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Abstract Logics, Logic Maps, and Logic
Homomorphisms
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Abstract. What is a logic? Which properties are preserved by maps between
logics? What is the right notion for equivalence of logics? In order to give sat-
isfactory answers we generalize and further develop the topological approach
of [4] and present the foundations of a general theory of abstract logics which
is based on the abstract concept of a theory. Each abstract logic determines a
topology on the set of theories. We develop a theory of logic maps and show
in what way they induce (continuous, open) functions on the corresponding
topological spaces. We also establish connections to well-known notions such
as translations of logics and the satisfaction axiom of institutions [5]. Logic
homomorphisms are maps that behave in some sense like continuous func-
tions and preserve more topological structure than logic maps in general. We
introduce the notion of a logic isomorphism as a (not necessarily bijective)
function on the sets of formulas that induces a homeomorphism between the
respective topological spaces and gives rise to an equivalence relation on ab-
stract logics. Therefore, we propose logic isomorphisms as an adequate and
precise notion for equivalence of logics. Finally, we compare this concept with
another recent proposal presented in [2].
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1. Introduction

Logics that abstract from model theory are often given as a deduction system
L = (L,�), where L is some set of formulas and � is a deduction (or consequence)
relation satisfying usually the three Tarski axioms of extensiveness, monotonicity
and idempotence. These axioms are equivalent to the following:
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(i) If a ∈ A, then A � a.
(ii) If A � b for all b ∈ B, and if B � c, then A � c.

These rather intuitive axioms allow to capture a huge class of concrete logics (given
as a deduction system). (One exception, however, is given by non-monotonic logics,
which play an important role in artificial intelligence.) It is certainly not wrong to
claim that logic as a traditional area of research can be described as the science
of sound reasoning. In this sense, such a kind of deduction system then may serve
as a rather general concept of logic. However, an essential aspect is neglected in
this approach, namely the interplay between syntax and semantics, that is, model
theory. In fact, one problem of deduction systems is the absence of an adequate
notion of consistency. Let us say that a notion of consistency is adequate if it
coincides with model-theoretic satisfaction. In order to give a generic concept of
consistency in a deduction system one usually defines:

A set A of formulas is consistent, if there is some formula a such that A � a.
Otherwise, A is inconsistent.

In particular, the whole set L of formulas is, by this definition, always incon-
sistent. But there are logics where L is satisfiable by some model. One example
is the 3-valued paraconsistent logic LP , as discussed in [7]. We quote another ex-
ample, which was already sketched in [8]: assume first order equational logic over
some given signature Σ (the set of formulas consists of all equations over Σ) and
consider a Σ-structure A with exactly one element. Then A is a model of the set
of all formulas L, since it satisfies all equations of L. We conclude that not for all
logics, given as a deduction system, the usual notion of consistency is adequate.

One may find further examples that illustrate the relevance of the semantical
component. For instance, it might be possible that two first order logics have
the same consequence relation (thus, they are equal as deduction systems) but
in one logic we admit models of arbitrary cardinality and in the other one we
only admit models of a bounded infinite cardinality. Then these logics may have
different behaviors with respect to some classical model-theoretic meta-theorems.
The general problem here is that not all semantical properties can be expressed
syntactically (recall, for example, that two models of different infinite cardinality
can be elementary equivalent in first order logic, however, they are not isomorphic).

For these reasons one might prefer a concept of logic that includes the model-
theoretic component (see [4,5]). However, for many purposes it is not necessary to
consider all specific semantical properties, such as cardinality questions of (infinite)
models. In these cases a deduction system with an adequate notion of consistency is
sufficient in order to express many interesting properties of a logic. Since we have
seen that a pure deduction system may lead to a counterintuitive (inadequate)
notion of consistency, we adapt some ideas of [8] to our approach and choose
the abstract notion of a theory as the basic component of a logic. A theory is
a priori a consistent set of formulas. It will follow from our definition of abstract
logic that theories are exactly the consistent, deductively closed sets. There are two
important advantages of this approach to abstract logics: it captures in an abstract
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way model-theoretic logics as well as logics based on any proof-theoretic system
(of course, both types of logics generate theories, i.e., consistent and deductively
closed sets), and it yields an adequate notion of consistency.

Abstraction in our approach refers also to another thing: we do not require
any syntactical assumptions, the expressions (formulas) of an abstract logic are in
principle pure abstract objects without any inner structure.

An abstract logic L = (ExprL, ThL) is given by a set of expressions (or
formulas) and a subset ThL of the powerset of ExprL. ThL is the set of theories.
Now we may define consistency, validity and similar notions by means of the set of
theories (e.g., a set of formulas is consistent, if it is contained in some theory). In
particular, the consequence relation is determined in the usual way. One can see
that the resulting consequence relation satisfies the Tarski axioms, i.e., the axioms
(i) and (ii) above. Moreover, we require two intersection conditions as axioms in
our definition of abstract logics:

• Any intersection of a nonempty set of theories is again a theory;
• If the empty set ∅ is a theory, then ∅ is the intersection of a set of non-empty

theories.

The first condition will guarantee that the set of theories is exactly the set of
all consistent and deductively closed sets of formulas. The second condition will
be technically useful in order to deal with our logic maps. It also expresses the
following intuition: if there is some formula contained in all (non-empty) theories,
then this formula is valid. In this case, the empty set should not be a theory.

The above mentioned axioms are not considered in [8]. This may lead to
counterintuitive consequences: two logics may have the same consequence relation
although there is no bijection between the respective sets of theories. Thus, the
logics can not be considered as equivalent or equal in the topological sense (that
is, there is no homeomorphism between the respective topological spaces). In fact,
the topological potential, as explored in the present paper (or in [4]), remains
unnoticed in [8]. In [8] there are also defined mappings between logics and it is
shown that they preserve some properties such as consequence and consistency.
Our concept of a logic map is based on that notion given in [8] and is adapted to
our approach. However, in [8] these mappings are not studied in more detail. We
aim in this paper to develop a theory of logic maps in order to find conditions under
which they induce (continuous, open) functions between the respective topological
spaces.

The starting point of the present research is the observation that each ab-
stract logic induces a topology on the set of theories. For example, if the abstract
logic is finitary and has classical negation and conjunction, then the set of max-
imal theories forms a boolean space (i.e., a topological space which is Hausdorff,
zero-dimensional and compact). Such a characterization provides a topological in-
variant for this specific class of abstract logics. (One may expect that many other
classes of abstract logics also give rise to such topological invariants.) Then we de-
fine logic maps as functions (on the set of expressions) that preserve in some sense



246 S. Lewitzka Logica universalis

the structure of the theories. We study extensively logic maps and prove that they
are in general stronger than translations. However, both concepts coincide in many
cases (Proposition 3.3). One of the most interesting properties of logic maps is that
under the normality condition (Definition 3.4) they give rise to functions, called
complements, on the theory spaces of the respective logics. After studying proper-
ties of logic maps and their complements we show in Corollary 3.15 some conditions
under which complements of logic maps are continuous or open functions. Thus,
we reveal a connection between logic maps (translations) and continuous and open
functions between the respective topological spaces. Furthermore, we introduce a
function which is given in a unique way by a logic map h. This function, called
the inverse complement of h, is always a continuous map from the target to the
source space (Proposition 3.21). If h has exactly one complement, then the inverse
complement is in fact the inverse function of the complement. What is interest-
ing here is that the inverse complement together with its logic map satisfies an
equation which corresponds to the satisfaction axiom of institutions (see [5]). This
is expressed by Corollary 3.23. However, the connections between abstract logics
and institutions remain to be further investigated.

In Section 4 we introduce logic homomorphisms of abstract logics. Logic ho-
momorphisms are logic maps that behave in some sense as continuous functions:
they send basic open sets of the target space to open sets of the source space. In
fact, in Proposition 4.6 we show that in many cases logic homomorphisms lead
directly to open and continuous maps between the respective spaces. Logic ho-
momorphisms are strictly stronger than logic maps (and translations). In general,
they preserve more topological structure and expressive power of a logic than (nor-
mal) logic maps. This is proved by the Counter Example 8: we are able to present
two logics so that there is a normal logic map but no logic homomorphism between
them.

Furthermore, we study strong logic homomorphisms. Strong homomorphisms
are interesting for the following reason: the existence of a strong logic homo-
morphism, which is not necessarily a logic isomorphism, implies an homeomor-
phism between the respective topological spaces (Corollary 4.10). In Example 9
we present a strong logic homomorphism which is not a logic isomorphism.

Logic isomorphisms are L-surjective normal logic homomorphisms. In con-
trast to an earlier version given in [4] we no longer require a logic isomorphism
to be a bijective function on formulas. It is sufficient to require that it is bijec-
tive on the respective equivalence classes of formulas modulo logical equivalence.
We agree here with arguments given in [2] defending that bijections on formulas
are too strong for a suitable concept of equivalence of logics. On the other hand,
our notion of logic isomorphism is strong enough to induce a homeomorphism be-
tween the respective spaces. Furthermore, we show that this notion behaves well in
the sense that the relation “isomorphic” between logics is an equivalence relation
(Theorems 4.15 and 4.16). Therefore we propose the notion of logic isomorphism
as an adequate concept of equivalence of abstract logics. Finally, we show that this
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concept coincides with the notion of “equipollence of logical systems” introduced
in [2], if we assume the following restrictions:

An abstract logic must satisfy the syntactical rules given in [2], our logic
maps are uniform translations (or logical system morphisms in the sense of [2])
and the abstract logics in consideration are either all regular or are all singular.

Perhaps the second restriction is the strongest one, since many translations
relevant in practice are not uniform.

As far as we know, the topological approach to logic maps developed here (and
in the previous paper [4]) is new. However, in the literature one can find works on
logic translations borrowing notions from topology (such as “continuous”, “home-
omorphic” or “topological”) in order to describe properties of translations, see,
for instance, [6] or [3]. One should be aware that in these cases there is usually
no underlying topological space defined. Of course, these notions are used in or-
der to establish a certain analogy to some concepts and situations from general
topology. Instead of a true topological space one works with a closure space given
by the consequence relation. Since this closure operator does not satisfy all the
Kuratowski closure axioms characteristic of a topological space, the resulting “con-
tinuous mappings” or “topological” properties are not true continuous functions
or topological properties in the sense of general topology (this was also pointed
out in [6]). In fact, our Example 8 illustrates that there may exist a “continuous
mapping” (i.e., a logic translation in the sense of [3], Definition 2.3), which does
not induce a (true) continuous map between the respective underlying topological
spaces.

Some of the concepts and results elaborated in this paper are based on the
work [4], which can be seen as an early stage of the current research. In [4] model-
theoretical abstract logics were considered, which now can be treated inside the
more general setting of abstract logics. We were able to generalize (and to simplify)
in a considerable way many notions and results of [4] in this broader context. In
particular, relationships between logics (logic maps and logic homomorphisms) can
be defined in a more flexible and general way than in the restricted context of [4].

2. Abstract logics and topology

Definition 2.1. An abstract logic L is a pair L = (ExprL, ThL), where ExprL is
a set of expressions (or formulas) and ThL is a subset of the power set of ExprL,
called the set of theories, such that the following axioms are satisfied:

(i) If T ⊆ ThL and T �= ∅, then ∩T ∈ ThL.
(ii) If ∅ ∈ ThL, then there is a set of theories T ⊆ ThL such that ∅ /∈ T and

∅ = ∩T .

The abstract logic L′ = (ExprL′ , ThL′) is a sublogic of the abstract logic L =
(ExprL, ThL), written L′ ⊆ L, if ExprL′ = ExprL and ThL′ ⊆ ThL.
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We say that the logic L is trivial, if ThL = ∅. L is regular, if ExprL /∈ ThL.
If L is not regular, then we say that L is singular. The empty logic is the abstract
logic with the empty set of expressions.

Axiom (i) is rather natural. It will guarantee that the set of theories is exactly
the set of all consistent and deductively closed sets. Axiom (ii) says that the
empty set can be a theory only if it is the intersection of nonempty theories. In
other words, the empty set is a theory if and only if it is generated (by means of
intersection) by other theories. This leads us to the notion of generators:

Definition 2.2. (i) We say that a subset G ⊆ ThL is a generator set, if for each
theory T ∈ ThL, T = ∩T , for some T ⊆ G. A generator set is minimal, if
any proper subset is not a generator set.

(ii) A theory T ∈ ThL is called prime, if T is not the intersection of other theories.
That is, the theory T is prime if whenever T = ∩T , then T ∈ T or T = ∅.1

The set of all prime theories is denoted by PThL.

Axiom (ii) of the definition of abstract logics says that the empty set - if it
is a theory - can not be prime. Furthermore, no minimal generator set countains
the empty theory as an element. In some sense one could say that prime theories
are those theories which are not generated (by means of intersections) - they are
given a priori. Thus, a prime theory must be contained in any generator set.

Logics with model-theoretic semantics give natural examples of abstract log-
ics:

Suppose that L is a set of well-formed formulas, C is a class of models or inter-
pretations and � is a satisfaction relation between models of C and L-expressions.
For M ∈ C define Th(M) := {a ∈ L | M � a}, the theory of M . Then L together
with the set of all intersections of nonempty subsets of {Th(M) |M ∈ C} forms an
abstract logic. Clearly, {Th(M) | M ∈ C} is a generator set of this abstract logic.
We say that the logic is generated by the class of models C, or that C generates
this abstract logic.

We sketch out three concrete examples:

Example 1. Classical first order logic over a given signature Σ. The expressions
are first order formulas over Σ. The satisfaction relation is defined in the usual
way. Then the logic L generated by the class of all Σ-structures can be considered
as a (boolean) abstract logic. Every subclass of Σ-structures generates a sublogic
(which is still classical but, in general, no longer boolean, since compactness may
fail).2

Example 2. Intuitionistic propositional logic (over an infinite set of propositions
P ). The expressions are inductively defined in the usual way over an infinite set
of propositional variables P . We assume that there are the usual connectivities
→, ∨, ∧ and ∼. We consider Kripke semantics (possible world semantics): An

1The latter case, T = ∅, means that T = ExprL = ∩∅.
2For the anticipated concepts of “boolean” and “classical abstract logic” see Definition 2.5 below.
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intuitionistic frame is a pair F = (W,≤) with a nonempty set W and a partial
ordering ≤ on W . The elements of W are called possible worlds. An intuitionistic
variable assignment is a map v : P → Pow(W ) such that w ≤ w′ and w ∈ v(p)
implies w′ ∈ v(p).3 If F is an intuitionistic frame, w a possible world and v
an intuitionistic variable assignment, then we call the triple I = (F, v, w) an
intuitionistic interpretation. The satisfaction relation � is inductively defined in
the following way:

I � p :⇐⇒ w ∈ v(p)
I � a ∨ b :⇐⇒ I � a or I � b
I � a ∧ b :⇐⇒ I � a and I � b
I �∼ a :⇐⇒ (F, v, w′) � a, for all w′ ∈ W with w ≤ w′

I � a→ b :⇐⇒ (F, v, w′) � a or (F, v, w′) � b, for all w′ ∈W with w ≤ w′ .

Now, the class of all intuitionistic interpretations I = (F, v, w), considered as
models, generates an abstract logic which we call intuitionistic propositional logic
over the set of propositions P .

Example 3. Classical propositional logic (over an infinite set of propositions P ).
We consider the same set of formulas and Kripke semantics as for intuitionistic
propositional logic. If the set W of an intuitionistic frame F = (W,≤) has ex-
actly one element, then the intuitionistic variable assignment v can be seen as a
function v : P → {0, 1}. In this case the frame F = (W,≤) and the intuition-
istic interpretation I = (F, v, w) are in some sense trivial and depend only on
the variable assignment v. Therefore, we may look at this variable assignment as
an interpretation, i.e., a model. Now we consider the abstract sublogic of intu-
itionistic propositional logic which is generated by all such ”trivial” intuitionistic
interpretations I = (F, v, w), that is, by all variale assignments v ∈ 2P , viewed
as models. We call this abstract logic classical propositional logic over the set of
propositions P .

Remark 2.3. Sometimes we look at theories as abstract models in the following
sense: Let L be an abstract logic, T ∈ ThL a theory and a ∈ ExprL an expression.
Then we call T an abstract model of a and write T �L a, if a ∈ T . For a set A
of L-expressions we say that T is an abstract model of A and write T �L A, if
T �L a for all a ∈ A (i.e., if A ⊆ T ).

Most of the relevant concepts that we will need are derivable from the fun-
damental concept of a theory:

Definition 2.4. Every abstract logic L gives rise to a consequence relation �L⊆
Pow(ExprL) × Pow(ExprL) defined by

A �L B :⇐⇒ B ⊆ ∩{T ∈ ThL | A ⊆ T } .

3Pow(A) denotes the power set of A, i.e., the set of all subsets of A.
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If B = {b}, then we write A �L b instead of A �L B.4

A set A ⊆ ExprL is deductively closed, if A �L a implies a ∈ A. The
deductive closure of A is defined by A�L := {a ∈ ExprL | A �L a}.

Two sets of expressions A and B are L-equivalent, if A �L B and B �L A.
If A,B are L-equivalent, then we write A =L B. If A = {a} and A =L B, then we
write a =L B (and analogously for the case B = {b}).

Note that A �L a holds if and only if T �L a whenever T �L A, for every the-
ory T ∈ ThL (where we interpret theories as abstract models in the sense explained
above.) It is easy to see that �L is a closure operator, i.e., it is mononotic, idem-
potent and reflexive (extensive). That is, �L satisfies exactly the above discussed
Tarski axioms of a consequence relation.

Notice also that �L′⊇�L, if L′ ⊆ L.

Definition 2.5. Let L be an abstract logic.

(i) A set A ⊆ ExprL of expressions is consistent, if A ⊆ T for some T ∈ ThL.
Otherwise, A is inconsistent.5

(ii) A set A ⊆ ExprL is maximally consistent, if it is consistent and for any
a ∈ ExprL �A the set A∪{a} is inconsistent.6 We denote the set of maximal
theories (=the set of maximally consistent sets) by MThL.

(iii) L is called finitary, if for all A ⊆ ExprL the following holds: A is consistent
if and only if every finite subset of A is consistent.

(iv) The consequence relation �L is finitary, if for all sets A ⊆ ExprL and all
expressions a ∈ ExprL the following holds: If A �L a, then there is some
finite subset Af ⊆ A such that Af �L a.

(v) L has classical negation, if MThL is a generator set and for each expression b
there is some expression c such that for all maximal theories T the equivalence
b ∈ T ⇐⇒ c /∈ T holds. Such an expression c is called a classical negation
of b. If there is some operator ∼ that assigns to each expression b ∈ ExprL a
classical negation c of b, then we denote c by ∼ b and say that ∼ is a classical
negation of logic L.

(vi) L has (finite) conjunction, if for every pair of expressions b, c there is some
expression d such that for all T ∈ ThL the equivalence {b, c} ⊆ T ⇐⇒ d ∈ T
holds. d is called a conjunction of the expressions b and c. If there is a operator
∧ which assigns to each pair of expressions b, c a conjunction d, then we write
b ∧ c for d and say that ∧ is a conjunction of logic L.

4Note that A �L B ⇐⇒ A �L b, for all b ∈ B.
5Notice the following: If A is inconsistent, then A �L a for all a ∈ ExprL, since by a set-theoretic
convention ∩{T ∈ ThL | A ⊆ T} = ∩∅ = ExprL. A trivial logic has no consistent set. A regular
logic has some inconsistent set. In a singular logic every set of expressions is consistent, that is,
there is no inconsistent set. If L is regular and A is consistent, then there is some a ∈ ExprL
such that A �L a.
6Clearly, a maximally consistent set is a maximal theory, i.e., a theory that is maximal with
respect to set-theoretic inclusion.
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(vii) An abstract logic with finite conjunction and classical negation is called a
classical (abstract) logic. A boolean logic is a finitary classical abstract logic.

Remark 2.6. Let L be an abstract logic. Every maximal theory is a prime theory.
A prime theory is contained in every generator set. Thus, if GL is any generator
set, then MThL ⊆ PThL ⊆ GL. In particular, if MThL (PThL) is a generator
set, then MThL (PThL) is also the minimal generator set, respectively. Moreover,
if MThL is a generator set, then MThL = PThL.

Proof. Let T ∈MThL. Since T is a maximal theory, it can not be the intersection
of a set of theories, all distinct from T . Thus, T must be prime. Clearly, a prime
theory must be contained in any generator set. Now the remaining assertions follow
immediately. �

Lemma 2.7. Let L be an abstract logic. A set T ⊆ ExprL is a theory if and only
if T is consistent and deductively closed.

Proof. If T is a theory, then T is consistent by definition. From the definition of
the consequence relation it follows easily that T is deductively closed. Now suppose
that T is consistent and deductively closed. It follows that T is the intersection of
all theories containing T . The first axiom of the definition of abstract logics says
that T is a theory. �

Definition 2.8. Let L = (ExprL, ThL) be an abstract logic and let T ⊆ ThL be
any set of theories. For a ∈ ExprL we define

aT := {T ∈ T | a ∈ T } .
Analogously, for A ⊆ ExprL we put

AT := {T ∈ T | A ⊆ T } .
Furthermore, we define

S(T ) :=

{
{aT | a ∈ ExprL} ∪ {{∅}} , if ∅ ∈ T
{aT | a ∈ ExprL} , else .

and

B(T ) :=
{
σ | σ is a finite non-empty intersection of elements of S(T )

}
,

that is, σ ∈ B(T ) ⇐⇒ σ = ρ1∩· · ·∩ρn, for some n ≥ 1 and some ρ1, . . . , ρn ∈ S(T ).
We call the set S(T ) (B(T )) the subbasis (basis) of the space T , respectively.

If T = ThL, then we say that BL := B(T ) = B(ThL) is the basis of the logic L
and SL := S(ThL) is the subbasis of L. In this case we write a∗L (A∗L) instead of
aThL (AThL), respectively.

Note that A∗L = ∩{a∗L | a ∈ A} .
There is a justification for the above defined terminology:

Proposition 2.9. Let L be an abstract logic.
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(i) The set SL = S(ThL) is a subbasis of a topology σL on ThL. The basis of
the logic L, BL = B(ThL), is a basis of the topology σL. In other words,
(ThL, σL) forms a topological space where the elements of BL are the basic
open sets.

(ii) Now let us assume the following: if L has no valid formula (that is, ∅ ∈ ThL
), then L has a inconsistent formula ⊥ (that is, ⊥∗L = ∅ ). Let G ⊆ ThL be
a set of generators and let S(G) be the subbasis of the subspace G. Then the
following conditions are equivalent:

• L has conjunction.
• SL = BL (that is, SL is closed under non-empty finite intersections).
• S(G) = B(G).

Proof. We put σL := {∪δ | δ ⊆ BL)}. The basis of the logic L, BL, is by definition
closed under non-empty finite intersections and ThL = ∪{ρ | ρ ∈ BL}. These two
conditions are sufficient for BL being a basis of the topology σL on ThL. It is easy
to see that the set of all finite intersections of elements of SL (inclusive the empty
intersection ∩∅ = ThL) forms also a basis of the topology σL. Hence, SL is a
subbasis of σL.

Now suppose that the assumptions of part (ii) of the proposition are true. We
show only the equivalence of the first and the second condition. The equivalence
of the first and the third condition follows by a similar argumentation and by the
fact that G is a set of generators.

Suppose L has conjunction. It is sufficient to show that SL is closed under
non-empty finite intersections. By the definition of conjunction, for any two ex-
pressions a, b there is some expression c such that c∗L = a∗L ∩ b∗L . Furthermore,
if ∅ ∈ ThL, then {∅} ∈ SL. The intersection of this set with any other element
of the subbasis is empty. So in order to prove that the subbasis is closed under
non-empty finite intersections, it remains to show that the empty set is an element
of SL whenever ∅ ∈ ThL. But this is guaranteed by hypothesis, ⊥∗L = ∅ ∈ SL.
It follows that SL is closed under non-empty finite intersections. It is evident
that ThL = ∪SL. Hence, SL is a basis of σL. Moreover, we have also shown that
SL = BL. On the other hand, if SL is closed under non-empty finite intersections,
then it follows that L has conjunction. �

Remark 2.10. Alternatively, it is also possible to define the subbasis as S(T ) :=
{aT | a ∈ ExprL} and the basis B(T ) as the set of all finite intersections of
elements of S(T ) (inclusive the empty intersection ∩∅ = T ), for any T ⊆ ThL.
If the empty set is a theory, then it is not necessary to consider this in a seperate
case, as in the definition of S(T ) and B(T ) above. One gets a topology that is
coarser than the topology defined above, where the empty theory is an isolated
point, i.e., the unique element of an (basic) open set, whereas here the empty
theory is an element of the open set T (i.e., not isolated).

Note that both topologies differ only in the treatment of the empty theory
(if it exists). We choose for our work the finer topology given by the basis above.
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However, it seems that the choice between these two alternatives is not really
relevant for our research.

Definition 2.11. Let L be an abstract logic. The topological space (ThL, σL) given
by the basis BL is called the space of L. For this space we often write ThL.

Definition 2.12. We say that a abstract logic is compact, if its space ThL is com-
pact.

Problem: Is a compact abstract logic finitary? Is there some finitary logic which is
not compact?

We have defined two different notions of finiteness. The first one is based on
the concept of consistency or - in a model-theoretic context - satisfaction. The
second one is based on the concept of deduction or consequence. The following
result gives a sufficient condition for the equivalence of these two notions.

Theorem 2.13. Let L be an abstract logic.
(i) If L has a classical negation ∼ and L is finitary, then �L is finitary.
(ii) If �L is finitary and there exists some finite, inconsistent set C, then L is

finitary.

Proof. Suppose that ∼ is classical and let L be finitary. Let A �L a. If A is
inconsistent, then there is a finite inconsistent subset Af of A. Thus, Af �L b for
all b ∈ ExprL. So we may assume that A is consistent. Towards a contradiction
suppose that Af �L a, for all finite subsets Af . Then for each finite subset Af

there is some theory T ⊇ Af such that a /∈ T . Since ∼ is a classical negation,
MThL is the minimal generator set. Hence, T = ∩T for some T ⊆MThL. Thus,
a /∈ Tm for some Tm ∈ MThL and Af ⊆ Tm. Then ∼ a ∈ Tm. Hence, Af ∪ {∼ a}
is consistent, for all finite Af ⊆ A. Since L is finitary, A ∪ {∼ a} is consistent. It
follows: A �L a, a contradiction to our hypothesis. Thus, (i) is true.

Now suppose that �L is finitary and C is a finite, inconsistent set of expres-
sions. Then, in particular, ExprL /∈ ThL, i.e., L is regular. Let A ⊆ ExprL such
that every finite subset of A is consistent. Towards a contradiction we assume
that A is inconsistent. It follows that A �L ExprL. In particular, A �L C, that
is, A �L c for each c ∈ C. Since �L is finitary, for each c ∈ C there is some finite
subset Ac ⊆ A such that Ac �L c. By monotonicity of the consequence relation,
B �L C, where B := ∪{Ac | c ∈ C}. Thus, B is inconsistent. But B is a finite
subset of A, a contradiction. Hence, A is consistent and the assertion (ii) holds. �
Corollary 2.14. If L is a logic with classical negation, then L is finitary if and only
if �L is finitary.

In order to give an example that points out the connection between con-
cepts of our abstract logics and topological terms we prove the following result. It
says that each boolean abstract logic gives rise to a boolean topological space. It
also shows that in the case of boolean abstract logics the notions “finitary” and
“compact” coincide.
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Theorem 2.15. Let L be an abstract logic. Suppose that the set of maximal theories
G := MThL is a set of generators of the logic L. Then holds the following: L
is a boolean logic if and only if S(G) = B(G) is closed under finite intersections
and under complement7 and is a basis of a boolean space on G = MThL (i.e., a
topological space, which is compact, Hausdorff and has a basis of clopen sets).

Proof. Suppose that L is a boolean logic. Then clearly S(G) = B(G). Let aG ∈
B(G) and let b be a classical negation of a. Then follows that bG = MThL � aG,
hence, the elements of the basis are clopen. Moreover, this also shows that the
basis is closed under complement. Since the logic has conjunction the basis is also
closed under finite intersections. In order to see that the topology is Hausdorff let
T1, T2 ∈ G such that T1 �= T2. We may assume that there is some a ∈ T1 �T2. Let
b be a classical negation of a. Then T1 ∈ aG, T2 ∈ bG and aG ∩ bG = ∅.

Finally, we show that the topology given by the basis B(G) is compact. So
assume that G = MThL = ∪i∈IUi for some system of open sets Ui = ∪a∈Aia

G,
Ai ⊆ ExprL. Put A := ∪i∈IAi. Then

∅ = MThL � ∪
{
Ui | i ∈ I

}
= MThL � ∪

{
aG | a ∈ A

}
= ∩

{
MThL � aG | a ∈ A

}
= ∩

{
bG | b is negation of some a ∈ A

}
.

(Note that two classical negations of the same expression a are L-equivalent.)
That is, the set B := {b | b is negation of some a ∈ A} is not contained in any

maximal theory. Since every theory is contained in some maximal theory, it follows
that B is not contained in any theory, that is, B is inconsistent. Since L is finitary,
there is some finite subsetBf ⊆ B such thatBf is inconsistent. It follows that there
is some finite subset Af ⊆ A such that Bf = {b | b is negation of some a ∈ Af}.
Hence, ∩{bG | b is negation of some a ∈ Af} = ∅. Then we get the following:

G = G� ∩
{
bG | b is negation of some a ∈ Af

}
= ∪

{
G� bG | b is negation of some a ∈ Af

}
= ∪

{
aG | a ∈ Af

}
.

Thus, there is also a finite subset If ⊆ I such that G = ∪i∈If
Ui. Hence, the

topology given by the basis B(G) is compact.
Now suppose that B(G) = S(G) forms a basis of a boolean space and that this

basis is closed under finite intersections and under complement. By Proposition 2.9,
L has conjunction. Furthermore, for any expression a, G � aG ∈ B(G), since the
basis is closed under complement. It follows that the logic has classical negation.

It remains to show that L is finitary. So let A ⊆ ExprL be inconsistent. We
show the existence of a finite and inconsistent subset of A.

7If X is a family of sets, then we say that X is closed under complement, if for every Y ∈ X,
∪X � Y ∈ X.
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Since A is inconsistent, ∩{a∗L | a ∈ A}=∅. In particular, ∩{aG | a ∈ A}=∅.
(Note that aG = a∗L ∩G.) Therefore,

G = MThL = MThL � ∩
{
aG | a ∈ A

}
= ∪

{
ThL � aG | a ∈ A

}
= ∪

{
bG | b is a negation of some a ∈ A

}
.

Since the topology is compact, there is a finite subset Af ⊆ A such that G =
MThL = ∪{bG | b is a negation of some a ∈ Af}. We get

∅ = G� ∪
{
bG | b is a negation of some a ∈ Af

}
= ∩

{
G� bG | b is a negation of some a ∈ Af

}
= ∩

{
aG | a ∈ Af

}
,

that is, Af ⊆ A is inconsistent. Thus, L is finitary. �
Remark 2.16. Let L be a classical abstract logic. The open sets of the sub-
space topology on MThL with basis B(MThL) = S(MThL) are exactly the sets
∪{aMThL | a ∈ A}, for A ⊆ ExprL. The closed sets of this subspace topology
are exactly the sets ∩{aMThL | a ∈ A} = {T ∈ MThL | A ⊆ T } = AMThL , for
A ⊆ ExprL. Hence, there exists a bijection

AMThL �→ ∩{T ∈MThL | A ⊆ T } , for A ⊆ ExprL ,

between the closed sets of the subspace topology on MThL and the set of all
deductively closed sets of the logic L (notice that the deductively closed sets are
exactly all theories together with ExprL).

3. Logic maps

Definition 3.1. Suppose that L = (ExprL, ThL) and L′ = (ExprL′ , ThL′) are
abstract logics. Let h : ExprL → ExprL′ be a function. We say that h is logically
injective, if a �=L b implies h(a) �=L′ h(b). h is logically surjective, if for every
a′ ∈ ExprL′ there is some a ∈ ExprL such that h(a) =L′ a′. We write L-injective
(L-surjective) for logically injective (logically surjective), respectively.8 h is regular,
if a =L b implies h(a) =L′ h(b), for all a, b ∈ ExprL.

Finally, h is a logic map from L to L′, if the following holds:{
h−1(T ′) | T ′ ∈ ThL′

}
⊆ ThL . (3.1)

We write h : L → L′, if h is a logic map from the logic L to the logic L′.

We collect some basic properties of logic maps.

Proposition 3.2. Let h : L → L′ be a logic map. Then for all A ⊆ ExprL and all
a, b ∈ ExprL it holds the following:

8Note that injectivity of h does not imply L-injectivity of h, neither L-injectivity implies injec-
tivity of h. On the other hand, surjectivity of h clearly implies L-surjectivity of h.
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(i) If A′ ⊆ ExprL′ is consistent in L′, then h−1(A′) is consistent in L.
(ii) If A �L B, then h(A) �L′ h(B), for all A,B ⊆ ExprL.
(iii) If a =L b, then h(a) =L′ h(b), that is, h is regular.
(iv) h−1(h(A)∗L′ ) ⊆ A∗L and h−1(h(a)∗L′ ) ⊆ a∗L .
(v) If L′ is singular, then L is singular.

Proof. (i) If A′ ⊆ ExprL′ is consistent in L′, then it must be contained in some
theory T ′. From the definition it follows that h−1(A′) is contained in a theory of L,
thus it is consistent in L.

(ii) If h(A) is inconsistent, then the assertion is trivial. So let us suppose that
A �L B and h(A) is consistent. Let T ′ be any theory in L′ such that h(A) ⊆ T ′.
Then A ⊆ h−1(h(A)) ⊆ h−1(T ′) = T for some T ∈ ThL. Since A �L B, it follows
that B ⊆ T = h−1(T ′), thus h(B) ⊆ T ′. Since T ′ was arbitrary, it follows that
h(B) ⊆ ∩{T ′ ∈ ThL′ | h(A) ⊆ T ′}.

(iii) a =L b is defined by a �L b and b �L a. Now the assertion follows
immediately from (ii).

(iv) Let T ∈ h−1(h(A)∗L′ ). Then there is some T ′ ∈ h(A)∗L′ such that
T = h−1(T ′). Since h(A) ⊆ T ′, A ⊆ T . That is, T ∈ A∗L . The second assertion
follows analogously.

(v) Let L′ be a singular logic, that is, ExprL′ ∈ ThL′. Since h−1(ExprL′ ) =
ExprL and h is a logic map, ExprL ∈ ThL and L is singular. �

In the literature, a logic translation (or translation of logics) is usually defined
as a map from the language (formulas) of one logic to the language of another
logic preserving the consequence relation. Sometimes one requires some additional
conditions. For instance, a uniform translation satisfies some syntactical rules (it
is an extension of a morphism between signatures). Many translations relevant in
practice are not uniform. For a discussion and a historical overview on this subject
see [3]. See also [2], where a uniform translation is defined in order to develop a
concept of equivalence between logics.

In the context of abstract logics we may define a more relaxed notion of
translation as follows: A translation from L to L′ is a function g : ExprL → ExprL′

such that A �L a implies g(A) �L′ g(a), for all A ∪ {a} ⊆ ExprL.
We have seen in the previous proposition that a logic map is a translation in

this general sense. The following result gives a sufficient condition for the equiva-
lence of logic maps and translations between abstract logics:

Proposition 3.3. Let L,L′ be abstract logics and let h : ExprL → ExprL′ be a
function. Suppose that the following holds: L is singular or there are inconsistent
sets C ⊆ ExprL and C′ ⊆ ExprL′ such that h(C) = C′. Then the following
conditions are equivalent:

(i) h is a logic map.
(ii) If A �L a, then h(A) �L′ h(a), for all A ∪ {a} ⊆ ExprL.

Proof. The implication (i)→(ii) we have already proved in the preceding proposi-
tion. Suppose that (ii) holds. Let T ′ ∈ ThL′ and h−1(T ′) = T . In order to prove
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that T is an L-theory we show that T is deductively closed and consistent. So let us
assume that T �L a, for some L-expression a. Then h(T ) �L′ h(a), by hypothesis.
Since h(T ) ⊆ T ′, T ′ �L′ h(a). Since T ′ is deductively closed, we get h(a) ∈ T ′,
thus a ∈ T . Hence, T is deductively closed.

If L is singular, then every set is consistent. Thus, T is consistent and there-
fore a theory. Let us assume that L is regular. Towards a contradiction we suppose
that T is inconsistent. Then every set of L-expressions, in particular C, is a conse-
quence of T . By hypothesis, h(T ) �L′ h(C). By monotonicity, T ′ �L′ C′. It follows
that T ′ is inconsistent, a contradiction. Hence, T is consistent. �

We use this result to show that the Gödel translation from classical to intu-
itionistic propositional logic is a logic map:

Example 4. Suppose that L and L′ are the classical and intuitionistic propositional
logic, respectively, as defined in Examples 2 and 3. We define inductively a function
g : ExprL → ExprL′ in the following way:

g(p) :=∼∼ p, for atomic p ∈ P

g(∼ a) :=∼ g(a)

g(a ∧ b) := g(a) ∧ g(b)
g(a ∨ b) :=∼

(
∼ g(a)∧ ∼ g(b)

)
g(a→ b) := g(a) → g(b) .

The function g is known in the literature as the Gödel translation. It is well-known
that A �L a implies g(A) �L′ g(a) (and vice-versa), for all A ∪ {a} ⊆ ExprL.
Furthermore, for any p ∈ P , the expressions a := p∧ ∼ p and g(a) = g(p)∧ ∼
g(p) =∼∼ p∧ ∼∼∼ p are inconsistent in the respective logics. Now we can apply
Proposition 3.3, which says that g is a logic map.

An important case of logic maps is given if we can substitute inclusion by
equality in the defining condition.

Definition 3.4. A logic map h : L → L′ is called normal, if {h−1(T ′) | T ′ ∈ ThL′} =
ThL.

Lemma 3.5. A logic map h : L → L′ is normal if and only if h−1(h(a)∗L′ ) = a∗L ,
for all a ∈ ExprL, if and only if h−1(h(A)∗L′ ) = A∗L , for all A ⊆ ExprL.

Proof. Let h be normal. Since h is a logic map, Proposition 3.2 yields the inclusion
h−1(h(a)∗L′ ) ⊆ a∗L . Let T ∈ a∗L . There is some T ′ ∈ ThL′ such that h−1(T ′) = T .
Then h(a) ∈ T ′ and T ′ ∈ h(a)∗L′ . Hence, T ∈ h−1(h(a)∗L′ ). Thus, the assertion
follows.

Now suppose that h−1(h(a)∗L′ ) = a∗L holds, for all a ∈ ExprL. Let T ∈ ThL.
We must show that there is some T ′ ∈ ThL′ such that h−1(T ′) = T . First, we
suppose that T �= ∅. Then there is some a ∈ T , that is, T ∈ a∗L . Now, the
existence of a T ′ ∈ ThL′ such that h−1(T ′) = T follows readily from the hypothesis.
Finally, suppose that T is the empty theory. Then there is some ordinal α and
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theories Ti such that T �= Ti, i < α, and T = ∩{Ti | i < α}. As we have
already seen, for each Ti there is some T ′

i such that h−1(T ′
i ) = Ti. Then T =

∩{Ti | i < α} = ∩{h−1(T ′
i ) | i < α} = h−1(∩{T ′

i | i < α}) = h−1(T ′), where
T ′ = ∩{T ′

i | i < α} ∈ ThL′ .
The proof works in the same way, if we assume a set A ⊆ ExprL instead of

a single expression. �

Lemma 3.6. If h : L → L′ is normal, then h is L-injective.

Proof. Suppose that h is normal. Let a, b ∈ ExprL such that h(a) =L′ h(b).
This is equivalent to the condition h(a)∗L′ = h(b)∗L′ . By Lemma 3.5, a∗L =
h−1(h(a)∗L′ ) = h−1(h(b)∗L′ ) = b∗L . That is, a =L b. �

We outline an example of a logic map which is not normal:

Example 5. Suppose that LI is the intuitionistic propositional logic and LCl is
the classical propositional logic as defined in Examples 2 and 3, respectively. Note
that ExprLI = ExprLCl

. The set of maximal LCl-theories is the smallest generator
set for LCl. Each maximal (complete) LCl-theory is also an LI -theory. Therefore,
the identity map i : ExprLI → ExprLCl

, a �→ a, is a logic map: i−1(T ) = {a ∈
ExprLI | i(a) = a ∈ T } = T ∈ ThLI , for all T ∈ ThLCl

. It is well-known that for
an arbitrary expression a, a =LCl

∼∼ a but a �=LI∼∼ a. Hence, i is not L-injective.
By the previous Lemma, i can not be normal.

Here comes an example of a normal logic map:

Example 6. We consider first order logic in some given signature (language) Σ.
First order logic has an extension9 in which exist formulas for conjunctions and
disjunctions of (countable) infinite sets of formulas. (For instance, if Ω is an count-
able infinite set of formulas, then

∧
Ω is a formula.) This logic is usually denoted

by Lω1ω. Let ExprL be the set of first order sentences over Σ and let ExprL′

be the set of Lω1ω-sentences over Σ. As interpretations we take the class of all
Σ-structures. The respective satisfaction relations �L and �L′ are defined in the
usual way. Then L and L′ are the respective abstract logics generated by the class
of all Σ-structures. The point is that both abstract logics are generated by the same
class of models. Each maximal theory T ′ ∈MThL′ is the complete theory of some
model, say A. Then T ′∩ExprL = T is a theory, namely the complete (=maximal)
theory in L of the same model A. Conversely, for each T ∈MThL there is exactly
one T ′ ∈ ExprL′ such that T = T ′ ∩ExprL and T, T ′ are complete theories of the
same model, in their respective logics. This relationship yields a bijection between
MThL and MThL′. Now it follows easily that there is also a bijection between
ThL and ThL′ . Let T �→ T ′ be this bijection. Let i : ExprL → ExprL′ , a �→ a, be
the identity function (which is an embedding but not L-surjective). Then we get
i−1(T ′) = {a ∈ ExprL | i(a) = a ∈ T ′} = T ′ ∩ ExprL = T ∈ ThL. That is, i is a
normal logic map.

9Later on we will give a precise definition of the concept of extension, see Definition 4.11.
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Although i is a normal logic map (and a translation) from L to L′, we will
see later that i is not a logic homomorphism.

Definition 3.7. Suppose that L and L′ are abstract logics. Let h : ExprL → ExprL′

be a function. We say that a function H : ThL → ThL′ is a complement of h, if
h−1(H(T )) = T , for all T ∈ ThL.

Theorem 3.8. Suppose that L and L′ are abstract logics and let h : ExprL →
ExprL′ be a logic map. Then h is normal if and only if h has a complement.
Every complement of h is injective.

Proof. First we suppose that h is normal. We have {h−1(T ′) | T ′ ∈ ThL′} = ThL.
Then for any theory T of L there is some theory T ′ of L′ such that h−1(T ′) = T .
Such a T ′ is not necessarily unique. We may use the axiom of choice in order to
define a complement H of h. Alternatively, we may define H : ThL → ThL′ by
T �→ ∩{T ′ ∈ ThL′ | h−1(T ′) = T }. Then H is a complement of h.

On the other hand, if H is a complement of h, then it is clear by the definition
that h is normal.

In order to prove that any complement H of h is injective suppose that
T1 �= T2 are two L-theories. If H maps T1 to T ′

1 and T2 to T ′
2, then

h−1(T ′
1) = T1 �= T2 = h−1(T ′

2) .

It follows that T ′
1 �= T ′

2 and H is injective. �

Remark 3.9. Let h : L → L′ be a normal logic map from a logic L to a logic L′.
Consider the function H : ThL → ThL′ defined by T �→ ∩{T ′ ∈ ThL′ | h−1(T ′) =
T }. It is clear that H is a complement of h. Furthermore, it is easy to see that
H(T ) is the deductive closure of h(T ) in L′.

Thus, the map T �→ h(T )�L′ is always a complement of h : L → L′, if h is
a normal logic map. We may call this complement the closure complement of h.
Though, this is not always the complement we are looking for. In order to preserve
the topological structure of the logic we wish that a complement H of h maps a
maximal (or prime) theory of L to a maximal (prime) theory of L′. We leave it as
a claim here that this is, in general, not the case for the closure complement.

If h : ExprL → ExprL′ is a normal logic map, then for each T ∈ ThL there is
some T ′ ∈ ThL′ such that h−1(T ′) = T . A special case is given if for each T ∈ ThL
there exists exactly one T ′ ∈ ThL′ with this property:

Definition 3.10. We say that a logic map h : ExprL → ExprL′ is stationary, if
h−1(T ′

1) = h−1(T ′
2) implies that T ′

1 = T ′
2, for any T ′

1, T
′
2 ∈ ThL′ .

Example 7. Assume the special case ExprL ⊆ ExprL′ and the identity map
i : ExprL → ExprL′ , a �→ a, is a normal, stationary logic map from L =
(ExprL, ThL) to L′ = (ExprL′ , ThL′). Then each theory T ∈ ThL has exactly
one extension in logic L′ to a theory T ′ ∈ ThL′ . (Note that i−1(T ′) = T iff
T = T ′ ∩ ExprL.) Such a logic map is given in Example 6.
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Proposition 3.11. A normal and stationary logic map has exactly one comlement.
The complement is bijective.

Proof. Let h : ExprL → ExprL′ be a normal and stationary logic map from L
to L′. By Theorem 3.8, h has a complement H . Let H ′ be also a complement
of h. Then for all T ∈ ThL, h−1(H(T )) = T = h−1(H ′(T )). Since h is stationary,
H(T ) = H ′(T ), for all L-theories T . Hence, H = H ′.

In order to show that the complement H is bijective, suppose that T ′ ∈ ThL′ .
Then h−1(T ′) = T ∈ ThL. Let H(T ) = T ′′. Since h−1(T ′′) = h−1(H(T )) = T =
h−1(T ′), it follows that T ′ = T ′′. Hence, H(T ) = T ′ and H is surjective. H is
injective by Theorem 3.8. �
Proposition 3.12. Suppose that L and L′ are abstract logics. Let h : ExprL →
ExprL′ and H : ThL → ThL′ be functions. Then the following conditions are
equivalent:

(i) H is a complement of h.
(ii) H−1(h(a)∗L′ ) = a∗L , for all a ∈ ExprL.
(iii) a ∈ T ⇐⇒ h(a) ∈ H(T ), for all a ∈ ExprL and all T ∈ ThL.
(iv) T �L a⇐⇒ H(T ) �L′ h(a), for all a ∈ ExprL and all T ∈ ThL.

Proof. Suppose that (i) holds and let a ∈ ExprL. Let T ∈ H−1(h(a)∗L′ ). Then
H(T ) ∈ h(a)∗L′ , thus h(a) ∈ H(T ). It follows that a ∈ h−1(H(T )) = T , hence
T ∈ a∗L . Now suppose T ∈ a∗L . Then a ∈ T and h(a) ∈ h(T ) ⊆ H(T ), since
h−1(H(T )) = T . Thus, H(T ) ∈ h(a)∗L′ and T ∈ H−1(h(a)∗L′ ). We have proved
H−1(h(a)∗L′ ) = a∗L .

The proof of the implications (ii)→(iii)→(iv) is straightforeward. Notice that
(iii) and (iv) are, by definition, in fact the same condition (we interprete in (iv)
theories as abstract models, see Remark 2.3).

Finally, assume (iv). (iv) is by definition equivalent with (iii). We show that
(iii) implies (i): Let T ∈ ThL. By (iii) we have a ∈ h−1(H(T )) iff h(a) ∈ H(T ) iff
a ∈ T . That is, (i) holds. �
Remark 3.13. Let h : ExprL → ExprL′ be a normal logic map and H a comple-
ment of h. Suppose that ∅ ∈ ThL. It seems that the preceding results do not imply
in general that H(∅) = ∅. However, it follows that there is no a ∈ ExprL such
that h(a) ∈ H(∅) ∈ ThL′. For otherwise there would be an a ∈ ExprL such that
H(∅) ∈ h(a)∗L′ . By (ii) of the preceding Proposition, ∅ ∈ H−1(h(a)∗L′ ) = a∗L ,
that is, a ∈ ∅, a contradiction.

Proposition 3.14. Let h : ExprL → ExprL′ be a normal logic map and H a
complement of h.

(i) H−1(h(a)∗L′ ) = a∗L = h−1(h(a)∗L′ ), for all a ∈ ExprL.
(ii) H(a∗L) ⊆ h(a)∗L′ , for all a ∈ ExprL. If h is stationary, then H(a∗L) =

h(a)∗L′ , for all a ∈ ExprL.
(iii) H−1(a′∗L′ ) ⊆ h−1(a′∗L′ ), for all a′ ∈ ExprL′ . If h is stationary, then

H−1(a′∗L′ ) = h−1(a′∗L′ ), for all a′ ∈ ExprL′ .
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Proof. (i) This follows from Proposition 3.12 and Lemma 3.5.
(ii) H(a∗L′ ) ⊆ h(a)∗L′ follows from (ii) of the preceding proposition. Now

let h be stationary and let T ′ ∈ h(a)∗L′ . Then h−1(T ′) = T , for some T ∈ a∗L .
Suppose that H(T ) = T ′′. Then h−1(T ′) = T = h−1(T ′′). Since h is stationary, T ′

and T ′′ must be equal. Thus, H(T ) = T ′ and the assertion follows.
(iii) The first assertion is easy to prove. Now let h be stationary. It remains

to prove the inclusion “⊇”. Let T ∈ h−1(a′∗L′ ). Then there is some T ′ ∈ a′∗L′

such that h−1(T ′) = T . Since h is stationary, it follows that H(T ) = T ′. Hence,
T ∈ H−1(a′∗L′ ). �

Corollary 3.15. Let h be a normal logic map from L to L′ and let H be a comple-
ment of h. Then holds the following:

(i) If h is L-surjective, then H is a continuous map from the space of L to the
space of L′.

(ii) If h is stationary, then H is an open map from the space of L to the space
of L′.

Proof. (i) We must show that H−1 maps basic opens of L′ to open sets of L.
The basic opens of L′ are given by a

′∗L′
1 ∩ · · · ∩ a′∗L′

n , for sequences a′1, . . . , a
′
n ∈

ExprL′ , n ≥ 1, (and {∅}, if the empty set is a theory). It is easy to see that
H−1(a′∗L′

1 ∩ · · · ∩ a
′∗L′
n ) = H−1(a′∗L′

1 ) ∩ · · · ∩ H−1(a′∗L′
n ) holds, for any such a

sequence. It follows that in order to prove that H is continuous it suffices to show
that

• H−1(a′∗L′ ) is an open set, for each a′ ∈ ExprL′ , and
• if ∅ ∈ ThL′ , then H−1({∅}) is an open set.

The first item follows immediately from (i) of the preceding proposition. Suppose
that ∅ ∈ ThL′ . Then h−1(∅) = ∅ ∈ ThL, since h is a logic map. By the preceding
remark, there is no a ∈ ExprL such that h(a) ∈ H(∅) ∈ ThL′ . Since h is L-
surjective, it follows that H(∅) = ∅. That is, H−1({∅}) = {∅}, which is an open
set in the space of L.

(ii) By Theorem 3.8,H is an injective function. It follows that H(a∗L∩b∗L) =
H(a∗L) ∩H(b∗L), for any a, b ∈ ExprL. Therefore, in order to show that H is an
open map, it suffices to prove that H(a∗L) is an open, for each a ∈ ExprL. This
follows from (ii) of the preceding proposition. �

Remark 3.16. We will see later (by giving counter examples) that H (in the above
corollary) is in general not a continuous function, if h is a normal stationary logic
map but not L-surjective. However, H will be a homeomorphism, if h is a normal
stationary logic homomorphism (see Proposition 4.6), even if not L-surjective.

Corollary 3.17. If h : L → L′ is a normal and stationary logic map, then the
(unique) complement H of h is a bijective open function from the space of L to
the space of L′.

Lemma 3.18. If h : L → L′ is an L-surjective logic map, then h is stationary.
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Proof. Let T ′, T ′′ ∈ ThL′ such that h−1(T ′) = h−1(T ′′) := T ∈ ThL. Then
h(T ) ⊆ T ′, T ′′. Since h is L-surjective, for each a′ ∈ T ′ there is some a ∈ ExprL
such that h(a) =L′ a′. T ′ is deductively closed and it follows that h(a) ∈ T ′, thus
a ∈ T and h(a) ∈ T ′′. That is, a′ ∈ T ′′. We have proved that T ′ ⊆ T ′′. Similarly,
one shows T ′′ ⊆ T ′. Hence, T ′ = T ′′ and h is stationary. �
Proposition 3.19. If h : L → L′ is a normal logic map, then

A �L a⇐⇒ h(A) �L′ h(a) ,

for all A ∪ {a} ⊆ ExprL.

Proof. By Theorem 3.8, h has a complement, say H . The left to right implication
we have already poved in Proposition 3.2. In order to prove the other implication,
we consider theories as abstract models. So suppose h(A) �L′ h(a) and let T be
any L-theory such that T �L A. We must show that T �L a. By Proposition 3.12,
H(T ) �L′ h(A). By hypothesis,H(T ) �L′ h(a). Again by Proposition 3.12, T �L a.
Since T was an arbitrary theory, the assertion follows. �
Definition 3.20. Let h : ExprL → ExprL′ be a logic map. We define a function
G : ThL′ → ThL by

G(T ′) = T :⇐⇒ h−1(T ′) = T .

The function G is called the inverse complement of the logic map h.

Since h is a logic map, G is well-defined. Note that G is uniquely determined.
The inverse complement G exists for any logic map (in contrast to complements,
which exist only for normal logic maps). It is a continuous map between the re-
spective spaces:

Proposition 3.21. The inverse complement G of a logic map h : ExprL → ExprL′

is a continuous map form the space of L′ to the space of L.

Proof. G is continuous if G−1 sends basic open sets from the space of L to open
sets of the space of L′. In order to see this we show that G−1(a∗L

1 ∩ · · · ∩ a∗L
n ) =

h(a1)∗L′ ∩· · ·∩h(an)∗L , for any sequence a1, . . . , an ∈ ExprL (recall that the basic
opens �= {∅} are exactly of the form a∗L

1 ∩ · · · a∗L
n ). If ∅ ∈ ThL, then {∅} is a

basic open and it is clear by the definition of G that G−1({∅}) = {∅}, which is
again a basic open of the space of L′. Since G−1(a∗L ∩b∗L) = G−1(a∗L)∩G−1(b∗L)
for all a, b ∈ ExprL, it is sufficient to show that G satisfies the following, for each
a ∈ ExprL: G−1(a∗L) = h(a)∗L′ :
We have T ′ ∈ G−1(a∗L) iff G(T ′) = h−1(T ′) ∈ a∗L iff a ∈ h−1(T ′) iff h(a) ∈ T ′ iff
T ′ ∈ h(a)∗L′ . �

The next observation follows readily from the definitions:

Lemma 3.22. Let h : ExprL → ExprL′ be a logic map and let G be the inverse
complement of h. h is normal if and only if G is surjective. h is stationary if and
only if G is injective. Thus, G is a bijection iff h is a normal and stationary logic
map. If G is a bijection, then G = H−1, where H is the (unique) complement of h.
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The last assertion of the previous lemma says that the inverse complement G
of a logic map h is in fact the inverse function of the (unique) complement H of h
iff h is normal and stationary.

The following result connects our approach to the theory of Instituitons
(see [5]). It follows easily from the definitions:

Corollary 3.23. Let h : ExprL → ExprL′ be a logic map and let G be the inverse
complement of h. Then for all T ′ ∈ ThL′ and for all a ∈ ExprL it holds the
following:

h(a) ∈ T ′ ⇐⇒ a ∈ G(T ′) .
If we write this condition interpreting theories as abstract models, we get:

T ′ �L′ h(a) ⇐⇒ G(T ′) �L a .

The second condition in the above Corollary 3.23 has the same form as the
Satisfaction Axiom of Institutions (see for instance [5]). It may be interesting to
study in future works in detail the relationships between our approach to abstract
logics and the concept of Institution.

4. Logic homomorphisms

In this chapter we study particular logic maps, called logic homomorphisms, that
preserve more topological structure than general logic maps: we already know
that the inverse complement of a logic map is continuous. In the following we will
see that the inverse complement of a logic homomorphism is also an open map,
besides beeing continuous. Furthermore, if a logic homomorphism h is normal
and stationary, then its complement H and its inverse complement G = H−1

turn out to be homeomorphisms. In this sense, a normal and stationary logic
homomorphism establishes equivalence of two logics. This could be a reason to call
such maps logic isomorphisms. Though, one requires from isomorphisms certain
nice properties: they should be preserved under composition and inverse. However,
a normal and stationary logic homomorphism is in general not surjective. So what
is here an inverse or a composition? We will see that our notion of L-surjectivity
(which is not too strong) helps to solve the problem. Then an L-surjective, normal
(stationary) logic homomorphism defines a logic isomorphism, i.e., our concept of
equivalence of logics.

Definition 4.1. Let L and L′ be abstract logics. A function h : ExprL → ExprL′

is called a logic homomorphism from L to L′, if for every τ ′ ∈ BL′ there exists
some set Aτ ′ ⊆ BL such that the following holds:

h−1(τ ′) = ∪
{
τ | τ ∈ Aτ ′

}
.

In other words, h is a logic homomorphism, if the inverse of h sends open sets of
the space of L′ to open sets of the space of L.10

10Notice that it is enough to require this property for basic opens of the space of L′. Therefore,
in the defining condition of a logic homomorphism, we only consider basic opens τ ′ ∈ BL′ .
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Remark 4.2. Suppose the following: the logics L,L′ have conjunction and if ∅ ∈
ThL ∩ ThL′ , then L,L′ have some inconsistent formula, respectively. Then, by
Proposition 2.9, BL = SL and BL′ = SL′ . Thus, if for each a′ ∈ ExprL′ there is
some Aa′ ⊆ ExprL such that

h−1(a′∗L′ ) = ∪
{
a∗L | a′ ∈ Aa′

}
,

then h is a logic homomorphism from L to L′.

Proposition 4.3. Logic homomorphisms are logic maps.

Proof. Let h : L → L′ be a logic homomorphism. We must show that {h−1(T ′) |
T ′ ∈ ThL′} ⊆ ThL. Let T ′ ∈ ThL′ . First, we suppose that T ′ �= ∅. Then for
any a′ ∈ T ′, T ′ ∈ a′∗L′ . Hence, h−1(T ′) ∈ h−1(a′∗L′ ) = ∪{τ | τ ∈ Aa′}, for some
Aa′ ⊆ BL. Then there is some τ ∈ Aa′ , such that h−1(T ′) ∈ τ . Thus, h−1(T ′)
must be a theory in ThL.

Now let us consider the case T ′ = ∅. Clearly, h−1(T ′) = h−1(∅) = ∅. Thus,
we must show that the empty set is a theory of logic L, ∅ ∈ ThL. We argue in
the following way: By the second defining axiom of abstract logics, ∅ = ∩T ′, for
some T ′ ⊆ ThL′ such that ∅ /∈ T ′. Then ∅ = h−1(∅) = h−1(∩T ′) = ∩h−1(T ′) =
∩T ∈ ThL, since T = {h−1(T ′′) | T ′′ ∈ T ′} is, by the preceding case, a set of
L-theories. �

Definition 4.4. A logic homomorphism is called normal (stationary), if it is normal
(stationary) as a logic map, respectively.

Corollary 4.5. Let L,L′ be logics and h : ExprL → ExprL′ an L-surjective func-
tion. If for each a′ ∈ ExprL′ there is some Aa′ ⊆ BL such that

h−1(a′∗L′ ) = ∪
{
τ | τ ∈ Aa′

}
holds, then h is a logic homomorphism from L to L′.

Proof. If h satisfies the above equation, then one shows in a similar way as in the
proof of Proposition 4.3 that h is a logic map. By Lemma 3.18, h is stationary.
Now it is easy to see that h−1(a′∗L′ ∩ b′∗L′ ) = h−1(a′∗L′ ) ∩ h−1(b′∗L′ ), for any
a′, b′ ∈ ExprL′ . From this it follows that h is a logic homomorphism. �

Logic homomorphisms have the nice property that under certain conditions
they lead directly to continuous and open maps between the respective topological
spaces:

Proposition 4.6. (i) Suppose that L,L′ are abstract logics and L′ has conjunc-
tion. Let h : L → L′ be a logic homomorphism. Then the inverse complement
G of h is an open and continuous map from the space of L′ to the space of L.

(ii) Now suppose that L,L′ are arbitrary abstract logics and h : L → L′ is a
normal and stationary logic homomorphism. Then the (unique) complement
H of h and the inverse complement G = H−1 are homeomorphisms between
the respective spaces.
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Proof. (i) We already know that G is continuous (Proposition 3.21). Since L′ has
conjunction, the basic opens are given by a′∗L′ , for a′ ∈ ExprL′ (and {∅}, if the
empty set is a theory). It is easy to verify that G(a′∗L′ ) = h−1(a′∗L′ ) holds, for all
a′ ∈ ExprL′ . Since h is a logic homomorphism, G is an open map.

(ii) Now let L,L′ be arbitrary logics and suppose that the logic homomor-
phism h is normal and stationary. Then Lemma 3.22 says that the inverse com-
plement G = H−1 is bijective, where H is the unique complement of h. Fur-
thermore, by Proposition 3.21, we know that G is continuous. From Proposi-
tion 3.14 (iii) it follows that H is continuous, since h is a logic homomorphism
and H−1(a′∗L′ ∩ b′∗L′ ) = H−1(a′∗L′ ) ∩H−1(b′∗L′ ), for any a′, b′ ∈ ExprL′ . Hence,
G = H−1 is also open, thus, an homeomorphism. �

Before we give an example of a logic homomorphism, let us show that this
concept is strictly stronger than logic maps: logic homomorphisms preserve topo-
logical structure, this is in general not the case for logic maps (or translations). It
follows an example of a logic map which is not a logic homomorphism:

Example 8. Let us consider the first order logics L and L′ (over an given finite
signature Σ) and the logic map i : L �→ L′ of Example 6. In L′ the class of
all infinite Σ-structures is axiomatizable by a single formula ϕ (take ϕ as the
infinite conjunction of the formulas ϕn, n ≤ ω, expressing that there are at least n
elements). We prove that there is no such formula in L. Towards a contradiction,
suppose that ψ is an L-expression that holds in all infinite L-structures. Then{

ϕn | n ≤ ω
}

�L ψ .

Since L is compact, there is some n′ < ω and{
ϕn | n ≤ n′} �L ψ .

This means that ψ also holds in all structures with at least n′ elements, in par-
ticular, ψ holds in (almost all) finite structures. Thus, ψ can not axiomatize the
class of all infinite structures. In fact, similarly one shows that no class of infinite
structures is axiomatizable by a single formula in L.

Now we conclude that i−1(ϕMThL′ ) = {i−1(T ′) | T ′ ∈ ϕMThL′ } = {T ∈
MThL | T is the theory of an infinite model } can not be an open set of the topo-
logical subspace induced by MThL ⊆ ThL: it can not be a basic open ψMThL ,
since we have already shown that such a ψ does not exist. Neither it can be
an open of the form ∪{ψMThL | ψ ∈ X}, for some X ⊆ ExprL. Otherwise,
each ψ would axiomatize a class of infinite structures, which is also impossible
by a similar argumentation as above. We show that i−1(ϕ∗L′ ) is not an open in
the space of L. Towards a contradiction suppose that i−1(ϕ∗L′ ) = O is open.
Then O∩MThL = i−1(ϕMThL′ ) is an open in the subspace induced by MThL, a
contradiction. Hence, i : L → L′ is a logic map but not a logic homomorphism.

The absence of a logic homomorphism in the above example expresses the
fact that L′ has a strictly stronger expressive power that L.
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As we shall see later, the following definition yields examples of normal,
stationary logic homomorphisms:

Definition 4.7. A logic homomorphism h : L → L′ is called strong, if for all
a′ ∈ ExprL′ the following holds:

h−1(a′∗L′ ) = ∪
{
A∗L | A ⊆ ExprL is finite and h(A)∗L′ ⊆ a′∗L′ } .

Remark 4.8. Notice that the defining condition of a strong logic homomorphism
is equivalent to the condition

h−1(a′∗L′ ) = ∪
{
A∗L | A is finite and h(A) �L′ a′

}
.

IfA = {a1, . . . , an}, then A∗L = a∗L
1 ∩· · ·∩a∗L

n . Furthermore, we will see that strong
logic homomorphisms are stationary. From this it follows that h−1(a′∗L′ ∩ b′∗L′ ) =
h−1(a′∗L′ )∩ h−1(b′∗L′ ), for any a′, b′ ∈ ExprL′ . Thus, the inverse of a strong logic
homomorphism h sends arbitrary basic open sets to open sets.

Proposition 4.9. Strong logic homomorphisms are normal and stationary.

Proof. Let h : L → L′ be a strong logic homomorphism. For a ∈ ExprL we
have a∗L ⊆ ∪{A∗L | A is finite and h(A)∗L′ ⊆ h(a)∗L′ } = h−1(h(a)∗L′ ). Now,
from Proposition 3.2 (iv) and Lemma 3.5 it follows that h is normal. In order to
prove that h is stationary suppose that T ′

1, T
′
2 ∈ ThL′ and h−1(T ′

1) = h−1(T ′
2).

Let a′ ∈ T ′
1, that is, T ′

1 ∈ a′∗L′ . Then T := h−1(T ′
1) ∈ h−1(a′∗L′ ) = ∪{A∗L |

A is finite and h(A) �L′ a′}. Thus, T ∈ A∗L , for some finite A with h(A) �L′ a′.
Since A ⊆ T , h(A) ⊆ h(T ) ⊆ T ′

2. T ′
2 is deductively closed and it follows that

a′ ∈ T ′
2. Hence, T ′

1 ⊆ T ′
2. The inclusion T ′

2 ⊆ T ′
1 follows in the same way. �

The next result follows immediately from Propositions 4.6 and 4.9:

Corollary 4.10. If there is a strong logic homomorphism from L to L′, then the
underlying topological spaces are homeomorphic.

An important concept of relationship between logics is the concept of exten-
sion. Extensions of logics are a rather common phenomenon in practice. Simple
examples are given in first order logic by adding new non-logical symbols to a
given language. A suitable interpretation of the so extended language yields an
“extension”. On the other hand, one also gets extensions by extending the logi-
cal part of the language. Such cases one can find in some of our examples given
above. In order to provide a precise formulation of this intuitive concept we adapt
a definition of [8] (page 37) to our approach.

Definition 4.11. Suppose that L,L′ are abstract logics with ExprL ⊆ ExprL′ . L′

is called an extension of L, if ThL = {T ′ ∩ExprL | T ′ ∈ ThL′}. We write L ≤ L′.
L′ is a definable extension of L, if L ≤ L′ and for each a′ ∈ ExprL′ there is some
a ∈ ExprL such that a′ =L′ a. We write L ≤def L′.

We are able to prove the following connection between extensions and our
logic maps:



Vol. 1 (2007) Abstract Logics, Logic Maps, and Logic Homomorphisms 267

Lemma 4.12. Let L,L′ be abstract logics with ExprL ⊆ ExprL′ .

(i) The identity map i : ExprL → ExprL′ , a �→ a, is a normal logic map if and
only if L ≤ L′.

(ii) The identity map i : ExprL → ExprL′ is a normal, L-surjective strong logic
homomorphism if and only if L ≤def L′.

Proof. (i) Note that for T ′ ∈ ThL′, i−1(T ′) = T ′ ∩ ExprL. Now (i) follows easily
from the definitions.

(ii) Suppose that the identity map is a normal, L-surjective strong logic
homomorphism. By (i), L ≤ L′. By L-surjectivity of i, L ≤def L′.

Now let L ≤def L′. By (i), i is a normal logic map. i is also L-surjective,
since the extension is definable. We show that i is a logic homomorphism. Let
a′ ∈ ExprL′ . There is some a ∈ ExprL such that a =L′ a′. Then i−1(a′∗L′ ) =
i−1(a∗L′ ) = a∗L . Hence, i is a logic homomorphism. In order to show that i
is a strong logic homomorphism it suffices to prove that a∗L = ∪{A∗L | A ⊆
ExprL is finite and i(A)∗L′ ⊆ a′∗L′}. The inclusion “ ⊆′′ is evident, since i(a)∗L′ =
a∗L′ = a′∗L′ . Assume that A ⊆ ExprL is finite and i(A)∗L′ ⊆ a′∗L′ = a∗L′ . Then
A∗L = A∗L′ ∩ ThL ⊆ a∗L′ ∩ ThL = a∗L , and the inclusion “ ⊇′′ follows. �

Theorem 4.13. Suppose that L,L′ are abstract logics. Let h : ExprL → ExprL′ be
a function. The following statements are equivalent:

(i) h is an L-surjective normal logic map.
(ii) h is an L-surjective normal logic homomorphism.
(iii) h is an L-surjective strong logic homomorphism.
(iv) h is an L-surjective normal and stationary logic map.

Proof. (i)→(ii) Suppose that h is a normal and L-surjective logic map. Let a′ ∈
ExprL′ . Since h is L-surjective, there is some a ∈ ExprL such that h(a) =L′ a′.
(Note that a′∗L′ = h(a)∗L′ .) Then from Proposition 3.14 (i) it follows that
h−1(a′∗L′ ) = a∗L . In particular, h satisfies the equation of Corollary 4.5 (put
Aa′ := {a∗L}). Then this Corollary says that h is a logic homomorphism.

(ii)→(iii): Now suppose that h is a normal and L-surjective logic homomor-
phism. Let a′ ∈ ExprL′ . In the same way as above we get h−1(a′∗L′ ) = a∗L ,
where h(a) =L′ a′. We show that h is also strong: It suffices to prove that
a∗L = ∪{A∗L | A is finite and h(A)∗L′ ⊆ h(a)∗L′ }. Then, by definition, h must
be a strong logic homomorphism.

Cearly, a∗L ∈ {A∗L | A is finite and h(A)∗L′ ⊆ h(a)∗L′ } (consider A = {a}).
Now suppose T ∈ ∪{A∗L | A is finite and h(A)∗L′ ⊆ h(a)∗L′ }. Then T ∈ A∗L ,
for some finite A such that h(A)∗L′ ⊆ h(a)∗L′ . Since h is normal, by Lemma 3.5
we get A∗L = h−1(h(A)∗L′ ) ⊆ h−1(h(a)∗L′ ) = a∗L . Hence, A∗L ⊆ a∗L , and the
assertion follows.

The implication (iii)→(iv) follows from the previous results. Finally, (iv)→(i)
is trivial. �
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Definition 4.14. Let L,L′ be abstract logics. A function h : ExprL → ExprL′

is called a logic isomorphism, if h satisfies one of the equivalent conditions of
Theorem 4.13. If there is some logic isomorphism from L to L′, then we say that
the logics L and L′ are isomorphic.

As a consequence of Lemma 4.12 we obtain that all definable extensions of
some abstract logic L are isomorphic to L. In other words, an abstract logic has
up to isomorphism only one definable extension.

We give an example of a strong logic homomorphism which is not an isomor-
phism. It is an adaption of an example from [4].

Example 9. We return to the logics L,L′ of our Examples 8 and 6. We have seen
that the identity function i : ExprL → ExprL′ is a logic map but not a logic
homomorphism. In these preceding examples L and L′ were logics generated by
the class of all Σ-structure (for some given finite first order signature Σ.) Here we
assume the respective sublogics (see Definition 2.1) which are generated by the
class of all finite Σ-structures. That is, we assume that L is the abstract logic
with classical first order expressions over Σ generated by all finite Σ-structures,
and L′ is the abstract logic with Lω1ω-expressions over Σ generated by all finite
Σ-structures.

It is well-known that every finite model A is characterizable – up to ismor-
phism - by a single first order formula, that is, by a formula ϕ ∈ ExprL.11 This
formula ϕ isolates the theory T of the finite model A. That is, �L ϕ → ψ holds
iff ψ ∈ T . In other words, for each complete (=maximal) theory T ∈MThL there
is a formula ϕ ∈ T such that ϕMThL = {T } holds: T is an isolated point in the
topological subspace induced by MThL ⊆ ThL. It follows that ϕ∗L = {T }, that
is, ϕ isolates T also in the space of L. For every complete theory T of logic L and
every complete theory T ′ of logic L′ such that T = T ′ ∩ ExprL it is easy to see
that ϕ ∈ ExprL isolates T in the space of L iff ϕ isolates T ′ in the space of L′.
Then for every ϕ′ ∈ ExprL′ it holds the following:

i−1(ϕ′MThL′ ) =
{
i−1(T ′) | ϕ′ ∈ T ′ ∈MThL′

}
=

{
T ′ ∩ ExprL | ϕ′ ∈ T ′ ∈MThL′

}
= ∪

{
ψMThL | ψ ∈ ExprL isolates some T ′ ∈ ϕ′∗L′ }

(∗)
= ∪

{
ψMThL | i(ψ) �L′ ϕ′}

= ∪
{
ψMThL | i(ψ)MThL′ ⊆ ϕ′MThL′

}
.

We show the equation (*): Let T ∈ ∪{ψMThL | ψ ∈ ExprL isolates some T ′ ∈
ϕ′∗L′ }. Then T ∈ ψMThL for some ψ that isolates some T ′ ∈ ϕ′∗L′ . Thus, ψ also
isolates T ⊆ T ′. It is also clear that i(ψ) = ψ �L′ ϕ′, thus the left-to-right-
implication holds. Now suppose T ∈ ∪{ψMThL | i(ψ) �L′ ϕ′}. That is, there
is some ψ ∈ ExprL such that ψ ∈ T and ψ �L′ ϕ′. Consider T ′ ∈ MThL′ with

11The isomorphism type of a finite model A is uniquely given by the diagram of A, which is
finitely axiomatizable, i.e., by a single formula.
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T ⊆ T ′ (T ′ is the complete L′-theory of A, where A is a model of T in L). ψ �L′ ϕ′

implies that ϕ′ ∈ T ′. There is some χ ∈ ExprL∩T ′ which isolates T ′ in L′. Then χ
also isolates T in L. Since T ′ ∈ ϕ′∗L′ , the implication from right to left follows.

Now it follows easily i−1(ϕ′∗L′ ) = ∪{ψ∗L | i(ψ)∗L′ ⊆ ϕ′∗L′ }. Thus, i is a
strong logic homomorphism. However, i is not L-surjective: For example, if Σ is
the language of graphs, then connectivity of (finite) graphs is axiomatizable by
a single L′-sentence.12 This is not possible by an L-sentence. Therefore, the two
logics can not be isomorphic.

Let us summarize:
• The identity map i is a strong logic homomorphism from L to L′. By Propo-

sition 4.9, i is also normal and stationary.
• i is not a logic isomorphism, since i is not L-surjective.
• By Corollary 4.10, the underlying spaces are homeomorphic. More precisely,

let I be the (unique) complement of i. I is bijective. By Proposition 4.6, I is
an homeomorphism from the space of ThL to the space of ThL′.

This example shows in particular that the underlying topological spaces of
two logics L and L′ may be homeomorphic although L and L′ are not isomor-
phic. Thus, the existence of a logic isomorhism is a sufficient but not a necessary
condition for the existence of an homeomorphism between the respective spaces.

Usually, the notion “isomorphic” gives rise to an equivalence relation. This
means in our case that if h : L → L′ is a logic isomorphism, we expect that there
exists also a logic isomorphism from L′ to L. Furthermore, if h1 : L → L′ and
h2 : L′ → L′′ are logic isomorphisms, then there should exist a logic isomorphism
h3 : L → L′′. Indeed, the following results guarantee that this is true.

Theorem 4.15. Let h : L → L′ be a logic isomorphism. Then there exists a logic
isomorphism h′ : L′ → L such that for all a ∈ ExprL and all a′ ∈ ExprL′ the
following holds:

(i) h′(h(a)) =L a, and
(ii) h(h′(a′)) =L′ a′.

Proof. Since h is L-surjective, we may choose for each a′ ∈ ExprL′ some a ∈ ExprL
such that h(a) =L′ a′. Now we define h′ : ExprL′ → ExprL by a′ �→ a.

In order to prove that h′ is a logic isomorphism, we show that h′ is a normal
and L-surjective logic map.

Suppose a′ �=L′ b′, h−1(a′∗L′ ) = a∗L and h−1(b′∗L′ ) = b∗L . That is, h′(a′) =L
a and h′(b′) =L b. Since a′ �=L′ b′, there is some theory T ′ ∈ ThL′ such that a′ ∈ T ′

and b′ /∈ T ′. Then h−1(T ′) = T ∈ ThL and a ∈ T and b /∈ T . Therefore, a �=L b.
Thus, h′ is an L-injective function.

We show that (i) and (ii) hold: Let a ∈ ExprL and suppose h′(h(a)) = b
for some b ∈ ExprL. By definition of h′, h(b) =L′ h(a). Since h is L-injective,

12For n < ω let ϕn be a formula expressing that x and y are connected by a chain of n elements.
Now consider the sentence ∀x∀y

∨
{ϕn | n < ω}.
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we get a =L b, hence h′(h(a)) =L a and (i) holds. Let a′ ∈ ExprL′ and sup-
pose h(h′(a′)) = b′ ∈ ExprL′ . Let h′(b′) = c. By definition, h(c) =L′ b′. Thus,
h(h′(a′)) =L′ h(c) and L-injectivity of h yields h′(a′) =L c = h′(b′). Then a′ =L′ b′,
since h′ is L-injective. Hence, (ii) holds.

From (i) it follows that h′ is L-surjective.
Next, we prove that h′ is a logic map. That is, we show that for any T ∈ ThL,

h′−1(T ) ∈ ThL′. For any a ∈ ExprL we have h′−1(a) = {a′ | h′(a′) = a} = {a′ |
a′ =L′ h(a)}. Hence, h′−1(T ) = {a′ | h′(a′) ∈ T } = {a′ | a′ =L′ b′, b′ ∈ h(T )}.
Since h is normal, h(T ) ⊆ T ′ for some T ′ ∈ ThL′. Thus, {a′ | a′ =L′ b′, b′ ∈ h(T )}
is consistent. Suppose {a′ | a′ =L′ b′, b′ ∈ h(T )} �L′ c′. It is easy to see that this
implies {a′ | a′ ∈ h(T )} �L′ c′. There is some d′ =L′ c′ such that h(d) = d′ for
some d ∈ ExprL. Hence, h(T ) �L′ d′. By Proposition 3.19, T �L d. Hence, d ∈ T
and therefore d′ ∈ h(T ) and c′ ∈ {a′ | a′ =L′ b′, b′ ∈ h(T )}. We have shown that
h′−1(T ) = {a′ | a′ =L′ b′, b′ ∈ h(T )} is consistent and deductively closed, that is,
it is a theory. Thus, h′ is a logic map.

Finally, let us show that h′ is normal. We have the following for each theory
T ′ ∈ ThL′:

h′(T ′) =
{
h′(a′) | a′ ∈ T ′}

⊆
{
a | h(a) =L′ a′, a′ ∈ T ′}

=
{
a | h(a) ∈ T ′}

= h−1(T ′) ∈ ThL .

It follows that for each T ′ ∈ ThL′ there is some T ∈ ThL such that h′(T ′) ⊆ T .
We may assume that T is the smallest theory such that h′(T ′) ⊆ T (by tak-
ing intersections of theories, i.e., the deductive closure of h′(T ′)). We prove that
h′−1(T ) = T ′ holds. We know that T ′ ⊆ h′−1(T ). Now let b′ ∈ h′−1(T )�T ′. Thus,
h′(b′) ∈ T . Since T is the smallest theory containing h′(T ′), it follows that every
theory that contains h′(T ′) contains also h′(b′). That is, h′(T ′) �L h′(b′). Since
h is a logic map, Proposition 3.2 yields h(h′(T ′)) �L′ h(h′(b′)). Hence, T ′ �L′ b′,
since h(h′(T ′)) ⊆ T ′, by (ii). Since T ′ is a theory, it is deductively closed. Thus,
b′ ∈ T ′ and h′−1(T ) = T ′.

We have proved that for each T ′ ∈ ThL′ there is some T ∈ ThL such that
h′(T ′) ⊆ T and h′−1(T ) = T ′. Summarizing, h′ : L′ → L is a normal L-surjective
logic map, i.e., a logic isomorphism. �

Theorem 4.16. If h1 : L → L′ and h2 : L′ → L′′ are logic isomorphisms, then
there exists a logic isomorphism h3 : L → L′′.

Proof. Suppose that the hypothesis holds. We define h3 : ExprL → ExprL′′ by
a �→ h2(h1(a)).

Let a′′ ∈ ExprL′′ . Since h1 and h2 are L-surjective, there are a′ ∈ ExprL′

and a ∈ ExprL such that h2(a′) =L′′ a′′ and h1(a) =L′ a′. Note that h1 and h2
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are normal. Then Proposition 3.5 yields

h−1
3 (a′′∗L′′ ) = h−1

1

(
h−1

2

(
h2(a′)∗L′′ ))

= h−1
1 (a′∗L′ )

= h−1
1

(
h1(a)∗L′

)
= a∗L .

Thus, h−1
3 (h3(a)∗L′′ ) = a∗L . Applying again Proposition 3.5 we obtain that h3 is

a normal L-surjective logic homomorphism, i.e., a logic isomorphism. �

Definition 4.17. Let L = (ExprL, ThL) be an abstract logic. Let ≡ be an equiv-
alence relation on ExprL that refines L-equivalence. We denote the equivalence
classes of ExprL modulo ≡ by [a]≡, for a ∈ ExprL. The set of all equivalence
classes is denoted by ExprL≡ . For each T ∈ ThL we write T≡ for the set {[a]≡ |
a ∈ T }. ThL≡ denotes the set {T≡ | T ∈ ThL}. Then the factor logic of L modulo
≡ is defined by L≡ = (ExprL≡ , ThL≡).

The notions of the above definition are well-defined:
(i) a ∈ T and a ≡ b implies b ∈ T , for all theories T and all expressions a, b.
(ii) (T1 ∩ T2)≡ = T1≡ ∩ T2≡, for all theories T1, T2 ∈ ThL.

The concept of factor logic provides particular examples of logic isomor-
phisms:

Proposition 4.18. Let L be an abstract logic and ≡ an equivalence relation that
refines L-equivalence. Then L and its factor logic L≡ are isomorphic.

Proof. We define h : ExprL → ExprL≡ by a �→ [a]≡. It is clear that h−1(T≡) = T
and h(T ) = T≡, for all T ∈ ThL. Thus, h is a normal and L-surjective logic map.
That is, it is a logic isomorphism. �

Let h : L → L′ be an L-injective and L-surjective logic map. Let ≡ be L-
equivalence and let ≡′ be L′-equivalence. Then it is easy to see that the function h′

defined by [a]≡ �→ [h(a)]≡′ is a bijective logic map from the factor logic L≡ to the
factor logic L′

≡′ . Furthermore, h′ normal if and only if h is normal.
Particular examples of equivalence relations that refine L-equivalence are

given by kernels of L-injective functions:
Let L,L′ be abstract logics and h : ExprL → ExprL′ an L-injective function.

PutKerh := {(a, b) ∈ ExprL | h(a) = h(b)}. It is clear thatKerh is an equivalence
relation. Suppose that a �=L b. Then h(a) �=L′ h(b), since h is L-injective. In
particular, h(a) �= h(b) and (a, b) /∈ Kerh. Hence, Kerh refines L-equivalence.

In a final example we show that the sentential part of each classical first
order logic (over some given signature Σ) is isomorphic to a sublogic of classical
propositional (sentential) logic:

Example 10. Let Σ be a fixed first order signature and let L = (ExprL, ThL) be
the classical first order logic over Σ as introduced in Example 1. We consider the set
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SenL ⊆ ExprL of sentences, that is, all first order formulas with no free variables.
Then let LS = (SenL, ThLS ), where ThLS = ThL ∩SenL. The logic LS considers
only the sentential part of classical first order logic over Σ. A atomic sentence is
either a formula with no variables or it is a sentence of the form (Qx.(ϕ)), where Q
is a quantifier and ϕ is a formula with at most x as free variable. Let ASenL be
the set of all atomic sentences. We assume a bijective function h : ASenL → P to
some infinite set of propositional variables P . h extends to a function h’ defined
on all sentences:

h′(ψ) = h(ψ), if ψ is atomic sentence

h′(ψ1 ∨ ψ2) = h′(ψ1) ∨ h′(ψ2)

h′(ψ1 ∧ ψ2) = h′(ψ1) ∧ h′(ψ2)

h′(ψ1 → ψ2) = h′(ψ1) → h′(ψ2)

h′(∼ ψ) =∼ h′(ψ) .

(Note that in order to simplify matters we do not distinguish sintactically between
the connectivities of the respective logics. We also write in the following h for h′.)

Let LP = (ExprLP , ThLP ) be the classical propositional logic over P . Then
one easily verifies that h : SenL → ExprLP is a bijective function. We show that h
is a logic isomorphism to a sublogic of LP .

For each maximal (=complete) theory T ∈ MThLS we define a variable
assignment vT : P → {0, 1} by vT (p) = 1, if h−1(p) ∈ T , and vT (p) = 0 otherwise.
This yields an embedding F : MThLS → 2P , given by T �→ vT . Clearly, F can not
be surjective.

Recall that the classical propositional logic LP is generated by the set of
all variable assignments 2P . Now we consider the (proper) propositional sublogic
L′ ⊂ LP which is generated by the set {vT | T ∈ MThLS} ⊂ 2P . Then it is easy
to see that h gives rise to a bijection T �→ T ′ between MThLS and MThL′ given
by ϕ ∈ T ⇐⇒ h(ϕ) ∈ T ′ ⇐⇒ vT (h(ϕ)) = 1 (note that a variable assignment vT

extends canonically to a function defined on all propositional formulas). That is,
MThL′ is given by the set of all sets of the form T ′ = {a ∈ ExprLP | vT (a) = 1},
for T ∈ MThLS . Therefore, h is also a bijection between ThLS and ThL′ . (More
exactly, this bijection is the unique complement H of h.) It is also clear that h is
a L-surjective normal logic map. Hence, h : LS → L′ is a logic isomorphism.

Finally, we show that our concept of a logic isomorphism between abstract
logics is - under certain restrictions - equivalent to the notion “equipollence of
logical systems” as introduced in [2]. This is expressed in our Theorem 4.16.

In order to show the equivalence of the two proposals, we need a unique
concept of “logic”. This is managed by restricting our notion of abstract logics to
the syntactical presuppositions required in [2]. More precisely, we assume here the
following:
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(i) The expressions of an abstract logic are constructed over a given signature Σ
as in Definition 2.1 of [2]. That is, the expressions are Σ-formulas in the sense
of [2].

(ii) Every logic map h : L → L′ is a uniform translation function which is induced
by a signature morphism h : Σ → Σ′ in the sense of [2], Definition 2.4.

Now, by Proposition 3.2 (ii) or Proposition 3.3, the consequence relation �L given
by an abstract logic L yields a “logical system” as defined in [2]. Furthermore,
any logic map h : L → L′ is also a logical system morphism, Definition 2.5 in [2].
On the other hand, a logical system can be transformed into an abstract logic by
taking the deductively closed sets as theories. A logical system morphism then
turns out to be a logic map, if the assumptions of Proposition 3.3 hold. In the case
of normal, L-surjective logic maps (i.e., logic isomorphisms), we are able to prove
the following:

Theorem 4.19. Let L and L′ be logics (that is, abstract logics obying the above
restrictions (i) and (ii), or logical systems, depending on the point of view). The
following conditions are equivalent:

• L and L′ are isomorphic abstract logics (i.e., there is a logic isomorphism).
• L and L′ are equipollent logical systems and [L viewed as an abstract logic is

singular if and only if L′ viewed as an abstract logic is singular].

Proof. First, we suppose that there is a logic isomorphism h : L → L′ from logic L
to logic L′. By Theorem 4.15, there is a logic isomorphism h′ : L′ → L, such that

(i) h′
(
h(a)

)
=L a, and

(ii) h(h′(a′)) =L′ a′

holds, for all a ∈ ExprL and all a′ ∈ ExprL′ . In particular, h and h′ are logic
maps and therefore logical system morphisms in the sense of [2]. Now it follows
immediately from Proposition 4.3 of [2] that L and L′ are equipollent.

Since h−1(ExprL′ ) = ExprL and h′−1(ExprL) = ExprL′ and h, h′ are logic
maps, we get: L is singular iff ExprL is a L-theory iff ExprL′ is a L′-theory iff L′

is singular. Hence, (ii) holds.
Now let us assume that L and L′ are equipollent and [L is singular if and only

if L′ is singular]. By Proposition 4.3 of [2], there are logical system morphisms h
and h′ satisfying (i) and (ii) above, for all a ∈ ExprL and all a′ ∈ ExprL′ . It follows
that h and h′ are L-surjective functions. Let a �=L b (a, b are not L-equivalent).
We may assume that a �L b. Then follows that h(a) �L′ h(b), since h and h′ are
logical system morphisms and (i) and (ii) hold. Thus, h is also L-injective. The
same holds for h′.

We show that h and h′ are logic maps. In order to see that h is a logic
map, we must prove that for each T ′ ∈ ThL′ , h−1(T ′) = T for some T ∈ ThL.
So let T ′ ∈ ThL′. In the same way as in the proof of Proposition 3.3 one shows
that h−1(T ′) =: T is deductively closed. If L,L′ are singular, then T is trivially
consistent, thus a theory. So let us suppose that L,L′ are regular. It remains to
prove that T is consistent. Since ExprL′ is not a theory, there is some expression
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b′ ∈ ExprL′ such that T ′
�L′ b′ (choose b′ ∈ ExprL′ �T ′). Since h is L-surjective,

h(T ) �L′ b′. Furthermore, there is some b ∈ ExprL such that h(b) =L′ b′. Thus,
h(T ) �L′ h(b). Since h is a logic system morphism (i.e., a uniform translation),
T �L b. Since L is regular, we conclude that T = h−1(T ′) is consistent. This shows
that h is a logic map.

We show that h is normal. Let T ∈ ThL and let T ′ be the deductive closure
of h(T ) in L′. Since h is L-injective, h−1(T ′) = T . Thus, it is sufficient to verify
that T ′ is consistent, i.e., a theory. We may assume that L,L′ are regular, otherwise
the assertion would be trivial. Since T is consistent (and L is regular), there is
some expression b ∈ ExprL such that T �L b (again, choose b ∈ ExprL � T ).
From (i) it follows that h(T ) �L′ h(b). Since T ′ is the deductive closure of h(T ),
we get T ′

�L′ h(b). Since L′ is regular, this means that T ′ is consistent.
Hence, h is a normal, L-surjective logic map. By Theorem 4.13, h is a logic

isomorphism. �

5. Conclusions

In order to establish the fundamentals of a general theory of logics we have based
our investigations on a concept of abstract logic which is general enough to be inde-
pendent of particular model-theoretic or proof-theoretic/syntactical assumptions.
On the other hand, it is still strong enough to allow a notion of consistency that
coincides with model-theoretic satisfaction and it yields a consequence relation
that satisfies the three well-known Tarksi-Axioms of monotonicity, extensiveness
and idempotence. We further develop the topological approach of [4] and are able
to generalize many results in this broader context. In particular, we develop a gen-
eral theory of maps between logics and study conditions under which these maps
give rise to continuous or open functions between the topological spaces induced
by the corresponding logics. We compare our logic maps to the well-known notion
of “translation” and discover connections between our approach and the category-
theoretic concept of institution. This latter result was already shown in a similar
form in the context of model-theoretic abstract logics [4]. It seems that abstract
logics may offer a local perspective whereas institutions take a global view on the
same things.

We have defined a notion of logic homomorphism as a function on the set
of expressions that works in the same way as a continuous map on the respective
topological theory space. Logic homomorphisms are logic maps that preserve more
topological structure and expressive power of a logic. This fact is illustrated by
Example 8. The study of logic homomorphisms culminates in the notion of logic
isomorphism, which in this paper is defined in a more flexible and general way
as in [4]. A logic isomorphism gives rise to an equivalence relation on the class
of abstract logics. We propose this notion as an adequate concept of equivalence
of abstract logics: since it induces a homeomorphism, it preserves all topological
properties of the theory space. Finally, we show that under certain restrictions our
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concept of logic isomorphism is equivalent to “equipollence of logical systems” [2].
The comparison of logic isomorphisms to the notion of equipollence is of particular
interest: whereas a logic isomorphism is a logic map that induces a homeomor-
phism of the corresponding topologies, equipollence between two logical systems
means that there is some uniform translation between the languages. This trans-
lation induces a lattice-isomorphism on the corresponding theory spaces, where
a theory space here is viewed as a complete lattice. The paper [2] concentrates
on equivalence of logical systems and does not elaborate a general theory of such
maps between logics that induce homomorphisms between the respective theory
spaces (considered as complete latices). It would be interesting to compare such a
lattice-based theory to our approach which is based on general topology.

In order to prove the equivalence of the two concepts “logic isomorphism”
and “equipollence” we were forced to adapt our notions of abstract logic and logic
maps to the corresponding, more restrictive, notions given in [2]. If we look at these
restrictions, in particular the syntactical/category-theoretical conditions and rules
of a uniform translation (a logical system morphism) of [2], then we may conclude
that our notion of equivalence of logics is more flexible and applicable to a broader
context: it only depends on the structure of the respective topological theory space.

We believe that the concepts and results developed in this paper will lead
to further research on the topological classification of classes of abstract logics.
The topological characterization of boolean abstract logics as given above serves
here as a first example. The elaboration of a category-theoretic framework with
abstract logics as objects and logic maps as morphisms may also be a promising
task for future work. Some results of this paper (see Corollary 3.23) may serve as
a motivation to study in more detail the relationships between abstract logics and
the category-theoretic concept of institutions.
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