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ABSTRACT: An alternative procedure based on cogni-
tive approach is applied to develop dynamic models. The
solution copolymerization of methyl methacrylate and
vinyl acetate in a continuous stirred tank reactor is ana-
lyzed to illustrate the cognitive model development. Facto-
rial planning was used to discriminate the process varia-
bles with higher impact on the process performance
(effects) and they are used to built-up a dynamic model
based on the functional fuzzy relationship of Takagi–
Sugeno type. Gaussian membership functions are consid-
ered for the cognitive sets and subtractive clustering
method supplied the parameters of the premises of the
model. Consequence functions are obtained through an

optimization problem solved by a least square based
algorithm. The kinetic parameters and reactor operating
conditions are obtained from the literature and a mathe-
matical model is considered as plant for identification
data generation. Dynamic cognitive models showed satis-
factory predictive capabilities and may be an interesting
alternative to attack problems of modeling in chemical
processes. � 2007 Wiley Periodicals, Inc. J Appl Polym Sci 106:
981–992, 2007

Key words: fuzzy dynamic model; model identification;
Takagi–Sugeno models; factorial planning; solution copoly-
merization

INTRODUCTION

The polymerization processes have a sufficiently
complex behavior, which is characterized for nonlin-
ear dynamic, and many times, it is impracticably a
reliable theoretic model to be shaped. As a conse-
quence, precise dynamic models of the process
become increasingly difficult to be derived and
solved as system complexity increases. This may
lead to limitations and difficulties in the develop-
ment and implementation of control strategies in
chemical plants, especially when polymerization
reactors are considered. However, nowadays, the
requirements for high and safe operational perform-
ance together with the need to achieve the product

with desired quality demand impose that the plant
to be operated under control.

Full detailed deterministic models are not tailored
to be used as an internal control model. Thus, sim-
plified models are formulated, with consequent
restrictions in some phenomena representation. This
may cause limitations on how the mathematical
models tracks the process dynamic behavior with
direct impact in the success of control strategies.
Because of the great difficulties in modeling of poly-
merization processes, many works in literature
report these difficulties. Bearing this in mind, it is
clear that alternatives approaches are welcome as
the proposed in this work.

Usually, some simplifications are made to become
the problem easier to be formulated and solved. For
instance, Embiruçu1 and Embiruçu et al.2 developed
a dynamic mathematical model to describe the con-
tinuous process of polymerization of the ethylene
with soluble Ziegler-Natta catalyzed in a set of
stirred tank (CSTR) and tubular reactors. The tubular
reactors had been assumed as PFR (plug flow reac-
tor), and difficulties aroused for the resolution of set
of partial differential equations of the PFR. The char-
acteristics method was used, considering the similar-
ity principle of the PFR with a batch reactor, which
had simplified the numerical procedure. Only one
type of active center was considered with objectives
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to simplify the model solution, despite the authors
believe in the theory of multiplicity of active centers.
Zeaiter et al.3 had developed a dynamic model for
the polymerization in emulsion of the styrene in a
half-batch reactor to foresee the product particle size
distribution (PSD) and the molecular weight distri-
bution (MWD). The developed model presented
good results when compared with experimental
data. Chen and Liu4 had developed a comprehensive
mathematical model for single particle propylene po-
lymerization mainly extended from polymeric multi-
grain model (PMGM) and multigrain model (MGM)
to describe kinetic behavior, MWD, monomer con-
centration, degree of polymerization and polydisper-
sity index (PDI) for slurry-phase propylene polymer-
ization using heterogeneous Ziegler–Natta catalysts.
Further, special attention was also paid to discuss
the computational effort, which is the most disad-
vantage of MGM. It has been shown that the signifi-
cant computational time saving is also acquired by
employing the novel solution methodology. Deva-
doss et al.5 had introduced and investigated a math-
ematical model for a free-radial frontal polymeriza-
tion system. It was studied that a ‘‘pure’’ thiolene
system that proceeds via a step-growth mechanism
followed by a chain-transfer reaction. The model
tracked the evolution of the species and the energy
balance in the system. Both approximate analytical
and full numerical solutions of the problem are
given, and compared with the experimental results.
Pontes6 developed a dynamic mathematical model
to describe the continuous process of copolymeriza-
tion of the ethene/1-butene with soluble Ziegler-
Natta catalyzed in a set of tubular and agitated tank
reactors. The author experienced difficulties in esti-
mating the kinetic parameters, because of the large
number of parameters to be identified. To overcome
the problem, the parameters for the ethylene homo-
polymerization were estimated whereas for the
copolymerization cross reactions, relationships from
literature were used. Only one type of active center
was considered. Clearly, such assumptions may lead
to the lack of important process information.

Thus, the attainment of efficient more accurate
representations for polymerization systems is neces-
sary. Moreover, it is necessary to have a model, which
should be at the same time easy and quick to solve as
well as robust enough to capture the main process dy-
namics to develop a suitable control strategy.

In this work, a cognitive approach based on fuzzy
concepts is proposed, considering both linguistic
and mathematical functional representation. The ap-
proach allows to take into account both quantitative
and qualitative informations, which lead the mathe-
matical representation to accommodate the main
process features. It is important to point out that the
proposed approach has advantages when compared

with artificial neural network since, beyond the non-
linear behavior, qualitative information are also con-
sidered in the model building. Some works are pre-
sented in literature having related application of the
fuzzy modeling in chemical processes, showing the
potential of such approach. Alexandridis et al.7 intro-
duced new systematic methodology to the problem
of nonlinear system identification based on fuzzy
systems. The proposed methodology was of general
use and results in both a linguistic and an analytical
model of the system. The method was successfully
tested in the identification of certain operating
regions in a Continuous Stirred Tank Reactor (CSTR)
exhibiting various types of nonlinear behavior, such
as limit cycles and multiple steady states. Accord to
Abdelazim and Malik,8 fuzzy models are able to ap-
proximate any real continuous function up to a cho-
sen accuracy, through the use of an algorithm for
real-time identification of nonlinear systems using
Takagi–Sugeno’s fuzzy models. A Takagi–Sugeno
fuzzy system is trained incrementally each time step
and is used to predict one-step ahead system output.
The ability of the proposed identification to capture
the nonlinear behavior of a synchronous machine is
illustrated. Sala et al.9 detach the current research
devoted to modeling and control through fuzzy
methods, which presented good potential to be used
in complex systems. In this way, fuzzy modeling
methods appear as an alternative to solve modeling
problems in polymerization reactions. In fact, they
are quite attractive in terms of time and easiness to
implementation.

Thus, this work presents the development of a
fuzzy cognitive model to a copolymerization process.
A deterministic mathematical model is used as plant
for generation of the dynamic information and is
assumed to be an adequate representation of the sys-
tem. It will be shown that fuzzy model is able to
reproduce the transient responses of deterministic
model. The cognitive model was transformed in For-
tran 90 software, which is portable and easy to use.

FUZZY LOGIC AS A MODELING TOLL FOR
COMPLEX SYSTEMS

Most real world scheduling problems are very com-
plex. Generating an optimal schedule is usually a
time-consuming process, which requires various sim-
plifying assumptions. Whether the schedule is gener-
ated by computationally demanding mathematical
model or by a human expert, an appealing approach
would be to devise a procedure to capture and
model the underlying decision-making mechanism.10

Zadeh11 considered a linguistic approach effective
and versatile in modeling ill-defined systems with
fuzziness or fully defined systems with realistic
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approximations. Zadeh’s work had a profound influ-
ence on the thinking about uncertainty because it
challenged not only probability theory as the sole
representation for uncertainty, but the very founda-
tions upon which probability theory was based: clas-
sical binary (two-valued) logic.12

A fuzzy set contain elements that have varying
degrees of membership in the set. This idea is in
contrast with classical, or crisp, sets because mem-
bers of a crisp set would not be members unless
their membership was full, or complete, in that set.
Elements in a fuzzy set, because their membership
need not be complete, can also be members of other
fuzzy sets on the same universe. All information
contained in a fuzzy set is described by its member-
ship function. These can be of various forms, such as
Gaussian and triangular. The algorithms developed
in this work incorporate Gaussian membership func-
tions m(x) for the inputs x, given by eq. (1):

mðxiÞ ¼ exp � 1

2

xi � ci
si

8>: 9>;2
� �

(1)

In eq. (1), xi is the ith input variable, ci is the ith
center of the membership function (where the mem-
bership function achieves a maximum value), and si

is a constant related to spread of the ith membership
function.

Fuzzy set properties and operations

Fuzzy sets follow the same properties as crisp sets,
such as commutativity, associativity, distributivity,
idempotency, identity, transitivity, and involution.13

The standard fuzzy operations are union, intersec-
tion, and complement, which are the same as those
for classical sets when the range of membership val-
ues is restricted to the unit interval. This is an im-
portant information to built-up the knowledge basis
for the process. However, these standard fuzzy oper-
ations are not the only operations that can be
applied to fuzzy sets. For each of the three standard
operations, there exists a broad class of functions
whose members can be considered fuzzy generaliza-
tions of the standard operations. In such case, fuzzy
intersections and fuzzy unions are usually referred
to, in the literature, as t-norms and t-conorms (or s-
norms), respectively. These t-norms and t-conorms
are so named because they were originally intro-
duced as triangular norms and triangular conorms,
respectively, in study of statistical metric spaces.13

Table I indicates the more used t-norms and t-
conorms, in relation the two fuzzy sets X1 and X2,
with elements x1 and x2, respectively. The probabilis-
tic t-norm and t-conorm will be applied in the calcula-
tion of the inferred exit of the fuzzy rule-base for the
copolymerization process considered in this work.

The inference procedure is described in the next
topic.

Fuzzy modeling

The fuzzification, inference, and defuzzification
stages must be processed for attainment of fuzzy
models.

Fuzzification is the process of making a crisp
quantity fuzzy. This can be done by simply recogniz-
ing that many of the quantities that are considered
to be crisp and deterministic are actually not deter-
ministic at all: they carry considerable uncertainty. If
the form of uncertainty happens to arise because of
imprecision, ambiguity, or vagueness, then the vari-
able is probably fuzzy and can be represented by a
membership function.14 These concepts are interest-
ing to incorporate operator information on the pro-
cess behavior and operation conditions in the model
development. Possible changes in kinetic as well as
heat and mass transfer parameters because of altera-
tions in operating conditions may also be incorpo-
rated in the process model through the fuzzy
approach.

The inference procedure is carried through by the
expression of the type:

IF premiseðantecedentÞ;
THEN conclusion ðconsequentÞ ð2Þ

This form is commonly referred to as the IF-THEN
rule-based form; it is generally referred as the deduc-
tive form. It typically expresses an inference that
may be used to express a fact (premise, antecedent,
and hypothesis) in another fact named conclusion
(consequent).

The defuzzification methods are used for the
attainment of an effective action from the fuzzy
model. In other words, defuzzification is the proce-
dure of conversion of a fuzzy quantity to a precise
quantity, just as fuzzification is the conversion of a
precise quantity to a fuzzy quantity.

TABLE I
Main t-Norms and t-Conorms

t-Norm t-Conorm Type

Min (x1, x2) Max (x1, x2) Zadeh
x1x2 x1 þ x2 – x1x2 Probabilistic
Max (x1 þ x2 �1, 0) Min (x1 þ x2, 1) Lukasiewicz

x1; if x2 ¼ 1

x2; if x1 ¼ 1

0; if not

8><
>:

x1; if x2 ¼ 0

x2; if x1 ¼ 0

1; if not

8><
>:

Weber
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TAKAGI-SUGENO FUZZY MODEL

With the development of fuzzy systems, some fuzzy
model systems design methods have appeared in
fuzzy modeling field. Among various kinds of fuzzy
modeling methods, Takagi and Sugeno15 proposed
a design and analysis method for overall fuzzy sys-
tems, in which the qualitative knowledge of a sys-
tem was first represented by a set of local Takagi–
Sugeno fuzzy model. In this approach, the Takagi–
Sugeno fuzzy model (TS) substitutes the consequent
fuzzy sets in a fuzzy rule by a linear equation of the
input variables. Local dynamics in different state–
space regions are represented by linear models and
the overall model of the system is represented as the
interpolation of these linear models. Therefore, it has
a convenient dynamic structure so that some well-
established linear systems theory can be easily
applied for theoretical analysis and design of the
overall closed-loop system.14

The TS method was proposed in an effort to de-
velop a systematic approach to generate fuzzy rules
from a given input–output data set. A typical rule in
a TS model, which has two-inputs x1 and x2, and
output y, has the form:

IF x1 is X1 and x2 is X2; THEN y is y ¼ f ðx1; x2Þ (3)

where X1 and X2 are fuzzy sets (membership func-
tions) of x1 and x2, respectively, and y ¼ f(x1, x2) is a
crisp consequent function. The generalization of
expression (3) for a number of entrances n leads to
the TS model as follow:

If ðx1 is Xi;1Þ and ðx2 is Xi;2Þ and : : : and ðxj is Xi;jÞ
and : : : and ðxn is Xi;nÞ then

yi ¼ ai1x1 þ ai2x2 þ � � � þ aijxj þ � � � þ ainxn ð4Þ

where i ¼ 1, . . . , R, being R the rules number of the
fuzzy model; j ¼ 1, . . . , n; and aij are parameters of
the consequent function of the fuzzy model.

For the system analyzed in this work, the subtrac-
tive clustering method is used for determination of
the rules number and parameters of the member-
ship functions of the antecedent part of the fuzzy
model. The algorithm forms rules (or clusters) with
training data using a nearest neighbor approach for
the fuzzy system. Consequence functions parame-
ters are obtained through an optimization problem
solved by a least square based algorithm, through
error minimization between the plant data and the
foreseen values for the fuzzy model. Details on sub-
tractive clustering and least square methods are
given by Chiu16,17 and Passino and Yurkovich,18

respectively.

The inferred numerical exit is defined by the
weighed average of referring numerical exits i to
each rule, calculated by:

y ¼
PR

i¼1 fimiðxÞPR
i¼1 miðxÞ

(5)

where mi(x) are membership functions and fi is a con-
sequent function to each rule i.

This is the basic procedure proposed in this work
to develop a fuzzy model.

IDENTIFICATION OF FUZZY
DYNAMIC MODELS

It is important to draw attention that a series of deci-
sions must be taken in the initial phases of the mod-
eling process, which will influence directly in the
quality of the obtained model.

A first point to be considered is the definition of
the fuzzy structure model that composes the system
base of rules. The variables that will be used as well
as the form of interconnection among them (if the
relation is linear or non linear, being able to be expo-
nential, power, mixing, among others) must be
defined. The number and types of the chosen varia-
bles must be in accord to the problem necessity.
These models will possess a dynamic configuration
in such a way to represent the behavior of the pro-
cess throughout a time horizon.

In fact, the fuzzy models generally use the last in-
formation in their structures and use last values of
the chosen exits as the entrance of the model. The
number of last variable information used to con-
struct the model is an important parameter in the
performance of the model. In fact, it can be seen as
an optimization topic that must be taken into
account in the model construction.

Defined the structure, the next stage is the data
generation for the identification of the model. In this
point, the maximum and minimum limits of varia-
tion of the variables must be chosen, so that the
model operation range is determined, considering
the desired objectives. Initially, the training data are
generated, which are used for attainment the param-
eters of the model. This model is validated later
through the application of the test data. The data
generation is carried out through the excitement of
the entrance variables of the system, being able to be
basically of two forms: random, or through an
experiment planning.

The procedure of the model parameters determi-
nation involves matrix inversion. Thus, it is impor-
tant to detach that the choice of the values of fre-
quency is of extreme importance; therefore, a
reduced excitement can cause problems of matrix
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ill-conditioning, with consequent problem in the in-
version procedure. On the other hand, a maximum
excitement frequency able to shape the stationary
values must be guaranteed. In relation to the ampli-
tude of excitement, it has to be emphasized that
this data must take in account the operational range
of the model. The training and test data generation
is carried out in different excitement conditions
of the entrance variables in terms of frequency and
amplitude.

Another important point to be considered in the
dynamic fuzzy models development is the determi-
nation of the sampling rate. In such case, it has to be
taken into account the time constant of the process
preventing at the same time problems of matrix con-
ditioning when it is too large. On the other hand, for
the case of the model for control of processes, the
value of the sampling rate must be related with the
controller action interval, so that very small values
lead to improper control actions.

MODEL VALIDATION

In this work, the results of the model validation are
illustrated through figures and quantified through of
the ‘‘average quadratic error,’’ given by eq. (6):

error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k¼1ðyk � ykÞ2
m

s
(6)

where k is the considered time instant, m is the num-
ber of considered discrete instants, yk is the pre-
dicted exit by the fuzzy model in instant k, and yk is
the exit of the process in instant k (deterministic
model).

CASE STUDY

The process considered in this work as case study is
the free radical solution copolymerization of methyl
methacrylate and vinyl acetate in a continuous
stirred tank reactor.19

Figure 1 is a flow diagram of a copolymerization
reactor with a recycle loop. Monomer A is methyl
methacrylate, monomer B is vinyl acetate, the sol-
vent is benzene, the initiator is azobisisobutyronitrile
(AIBN) and the chain transfer agent is acetaldehyde.
The monomer stream may also contain inhibitors
such as m-dinitrobenzene (m-DNB).

Monomers A and B are continuously added with
initiator, solvent, and chain transfer agent. In addi-
tion, an inhibitor may enter with the fresh feeds as
an impurity. These feed streams are combined
(Stream 1) with the recycle stream (Stream 2) and
flow to the reactor (Stream 3), which is assumed to
be a jacketed, well-mixed tank. A coolant flows
through the jacket to remove the polymerization
heat. Polymer, solvent, unreacted monomers, ini-
tiator, and chain transfer agent flow out of the reac-
tor to the separator (Stream 4). Here, polymer is re-

Figure 1 Basic process configuration.
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moved from the stream (Stream 5). Residual initiator
and chain transfer agent are also removed in this
step. In real process, the separator often involves a
series of steps, which may include dryers and distil-
lation columns. Here, unreacted monomers and sol-
vent (Stream 6) continue on to a purge point (Stream
7), which represents venting and other losses. Purg-
ing is required to prevent the accumulation of inerts
in the system. After the purge, the monomers and
solvent (Stream 8) are stored in the recycle hold
tank, which acts as a surge capacity to smooth out
variations in the recycle flow and composition. The
effluent (Stream 2) recycle is then added to the fresh
feeds.

The important reactor output variables for product
quality control are the polymer production rate (Gpi),
mole fraction of monomer A in the copolymer (Yap),
weight–average molecular weight (Mpw), and reactor
temperature (Tr). The inputs are the reactor flows of
monomer A (Gaf), monomer B (Gbf), initiator (Gif),
chain transfer agent (Gtf), solvent (Gsf), inhibitor
(Gzf), the temperature of the reactor jacket (Tj), and
the temperature of the reactor feed (Trf). The reactor,
separator and hold tank contents at startup are pure
solvent preheated to 353.15 K.

The steaty-state operating point is summarized in
Table II. Under these conditions, the reactor resi-
dence time is yr ¼ 6 h and the overall reactor mono-
mer conversion is 20%. These operating conditions
ensure that the viscosity of the reaction medium
remains moderate. Table II also indicates that the
temperature of the reactor feed Trf is practically
equal to the reactor temperature Tr, because this
work was chosen to simulate reactor operation with
a preheated feed where the source of heat removal is
through the jacket.

Feedforward control of recycle

The presence of the recycle stream introduces distur-
bances in the reactor feed, which affects the polymer
properties. In this way, Congalidis et al.19 imple-
mented a feedforward controller in the process to
compensate for these disturbances by manipulating
the fresh feeds to maintain constant feed composi-
tion and flow to the reactor. Feedforward control of
the recycle stream enabled the designer to separate
the control of the reactor from the rest of the pro-
cess. Thus, the reactor can be separately analyzed.

The feedforward control equations were obtained
by writing component balances around the recycle
addition point. For example, the mole balance for
monomer A is:

Fa3 ¼ Fa1 þ ya2F2 (7)

Equation (7) is then solved for the fresh feed of
monomer A since it is desired to keep the goal flow
of monomer A to the reactor (Fa3) constant:

Fa1 ¼ Fa3 � ya2F2 (8)

Since only monomers A and B and solvent are pres-
ent in the recycle, only these three components have
feedforward control equations. The corresponding
equations for fresh feeds of monomer B and solvent are:

Fb1 ¼ Fb3 � yb2F2 (9)

Fs1 ¼ Fs3 � ys2F2 (10)

If any feedforward control equation causes a fresh
feed to go negative, the value of that fresh feed is set
to zero.

Deterministic model

The analyzed copolymerization process has des-
cribed in literature a deterministic mathematical
model and kinetic parameters, which is considered
as plant for data generation for the identification of
the cognitive model. This is composed by a set of
algebraic and ordinary differential equations and
was chosen for already being a developed and vali-
dated model. Besides, such system presents complex
dynamic behavior with highly nonlinear characteris-
tics. Details on the deterministic model are given in
Congalidis et al.19 and Maner and Doyle.20

Discriminate of the process variables

The analyzed system consists of seven entrances (Gaf,
Gbf, Gif, Gtf, Gsf, and Tj) and four exits (Gpi, Yap, Mpw,
and Tr). The temperature of the reactor feed Trf was
considered constant and purge ratio is under action of

TABLE II
Steaty-State Operating Conditions

Inputs
Monomer A (MMA) feed rate Gaf ¼ 17 kg/h
Monomer B (VAc) feed rate Gbf ¼ 90 kg/h
Initiator (AIBN) feed rate Gif ¼ 0.18 kg/h
Solvent (benzene) feed rate Gsf ¼ 36 kg/h
Chain transfer (Acetaldehyde)

feed rate
Gtf ¼ 2.7 kg/h

Inhibitor (m-DNB) feed rate Gzf ¼ 0
Reactor jacket temperature Tj ¼ 336.15 K
Reactor feed temperature Trf ¼ 353.15 K
Purge ratio x ¼ 0.05

Reactor parameters
Reactor volume Vr ¼ 1 m3

Reactor heat transfer area Sr ¼ 4.6 m2

Outputs
Polymer production rate Gpi ¼ 23.3 kg/h
Mole fraction of A in polymer Yap ¼ 0.56
Weight–average molecular weight Mpw ¼ 35000 kg/kmol
Reactor temperature Tr ¼ 353.01 K
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the feedforward controller. Table II also indicates that
inhibitor feed rate is equal the zero. Thus, factorial
planning using Statistica Version 7.0 Software was used
to discriminate the process variables with higher
impact on the process performance (effects). They are
used to build up a dynamic model based on the func-
tional fuzzy relationship of Takagi–Sugeno type. The
deterministic mathematical model of the process pro-
ceeding from literature was solved by a Runge–Kutta
algorithm type in a software written in FORTRAN 90
(Compaq Visual Fortran 6.6) language. The initial con-
centrations and operational conditions in the entrance
of the reactor had been gotten from Maner and
Doyle.20 This software was used in the data generation
of exit for each set of entrance defined by experimental
planning through the Statistica Version 7.0 Software.
Figure 2 illustrates the Pareto chart of standardized
effects to four exits. Table III summarizes the results.

Functional dynamic models

As already described, the functional fuzzy models
developed in this work are of the type Takagi–
Sugeno, whose structures were previously defined
[eq. (4)]. The next stage for the models construction
is the attainment of the data for process identifica-
tion. It is clear that the data set of training must rep-
resent the process in the best way it is possible,
therefore this is a decisive factor to achieve a good

Figure 2 Pareto chart to output variables. [Color figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]

TABLE III
Discrimination of the Process Variables

Outputs Variables of higher impact

Gpi Tj, Gif, Gbf

Yap Gaf, Tj, Gbf, Gif

Mpw Tj, Gif, Gaf, Gbf

Tr Tj, Gif, Gbf
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model. The output variable data were obtained
through random changes in the input variables with
higher impact on the process performance. The
deterministic model was used in this task. The con-
sidered ranges for each input variable are presented
in Table IV, being related to the steady-state values.
In this way, identification data of the process (the
input/output set) necessary for the generation of

cognitive model were obtained. Figure 3 presents the
identification data for each one of the output vari-
ables. It was used as a sampling rate of 1 h and a
simulation interval of 400 h. From the identification
data, algorithms for generation of the cognitive mod-
els were build up. They are used to develop the
dynamic model based on the functional fuzzy rela-
tionship of Takagi–Sugeno type. Gaussian member-
ship functions were used for the fuzzy sets and sub-
tractive clustering method supplied the parameters
of the premises of the model and rules number. Con-
sequence functions were obtained through an opti-
mization problem solved by a least square based
algorithm. Tables V–VIII show the parameters for
the fuzzy models. The current value and the last
value to each input variable as well as the last value

TABLE IV
Discrimination of the Variation Intervals

Input variables Variation intervals (%)

Gaf 615
Gbf 615
Gif 615
Tj 63

Figure 3 Identification data to output variables.
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of output variable were considered as entrances for
the cognitive model.

In the Tables V–VIII, k refers to time instant, and
u1, u2, u3, and u4 refer to Tj, Gaf, Gbf, and Gif, respec-
tively; yj is the jth output variable; ain and bij are
consequence functions parameters of the input varia-
bles and jth output variable, respectively, where i
¼ 1, . . . , R (rules number) and n is the number of
parameters of the entrances.

The ith rule to each exit is shown in eqs. (11–14).
Ain and Bij are the membership functions of entran-
ces and exit, respectively.

Output variable : Gpi

Rule i : IFðu1ðkÞ is Ai1Þ and ðu1ðk� 1Þ is Ai2Þ and
ðu4ðkÞ is Ai3Þ and ðu4ðk� 1Þ is Ai4Þ and
ðu3ðkÞ is Ai5Þ and ðu3ðk� 1Þ is Ai6Þ and
ðy1ðk� 1Þ is Bi1Þ THEN y1i ðkþ 1Þ ¼ ai1u1ðkÞ

þ ai2u1ðk� 1Þ þ ai3u4ðkÞ þ ai4u4ðk� 1Þ þ ai5u3ðkÞ
þ ai6u3ðk� 1Þ þ bi1y1ðk� 1Þ ð11Þ

TABLE V
Parameters to Polymer Production Rate (Gpi)

Rules number ¼ 2

Antecedent part
Rule 1 Rule 2

ci� 102 si� 102 ci� 102 si� 102

u1(k), u1(k � 1) u1(k), u1(k � 1)
86.59 15.78 8.91 15.78

u4(k), u4(k � 1) u4(k), u4(k � 1)
7.42 16.69 1.11 16.69

u3(k), u3(k � 1) u3(k), u3(k � 1)
38.44 17.09 84.90 17.09

y1(k � 1) y1(k � 1)
50.15 19.70 13.80 19.70

Consequent part

Rule i
ai1�
102

ai2�
102

ai3�
102

ai4�
102

ai5�
102

ai6�
102

bi1�
102

i ¼ 1 26.64 �17.36 4.06 1.26 3.69 �3.29 84.01
i ¼ 2 48.12 �20.88 4.12 4.25 9.96 �5.40 53.45

TABLE VI
Parameters to Fraction of Monomer A in the

Copolymer (Yap)

Rules number ¼ 3

Antecedent part
Rule 1 Rule 2 Rule 3

ci� 102 si� 102 ci� 102 si� 102 ci� 102 si� 102

u2(k), u2(k � 1) u2(k), u2(k � 1) u2(k), u2(k � 1)
23.49 16.22 86.59 16.22 8.02 16.22
u1(k), u1(k � 1) u1(k), u1(k � 1) u1(k), u1(k � 1)

60.04 16.66 18.89 16.66 51.79 16.66
u3(k), u3(k � 1) u3(k), u3(k � 1) u3(k), u3(k � 1)

18.57 17.47 38.44 17.47 95.01 17.47
u4(k), u4(k � 1) u4(k), u4(k � 1) u4(k), u4(k � 1)

4.52 16.07 7.42 16.07 76.01 16.07
y2(k � 1) y2(k � 1) y2(k � 1)

45.60 17.43 86.81 17.43 12.06 17.43

Consequent part

Rule i
ai1�
102

ai2�
102

ai3�
102

ai4�
102

ai5�
102

ai6�
102

ai7�
102

ai8�
102

bi2�
102

i ¼ 1 0.17 2.43 0.47 �2.32 3.60 �0.21 0.75 0.31 97.30
i ¼ 2 1.89 2.30 �2.72 �2.09 0.80 �0.63 �0.75 �0.69 97.72
i ¼ 3 �6.95 3.33 0.96 �3.74 0.54 0.29 4.20 �1.92 97.75

TABLE VII
Parameters to Weight–Average Molecular Weight (Mpw)

Rules number ¼ 3

Antecedent part
Rule 1 Rule 2 Rule 3

ci� 102 si� 102 ci� 102 si� 102 ci� 102 si� 102

u1(k), u1(k � 1) u1(k), u1(k � 1) u1(k), u1(k � 1)
60.04 16.66 8.91 16.66 95.55 16.66
u4(k), u4(k � 1) u4(k), u4(k � 1) u4(k), u4(k � 1)

4.52 16.07 22.64 16.07 95.41 16.07
u2(k), u2(k � 1) u2(k), u2(k � 1) u2(k), u2(k � 1)

23.49 16.22 84.90 16.22 63.39 16.22
u3(k), u3(k � 1) u3(k), u3(k � 1) u3(k), u3(k � 1)

18.57 17.47 1.11 17.47 89.76 17.47
y3(k � 1) y3(k � 1) y3(k � 1)

25.00 17.60 93.85 17.60 7.04 17.60

Consequent part

Rule i
ai1�
102

ai2�
102

ai3�
102

ai4�
102

ai5�
102

ai6�
102

ai7�
102

ai8�
102

bi3�
102

i ¼ 1 2.48 �5.81 2.56 �0.79 �1.28 3.35 5.69 �0.52 93.50
i ¼ 2 �12.18 13.71 �1.22 1.97 1.77 1.16 0.66 0.20 96.69
i ¼ 3 �10.35 �11.23 15.97 0.88 2.19 4.97 �1.05 1.55 77.07

TABLE VIII
Parameters to Reactor Temperature (Tr)

Rules number ¼ 3

Antecedent part
Rule 1 Rule 2 Rule 3

ci � 102 si � 102 ci � 102 si � 102 ci � 102 si � 102

u1(k), u1(k � 1) u1(k), u1(k � 1) u1(k), u1(k � 1)
83.45 15.82 10.74 15.82 81.43 15.82
u4(k), u4(k � 1) u4(k), u4(k � 1) u4(k), u4(k � 1)

22.32 16.05 69.15 16.05 12.32 16.05
u3(k), u3(k � 1) u3(k), u3(k � 1) u3(k), u3(k � 1)

43.58 16.23 23.27 16.23 89.85 16.23
y4(k � 1) y4(k � 1) y4(k � 1)

86.64 19.39 15.14 19.39 80.26 19.39

Consequent part

Rule i
ai1�
102

ai2�
102

ai3�
102

ai4�
102

ai5�
102

ai6�
102

bi4�
102

i ¼ 1 32.97 24.18 �2.50 5.95 1.52 5.42 39.36
i ¼ 2 21.52 35.15 1.85 �0.62 12.58 �10.26 47.44
i ¼ 3 40.87 10.06 �28.99 13.16 �32.37 31.52 52.48
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Output variable : Yap

Rule i : IFðu2ðkÞ is Ai1Þ and ðu2ðk� 1Þ is Ai2Þ and
ðu1ðkÞ is Ai3Þ and ðu1ðk� 1Þ is Ai4Þ and
ðu3ðkÞ is Ai5Þ and ðu3ðk� 1Þ is Ai6Þ and ðu4ðkÞ is Ai7Þ
and ðu4ðk� 1Þ is Ai8Þ and ðy2ðk� 1Þ is
Bi2Þ THEN y2iðkþ 1Þ ¼ ai1u2ðkÞ þ ai2u2ðk� 1Þ
þ ai3u1ðkÞ þ ai4u1ðk� 1Þ þ ai5u3ðkÞ þ ai6u3ðk
� 1Þ þ ai7u4ðkÞ þ ai8u4ðk� 1Þ þ bi2y2ðk� 1Þ ð12Þ

Output variable : Mpw

Rule i : IF ðu1ðkÞ is Ai1Þ and ðu1ðk� 1Þ is Ai2Þ and
ðu4ðkÞ is Ai3Þ and ðu4ðk� 1Þ is Ai4Þ and
ðu2ðkÞ is Ai5Þ and ðu2ðk� 1Þ is Ai6Þ and ðu3ðkÞ is Ai7Þ
and ðu3ðk� 1Þ is Ai8Þ and ðy3ðk� 1Þ is Bi3Þ THEN

y3iðkþ 1Þ ¼ ai1u1ðkÞ þ ai2u1ðk� 1Þ þ ai3u4ðkÞ
þ ai4u4ðk� 1Þ þ ai5u2ðkÞ þ ai6u2ðk� 1Þ þ ai7u3ðkÞ

þ ai8u3ðk� 1Þ þ bi3y3ðk� 1Þ ð13Þ

Figure 4 Validation of the fuzzy model to output variables.
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Output variable : Tr

Rule i : IF ðu1ðkÞ is Ai1Þ and ðu1ðk� 1Þ is Ai2Þ and
ðu4ðkÞ is Ai3Þ and ðu4ðk� 1Þ is Ai4Þ and
ðu3ðkÞ is Ai5Þ and ðu3ðk� 1Þ is Ai6Þ and ðy4ðk� 1Þ is
Bi4Þ THEN y4iðkþ 1Þ ¼ ai1u1ðkÞ þ ai2u1ðk� 1Þ
þ ai3u4ðkÞ þ ai4u4ðk� 1Þ þ ai5u3ðkÞ þ ai6u3ðk� 1Þ

þ bi4y4ðk� 1Þ ð14Þ

Figure 4 presents the validation results of the fuzzy
models for the test data set. As can be seen, a very
good prediction was obtained for the four output
variables. Table IX shows the result of the errors
quantification for each exit. As observed, a very
small average quadratic error for the four output
variables was obtained, having as reference its re-
spective dimensions.

CONCLUSIONS

Fuzzy cognitive models were developed in this work
for a copolymerization process. The analysis of these
models, together with results shown on Figure 4 and
Table IX, allow to conclude that these models repre-
sent the process in a very satisfactory way for the
four output variables. In fact, the use of fuzzy
dynamic models represents a good alternative for
modeling polymerization processes. The main
advantage in such model approach is the use of
input/output data set together with qualitative infor-
mation. Also, the ability of fuzzy models to deal
with uncertainties in kinetic and transfer parameters
as well as the lack of complete information on the
phenomena taking place in the system has to be
considered. As pointed out, polymerization proc-
esses are usually complex and difficult to model
and solve through deterministic mathematical
modeling approach, especially to be used in con-
trol. A fuzzy model is simpler to be built-up, iden-
tified, and solved, and it appears to be a suitable
way to model a system for control and real-time
optimization.

NOMENCLATURE

A Monomer A, membership function of the
input variable

AIBN Azobisisobutyronitrile
B Monomer B, membership function of the

output variable
a Parameter of the consequent function of the

fuzzy model refer to input variable
b Parameter of the consequent function of the

fuzzy model refer to output variable
c Center of the Gaussian membership function
CSTR Continuous stirred tank reactor
F Molar flow rate (kmol/h)
f Consequent function of the fuzzy model
G Mass flow rate (kg/h)
k Time instant
M Molecular weight (kg/kmol)
m Number of time instants
MGM Multigrain model
MWD Molecular weight distribution
PDI Polydispersity index
PFR Plug flow reactor
PMGM Polymeric multigrain model
PSD Particle size distribution
R Rules number of the fuzzy model
S Surface area (m2)
T Temperature (K)
u Input variable
v Volume (m3)
X Fuzzy sets (Gaussian membership function)
x Input variable, elements of the fuzzy sets
Y Mole fraction
y Consequent function of the fuzzy model,

process exit, output variable
y Predicted exit by the fuzzy model

Greek letters
m Gaussian membership function
y Residence time (h)
s Constant related to spread of the Gaussian

membership function
x Molar purge fraction

Subscripts
a Monomer A
b Monomer B
f Feed to the reactor
i Initiator, instantaneous, rule of the fuzzy

model
j Cooling jacket, entrance of the fuzzy model,

output variable
k Time instant
n Number of entrances of the fuzzy model,

input variable
p Dead polymer
r Reactor
s Solvent
t Chain transfer agent
w Weight average polymer property
z Inhibitor

TABLE IX
Errors Quantification for Output Variables

Outputs Average quadratic error [eq. (6)]

Gpi 0.6915
Yap 0.0040
Mpw 536.72
Tr 0.6645
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