates the loss of precision and
power that occurs in the default model when decreasing
numbers of days of observation are sampled. As the whole

FIGURE 2. Distribution of individual
values for the longitudinal preva-
lence in (A) the default model, (B)
Brazil, and (C) Guatemala. LP, longi-
tudinal prevalence; mean LP for Bra-
zil weighted by the number of days
of observation.
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sampling period covers 365 days, a 7-day surveillance inter-
val amounts to 53 visits overall, a 14-day interval to 27 visits,
and so on. The left y-axis reflects the mean longitudinal
prevalence, which remains constant, and the SD of the mean
longitudinal prevalence, which rises with longer surveillance
intervals (and decreasing number of visits). As the SD enters
into the sample size formula for the comparison of 2 means
to the square, the effect of reducing the number of days
sampled on the relative increase of the sample size is more
pronounced (right y-axis). For example, a study recording
daily disease prevalence over 365 days would require a
sample size of 390 persons per arm (baseline) in the default
model simulation. Recording only every 28th day (14 visits)
increases the SD by the factor 1.3 (from 0.041 to 0.054) and
the sample size by the factor 1.8 (from 390 to 716 participants
per arm). In this model there seems to be a slight benefit of
applying a 48-hour recall period instead of a 24-hour period
(sample size 659 vs. 716 for 28-day interval).

In the dataset from Brazil (Fig. 4A.) the rise of the SD
(factor 1.5 for 28-day interval) and the sample size (factor 2.3

for 28-day interval) with decreasing numbers of days sampled
is steeper than in the simulated dataset, although the increase
in the sample size when relying on a 7-day interval is still
limited. Using a recall period of 48 hours instead of 24 hours
substantially reduces the need to increase the sample size.

Figure 4B shows the data from Guatemala, where the
average duration of illness was much longer. For a sampling
interval of 28 days, the SD increases by the factor 1.2, and the
required sample size by a factor of just 1.6 compared with all
days sampled. There is little benefit of sampling at intervals
shorter than 10 days. Using a 48-hour recall offers a slight
advantage only for long sampling intervals.

We explored the apparent association between illness
duration and the loss of precision with decreasing numbers of
visits by varying the input parameters of the simulated data-
set. Figure 5A confirms that fitting the illness duration in the
model to the distribution observed in Brazil (approximately
an exponential curve with k � �0.6 and mean episode
duration 2.4 days) results in a steep rise in the sample size that
is reduced by using a 48-hour recall. For a 28-day interval,
the sample size goes up by a factor of 2.6 (compared with
sampling all 365 days), which is similar to the Brazil dataset
(factor of 2.4). Likewise, increasing the illness duration to
what was observed in Guatemala (k� �0.25; mean episode
duration � 4.6 days) leads to a sample size increase equal to
the Guatemala dataset (factor 1.6 for a 28-day interval). In
contrast, varying the incidence of diarrhea by fitting the
parameter for the gamma distribution to the data from Brazil
(approximately � � 0.56, � � 6) and Guatemala (� � 0.3,
� � 6), while leaving the illness duration constant, does not
have a strong effect on the proportional increase of the
sample size (Fig. 5B). Although the overall sample sizes are
highly dependent on the disease incidence, the relative in-
crease in the required sample size for decreasing numbers of
surveillance visits changes little, even if assuming a very high
disease incidence based on the Ghana/Peru model (� � 1.5,
� � 6, mean longitudinal prevalence � 8.3%). The main
findings for weekly and fortnightly visits with the key pa-
rameters for illness duration and incidence are summarized in
Table 1.

Assuming a 2-fold higher incidence in the first half year
to simulate seasonality while keeping the number of episodes
unchanged resulted in a slightly steeper curve compared with
the default simulation model (factor 2.0 for 28 days interval
instead of 1.8), indicating that seasonal variation has only a
limited impact on our findings.

Finally, we explored the implications for the precision
and the sample size if the number of visits remains constant,
while varying the length of the sampling intervals between
visits. In other words, we simulated a situation where a fixed
number of visits per household is spread over different
overall durations of a study. Figure 6 shows that for 25 visits
in the default model and the long episodes model (k �
�0.25) with 24-hour recall, the power of a study can be
maximized by applying at least a 10–14 day interval (equiv-
alent to a study duration of 241–337 days). If the average
duration of illness is smaller, as in the Brazil dataset (k �
�0.6), the surveillance intervals can be shorter (around 7

FIGURE 3. Mean longitudinal prevalence, standard deviation
and relative sample size for different sampling intervals over
365 days for the simulated dataset (default model). LP, longi-
tudinal prevalence; SD, standard deviation of the mean LP;
relative sample size (right y-axis) indicates increase compared
with baseline sample size if all days are sampled (n � 390 per
arm); sample size calculation for comparison of 2 mean LP
estimates.
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days, upper line). This was broadly confirmed by applying
this approach to the 2 real datasets, although the marked
fluctuations in diarrhea occurrence over the year made it
difficult to achieve comparable estimates for different study
durations (not shown). The curves for a 48-hour recall leveled
off in a very similar way (not shown). Again, varying the
number of episodes (as in Fig. 5B) had little impact on the
slope, showing that the preferred interval does not depend on
the incidence (not shown).

DISCUSSION
Our results suggest, that in many situations, sampling

every seventh day yields only slightly less precise estimates
of the mean longitudinal prevalence of diarrhea in a popula-
tion than collecting disease records for every single day. To
achieve the same precision, a study based on morbidity data
for every seventh day may require a 5%–24% larger sample
size than a study with daily records, depending on the average
duration of episodes (Table 1). In settings with short epi-

FIGURE 4. Mean longitudinal prev-
alence, standard deviation, and
sample size for different sampling
intervals over the course of 365 days
for the (A) Brazil and (B) Guatemala
datasets. Mean LP and SD for Brazil
weighted by the number of days of
observation; relative sample size
(right y-axis) indicates increase com-
pared with baseline sample size if all
days are sampled (Brazil: 415; Gua-
temala: 833 per arm); sample size
calculation for comparison of 2
mean LP estimates.

FIGURE 5. Effect of changing the
simulated duration and the number
of episodes on the sample size. Sam-
ple size per arm (y-axis) for the com-
parison of 2 mean longitudinal prev-
alence estimates; k is the parameter
of the exponential distribution y �
exp(kx) representing episode dura-
tions; � is the shape parameter of
the gamma distribution represent-
ing the number of episodes in an
individual (stretch parameter kept
constant at � � 6); numbers on
right side of both graphs indicate
sample size increase relative to base-
line (all days sampled).
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sodes, the increase in the sample size can be reduced (in our
simulated example from 24% to 14% for 7-day intervals) by
applying a 48-hour recall period.

Recording daily disease occurrence (eg, by frequent
visits or by relying on a long recall period) is resource-

intensive, could affect the reporting and risk behavior of the
study population, and could produce imprecise estimates.
Unless the study requires measuring the incidence of diarrhea
or close surveillance for other reasons (such as prompt
treatment or collection of stool samples), intermittent sam-
pling with a 24- or 48-hour recall period could improve
reporting and reduce expenses. Compared with daily records,
the increase in required sample size with sampling intervals
of up to 14 days appears moderate. However, interval and
sample size also depend on the expected average duration of
illness, which affects the degree to which consecutive days
are correlated. Likewise, depending on the average episode
length, investigators may opt for either a 24-hour recall
period, which may be simpler and more precise, or a 48-hour
recall period, which still seems to yield valid data10–12 but
with little advantage if the average illness duration is long.

Often the logistical constraints lie not so much in the
overall duration of the study as in the total number of visits
performed. For a fixed number of visits to each household,
spacing disease recordings to at least 7–14 days maximizes
efficiency. Investigators may thus choose to employ a small
number of well-trained field workers for a longer time, rather
than a large group of field workers for a short and intensive
period. A longer duration of a study has the additional
advantage that it better captures seasonal variations in disease
occurrence.

Our findings confirm some aspects of previous work by
Morris and colleagues9who used real datasets to show that
sampling morbidity every 5 days can reliably classify study
participants into longitudinal prevalence quintiles. By using
simulated datasets and comparing with real data, we have
identified illness duration as the key parameter for estimating
the longitudinal prevalence on population level. Morris and
colleagues had suggested that prevalence of disease is the
main determinant of the required number of visits to estimate
the longitudinal prevalence on individual level without spe-
cifically considering illness duration. Further, Morris and

FIGURE 6. Effect of increasing the sampling intervals for a fixed
number of visits (n � 25). Sample size per arm (y-axis) for the
comparison of 2 mean longitudinal prevalence estimates; up-
per line (�) indicates simulation with short episodes as ob-
served in Brazil; middle line (x) shows default simulation mod-
el; lower line (�) shows simulation with long episodes similar
to Guatemala; k is the parameter of the exponential distribu-
tion y � exp(kx) representing episode durations.

TABLE 1. Examples of Sample Sizes for a Hypothetical Diarrhea Intervention Trial Based on the Simulated Datasets and
Different Sampling Strategies

Surveillance Scheme

Daily Records

Visit Every Seventh Day Visit Every 14th Day

24-Hour Recall 48-Hour Recall 24-Hour Recall 48-Hour Recall

Default dataset (as in Fig. 3; mean episode length 3.8 d) 390 428 415 527 494

Changing episode length

Short episode dataset (k � �0.6*; mean length � 2.4 d) 391 486 446 675 597

Long episode dataset (k � �0.25*; mean length � 4.6 d) 382 404 395 468 448

Changing incidence

Low incidence dataset (� � 0.3†; mean number of
episodes � 1.6)

636 698 673 835 793

High incidence dataset (� � 0.56†; mean number of
episodes � 3.0)

325 358 347 431 408

Sample size per group for the comparison of 2 mean longitudinal prevalence estimates assuming a 30% reduction in the intervention group, P � 0.05, 80% power.
*k is the parameter of the exponential distribution y � exp(kx) representing episode durations.
†� is the shape parameter of the gamma distribution representing the number of episodes in an individual (stretch parameter kept constant at � � 6).
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colleagues proposed as a rule of thumb that visits should be
separated by at least the average duration of episodes. Our
analysis suggests that intervals between visits should be at
least twice the average episode duration to maximize
efficiency.

For this analysis, we made a number of simplifications
that may affect the interpretation of the findings. We assumed
perfect recall, without under- or overreporting of diarrhea
occurrence within the chosen recall periods. A number of
studies have previously suggested that applying either a 24-
or 48-hour period results in a similarly high level of re-
call.10–12 There is also evidence that the recall process is
complex, with illness more than 48 hours earlier being under-
reported, or remembered as having occurred more recently,
possibly leading to over-reporting of diarrhea.10 However,
although imprecise disease reporting may affect the size of
the estimate, it is unlikely to affect the proportional loss of
precision with decreasing number of visits, as identified in
our analysis.

Further, the 2 real datasets were based on weekly/
twice-weekly household visits with recall periods of up to 7
days, whereas we assumed a shorter recall to allow compar-
ison with the simulation. Also, the study populations in
Guatemala and Brazil both displayed variations in the diar-
rhea incidence over time. However, we found that the find-
ings from the real datasets were well reflected by our model
(Fig. 5) and that the effect of seasonality was limited.

Finally, one may question the choice of mean longitu-
dinal prevalence and its SD as our outcome measures. Al-
though the mean is influenced by extreme values, it also
represents, in the case of the longitudinal prevalence, the
population prevalence for all days of observation. Also, as
long as extreme values of longitudinal prevalence are plau-
sible and not due to measurement error, they are of public
health interest because they are associated with poor nutri-
tional status and higher mortality.6 In this situation, present-
ing the mean longitudinal prevalence and comparing 2 groups
with the t test may be a better approach than relying on
nonparametric methods such as the median and the Wilcoxon
test if the sample size is large.21

Instead of the SD or the standard error of the mean, we
could have used the standard error of illness-days as a
proportion of all days observed, taking into account the
clustering of illness days in individuals. We applied this
approach to the data from Brazil and found that the standard
errors with increasing intervals were almost exactly propor-
tional to the SD and the standard error of the mean longitu-
dinal prevalence. Likewise, we could have used sample size
formulae commonly used for clustered data. Most of these
formulae include a measure of the between-cluster variation,
which enters the formula as square. Although these formulae
might have resulted in slightly different overall sample sizes,
the proportional changes would have been very similar, if not
identical.

In conclusion, our analysis suggests that the longitudi-
nal prevalence of diarrhea can be efficiently estimated by
periodic sampling while minimizing expense and inconve-
nience to study participants. Our findings have implications

for the longitudinal prevalence of other episodic conditions
and symptoms, such as respiratory infections, cough or
fever.6 Sampling only a fraction of days during a study
period deserves to be tested in the field.

REFERENCES
1. Chiller TM, Mendoza CE, Lopez MB, et al. Reducing diarrhea in

Guatemalan children: randomized controlled trial of flocculant-disinfec-
tant for drinking-water. Bull World Health Organ. 2006;84:28–35.

2. Luby SP, Agboatwalla M, Feikin DR, et al. Effect of handwashing on
child health: a randomised controlled trial. Lancet. 2005;366:225–233.

3. Prado MS, Cairncross S, Strina A, et al. Asymptomatic giardiasis and
growth in young children; a longitudinal study in Salvador, Brazil.
Parasitology. 2005;131:51–56.

4. Sharieff W, Bhutta ZA, Schauer C, et al. Micronutrients (including zinc)
reduce diarrhea in children: the Pakistan sprinkles diarrhea study. Arch
Dis Child. 2006;91:573–579.

5. van der Hoek W, Feenstra SG, Konradsen F. Availability of irrigation
water for domestic use in Pakistan: its impact on prevalence of diarrhea
and nutritional status of children. J Health Popul Nutr. 2002;20:77–84.

6. Morris SS, Cousens SN, Kirkwood BR, et al. Is prevalence of diarrhea
a better predictor of subsequent mortality and weight gain than diarrhea
incidence? Am J Epidemiol. 1996;144:582–588.

7. Baqui AH, Black RE, Yunus M, et al. Methodological issues in diarrheal
diseases epidemiology: definition of diarrheal episodes. Int J Epidemiol.
1991;20:1057–1063.

8. Morris SS, Cousens SN, Lanata CF, et al. Diarrhea–defining the epi-
sode. Int J Epidemiol. 1994;23:617–623.

9. Morris SS, Santos CA, Barreto ML, et al. Measuring the burden of
common morbidities: sampling disease experience versus continuous
surveillance. Am J Epidemiol. 1998;147:1087–1092.

10. Alam N, Henry FJ, Rahaman MM. Reporting errors in one-week
diarrhea recall surveys: experience from a prospective study in rural
Bangladesh. Int J Epidemiol. 1989;18:697–700.

11. Boerma JT, Black RE, Sommerfelt AE, et al. Accuracy and complete-
ness of mothers’ recall of diarrhea occurrence in pre-school children in
demographic and health surveys. Int J Epidemiol. 1991;20:1073–1080.

12. Ramakrishnan R, Venkatarao T, Koya PK, et al. Influence of recall
period on estimates of diarrhea morbidity in infants in rural Tamilnadu.
Indian J Public Health. 1999;43:136–139.

13. Kirchhoff LV, McClelland KE, Do Carmo PM, et al. Feasibility and
efficacy of in-home water chlorination in rural North-eastern Brazil.
J Hyg (Lond). 1985;94:173–180.

14. Strina A, Cairncross S, Barreto ML, et al. Childhood diarrhea and
observed hygiene behavior in Salvador, Brazil. Am J Epidemiol. 2003;
157:1032–1038.

15. Genser B, Strina A, Teles C, et al. Risk factors for childhood diarrhea
incidence: a dynamic analysis of a large longitudinal study in a Brazilian
city. Epidemiology. 2006;17:658–667.

16. Quick RE, Kimura A, Thevos A, et al. Diarrhea prevention through
household-level water disinfection and safe storage in Zambia. Am J
Trop Med Hyg. 2002;66:584–589.

17. Semenza JC, Roberts L, Henderson A, et al. Water distribution system
and diarrheal disease transmission: a case study in Uzbekistan. Am J
Trop Med Hyg. 1998;59:941–946.

18. Strina A, Cairncross S, Prado MS, et al. Childhood diarrhea symptoms,
management and duration: observations from a longitudinal community
study. Trans R Soc Trop Med Hyg. 2005;99:407–416.

19. Barreto ML, Strina A, Prado M, et al. Saneamento básico e saúde:
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