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Abstract We present the study of a data-driven motion

synthesis approach based on a 1D affine image-matching

equation. We start by deriving the relevant properties of the

exact matching operator, such as the existence of a singular

point. Next, we approximate such operator by the Green’s

function of a second-order differential equation, finding

that it leads to a more compelling motion impression, due

to the incorporation of blur. We then proceed to show that,

by judicious choice of the matching parameters, the 1D

affine Green’s filter allows the simulation of a broad class

of effects, such as zoom-in and zoom-out, and of complex

nonrigid motions such as that of a pulsating heart.

Keywords Motion synthesis � Matching equation �
Green’s functions

1 Introduction

Data-driven motion simulation is a relatively unexplored

subject in computer graphics, since most of the motion

simulation algorithms found in the literature are model-

based ones. In [1] and [2], for instance, stochastic models

are used, the latter being based on an autoregressive pro-

cess. A deterministic model is that of [3], where the motion

of fluids is simulated through the Navier–Stokes equation.

On the other hand, a fully data-driven approach is that of

Freeman et al., who use steerable filters [4] to create their

‘motion without movement’ illusion [5].

An important issue related to motion simulation is that

of lending physical realism to the generated sequences,

what usually requires the introduction of motion blur [6–9]

as an independent step in the process. The simultaneous

synthesis of general motion and motion blur does not seem

to have been undertaken. Here we pursue this, by consid-

ering solutions of matching (irradiance-conservation)

equations of the form

f2ðxþ U; yþ VÞ ¼ f1ðx; yÞ; ð1Þ

where f1 is the input image, U(x,y) and V(x,y) are the

optical flow components [10–12], and f2 is a matching

image, to be found, which, along with f1, will convey the

motion information.

Approximate solutions to (1), for a uniform optical

flow field—U(x,y) = u, V(x,y) = v—have already been

considered in [13], in the context of 3D shape estimation.

In this case, expanding the left-hand side in a Taylor

series up to second order in u and v, and performing a

suitable change of variables, Eq. (1), for matching along a

general direction h—i.e., for v/u = tan h—reduces to the

1D form [13]
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u2

2
f2
00 þ uf2

0 þ f2 ¼ f1; ð2Þ

where fi = fi(x, y + c x), with c = tan h, and where the

primes denote differentiation with respect to x.

Through the Green’s function approach, a solution to (2)

can then be found as

f2ðx; yþ cxÞ ¼
Z
D

Guðx� nÞf1ðn; yþ cnÞ dn; ð3Þ

where Gu is a linear, shift-invariant filter which is the

Green’s function to (2)—that is to say, it is the solution to

that equation when the unit impulse function d(x–n) is

substituted for its right-hand side. Over an infinite domain

D;Gu will take the form

Guðx� nÞ ¼ 2

u
sin

x� n
u

� �
e�

x�n
uð Þ; ð4Þ

for x > n, with Gu = 0, otherwise.

As shown in [13], when convolved with a shading image,

Gu is able to simulate its photometric stereo pair—i.e., a

rendition of the same scene under displaced illumination. It

thus allows the purely data-driven simulation of a certain

kind of 3D motion—namely, that of the irradiance pattern

over a static scene, arising from a change in illumination

direction (as proven in [14], this can be generally modeled as

a non-uniform rotation). It should be noted that the Green’s

filter Gu is comprised of two parts: a sinusoidal function and

an exponential function. Considered by itself, the sinusoidal

factor would essentially induce a displacement of the image

intensities, what makes it account for most of the motion

effect of the Green’s filter. The exponential term, on the

other hand, induces essentially a blurring effect. This can be

seen by introducing Gu in (3), and rewriting it as

f2ðx; yÞ ¼
2

u

Z 1
�1

sin
n
u

� �
SðnÞ

� �
e�
jnj
u f1ðx� n; yÞ dn; ð5Þ

where S denotes the unit step function, and where, for

simplicity, we considered the case when c = 0. By itself,

the negative exponential term in (5) is simply a blurring

factor, its Fourier transform being 2u/(1 + u2x2). On the

other hand, the term with the sine function carries, in its

Fourier spectrum, contributions of the form d(x ± 1/u),

whose effect will be to select the frequency component 1/u

from the input signal f1, thus producing a sinusoidal

spreading of its intensities. Both kinds of effect combine in

Gu to produce a shift-invariant point spread function that

simultaneously models both motion and motion blur.

Here we present a way of extending the Green’s func-

tion approach described above, aiming at the simulation of

a broader class of movements. We do this by considering a

less restrictive optical flow model: instead of the uniform

field which led to (4), we introduce the affine model

U(x) = u0 + u1x, where both u0 and u1 are constants

(again, we assume 1D flow, with V(x) = c U(x)). Consi-

dering the solution, under this new model, to the approxi-

mate matching equation equivalent to (2), we obtain a

Green’s function filter which, when applied to a single

input, is able to generate image sequences that simulate

various kinds of uniform and nonuniform motions. Similar

to the uniform flow case, the advantage of the affine

Green’s function approach is that it allows the generation

of motion blur simultaneously with motion synthesis, what

contributes to the greater realism of the result.

Two other algorithms that make use of 1D affine

transformations to generate motion and motion blur effects

are the ones presented in [15] and [16]. The former is a

two-step process, that first warps and then blurs the input

image. The latter generates motion and blur simulta-

neously, but is specific for a certain kind of motion,

namely, a zoom-in (its code is a plug-in for the GIMP

software, available free of charge from [http://www.gimp.

org]). Here, we show that the Green’s function model

compares favorably with both these approaches.

The remainder of this paper is organized as follows: in

Section 2, we consider the 1D affine matching equation and

the Green’s function solution to an approximate version of

it, also discussing some features of its possible extension to

2D; in Section 3 we consider the practical implementation

of the affine Green’s filter; in Section 4, we present and

discuss some experimental results, including a comparison

with two motion-blur simulation approaches; finally, in

Section 5, we make our concluding remarks and propose

directions for future work, and in Section 6, we present an

overview of our contributions.

2 1D affine matching

Here we are concerned with a 1D matching equation of the

form

f2ðxþ UÞ ¼ f1ðxÞ ð6Þ

for an affine optical flow field, U(x) = u0 + u1x, where both

u0 and u1 are constants which can be interpreted, respec-

tively, as the optical flow value at x = 0, and its derivative.

We first derive some general properties of the matching

equation, and then proceed to consider its approximate

solution via the Green’s function approach. Although we

here assume matching along the direction x, generalization

of our results to a general matching direction—i.e., when f1
and f2 are functions of (x, y + c x), as in (2)—is straight-

forward.
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2.1 Properties of the affine matching transformation

Matching Eq. (6) can be rewritten as

f2ðxÞ ¼ MU f1½ �ðxÞ; ð7Þ

where MU is the linear mapping

MU f½ �ðxÞ ¼ f
x� u0

1þ u1

� �
: ð8Þ

We start by noting that, whenever u1 „ 0, the affine field

U(x) presents a zero at xU ¼ � u0

u1
; corresponding to a

singular point (fixed point) of the mapping, for which

f2(x) = f1(x). From the form of (8), it is also easy to see

that, except at x = xU, the mapping will consist of a

translation by u0

1þu1
and a scaling by 1

1þu1
: The latter

amounts to an expansion, when u1 > 0, and to a contrac-

tion, when u1 < 0. The net effect of the combined trans-

lation and scale transformations will be that of a

displacement away from the fixed point, for positive u1

(Fig. 1a), and towards the fixed point, when u1 is negative

(Fig. 1b), the displacement increasing linearly with the

distance from the fixed point. Such features are illustrated

by Fig. 2, where we present the affine mapping of the

function f1ðxÞ ¼ sinðx2Þ
x :

2.2 Green’s function solution

Let us now consider the Green’s function solution to an

approximate version of the affine matching equation,

namely, that given by the second-order Taylor-series

expansion of the left-hand side of (6):

ðu0 þ u1xÞ2

2
f2
00 þ ðu0 þ u1xÞf20 þ f2 ¼ f1: ð9Þ

Equation (9) has the Cauchy-Euler form [18], and its

Green’s function solution, over a domain D; will be

expressed as

f2ðxÞ ¼
Z
D

Gðx; nÞf1ðnÞ dn; ð10Þ

where G(x,n) is the shift-variant Green’s function which

solves

ðu0 þ u1xÞ2

2
G00 þ ðu0 þ u1xÞG0 þ G ¼ dðx� nÞ ð11Þ

over that same domain. Here, the notation f1G will be used

as a shorthand for the operation on the right-hand side of

(10).

Under the sole condition that G(x,n) remains finite as x

goes to infinity, a solution to (11) can be found as

Gþðx; nÞ ¼
2

u1
2bðn� xUÞ

x� xU

n� xU

� �a

sin b log
x� xU

n� xU

� �� �
;

ð12Þ

for x > n, with G+(x,n) = 0, otherwise. The parameters a
and b are given as

a ¼ � 1
u1
þ 1

2

b ¼ 1
u1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u1 � u2

1

4

q
;

(
ð13Þ

leading to a bounded Green’s function over a domain

D � ðxU ;1Þ; so long as we take 0 < u1 < 2. Over finite

domains, this solution is valid for 2� 2
ffiffiffi
2
p

\u1\2þ 2
ffiffiffi
2
p

:

A plot of the G+ filter appears in Fig. 3.

Over a domain D � ð�1; xUÞ; a solution to (11) can

also be found as

Fig. 1 Illustrating the effect of the affine matching operator: a
Expansion (u1 > 0). b Contraction (u1 < 0)

Fig. 2 Application of the operator MU, for ðu0; u1Þ ¼ ð23 ;� 1
3
Þ; to the

function f1ðxÞ ¼ sinðx2Þ
x (circles). The resulting signal, f2ðxÞ ¼

MU f1½ �ðxÞ ¼
sin

x�u0
1þu1

� 	2

x�u0
1þu1

� 	 ; is shown as a continuous line
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G�ðx; nÞ ¼
2

u1
2bðxU � nÞ

xU � x

xU � n

� �a

sin b log
xU � x

xU � n

� �� �
;

ð14Þ

for x < n, with G–(x,n) = 0, otherwise. In this case, the

parameters a and b become

a ¼ 1
u1
þ 1

2

b ¼ 1
u1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u1 � u2

1

4

q
;

(
ð15Þ

and G– will be bounded so long as we take –2 < u1 < 0. In

finite domains, this solution is valid for

�2� 2
ffiffiffi
2
p

\u1\� 2þ 2
ffiffiffi
2
p

:

Similar remarks as made for the uniform-flow Green’s

filter Gu, of Eq. (4), apply to the forms G+ and G– above:

both can be factorized into two terms, one of them (the

sinusoidal factor) basically inducing the displacement of

image intensities, and the other introducing image blur.

Once again, we are dealing with point spread functions

(shift-variant, in this case) that simultaneously model mo-

tion and motion blur processes.

An illustration of the roles of the G+ and G– filters, in the

approximation of affine matching, is presented in Fig. 4.

For instance, in the generation of expansion, illustrated by

Fig. 4a, the value of f2 at a point x in the range (xU, + ¥)

will depend on the values of f1(n) for every n < x, each of

them weighted by the corresponding Green’s function va-

lue G+(x,n), according to Eq. (10). Similarly, at each point

in the (–¥, xU) range, the values of f1(n) for every n > x

will be weighted by G–(x,n), in order to produce f2(x). The

analysis of the contraction case (Fig. 4b) can be similarly

performed.

Figure 5 illustrates the effect of the Green’s function

filter over the same signal as considered in Fig. 2. The

input signal, f1(x) (circles), and its affine mapping MU [f1 ]

(x) (continuous line) are plotted along with the curve for

f1*G (crosses), obtained as presented in Section 3, below.

In the illustrated case, u0 ¼ 2
3

and u1 ¼ � 1
3
; what leads to a

contraction and to a fixed point at xU = 2. We note that the

curves of f1, MU [f1 ] and f1*G coincide at the fixed point,

as expected.

2.3 Extension to 2D affine matching

Under the 2D affine model, the optical flow components U

and V, in Eq. (1), take the form

U
V

� �
¼ u0

v0

� �
þ u1 u2

v1 v2

� �
� x

y

� �
¼ bþA � X; ð16Þ

with

b ¼ u0; v0½ �T

A ¼
u1 u2

v1 v2

" #
:

X ¼ x y½ �T

ui and vi constant ði ¼ 0; 1; 2Þ

8>>>>>>>>><
>>>>>>>>>:

ð17Þ

Performing a Taylor-series expansion up to second order,

as in the 1D case, we would obtain, for the matching

equation,

Fig. 3 G+ filter plotted as function of x, for n = 0. Parameter values:

u0 = 0.1 and u1 = 0.002

Fig. 4 Illustrating the roles of the G+ and G– filters in motion

simulation. a Expansion, with u0 > 0 and u1 > 0: the central plot
shows G+(x,n), and the lower plot shows G–(x,n), as functions of n, for

a fixed x. b Contraction, with u0 > 0 and u1 < 0: similarly as in a, but

with G– in the central plot and G+ in the lower one (see text)
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U2

2

o2f2
ox2
þ UV

o2f2
oxoy

þ V2

2

o2f2

oy2
þ U

of2
ox
þ V

of2

oy
þ f2 ¼ f1;

ð18Þ

with (U, V)T = (U(x, y), V(x, y))T as above. Its Green’s

function solution would then be expressed as

f2ðx; yÞ ¼
Z Z

D
Gðx; y; n; gÞf1ðn; gÞ dn dg; ð19Þ

where D is an appropriate domain. Equation (18) is of

parabolic type [18]. In the case of uniform optical flow,

A ¼ 0 0

0 0

� �
; it will reduce to

u2
0

2

o2f2

ox2
þ u0v0

o2f2

oxoy
þ v2

0

2

o2f2
oy2
þ u0

of2

ox
þ v0

of2

oy
þ f2 ¼ f1;

ð20Þ

The above can be converted to the canonical form [19]:

u2
0

2

o2f2

or2
þ u0

of2
or
þ f2 ¼ f1; ð21Þ

where fi = fi (r, f) (i = 1, 2) and (r, f) = [r (x, y), f (x, y)].

Here, r is a characteristic curve, i.e., a curve along which

the derivative is total [19]. In the present case, (r, f) = [x,

– v2
0 x + u0 v0 y], and we note that Eq. (21) is identical to

(2). Its Green’s function will thus be similar to that in (4).

In the general case, a difficulty may arise when the

reduction to the canonical form is not possible. One could,

for instance, be able to obtain the transformation (r, f) =

[r (x, y), f (x, y)], but not the inverse (x, y) = [x (r, f), y(r,

f)]. In the present work, we will not be concerned with the

2D affine model. We just note that, by employing the 1D

model along both directions x and y, we are able to con-

sider the equivalent to Eq. (18) in the particular case when

o2f2

oxoy
¼ 0 and A ¼ u1 0

0 v2

� �
:

In this case, (18) reduces to

U2

2

o2f2
ox2
þ V2

2

o2f2

oy2
þ U

of2
ox
þ V

of2

oy
þ f2 ¼ f1; ð22Þ

where (U(x,y), V(x,y))T = (u0 + u1 x, v0 + v2 y)T.

The Green’s function of the above would be given by

Gðx; y; n; gÞ ¼ G1ðx; nÞ � G2ðy; gÞ;

where G1 (x,n) and G2 (y, g) are solutions to

ðu0 þ u1xÞ2

2

d2G1

dx2
þ ðu0 þ u1xÞ dG1

dx
þ G1 ¼ dðx� nÞ;

and

ðv0 þ v2yÞ2

2

d2G2

dy2
þ ðv0 þ v2yÞ dG2

dy
þ G2 ¼ dðy� gÞ;

respectively.

3 Implementation issues

Here we discuss some practical implementation aspects of

the affine Green’s filter, as used for motion simulation. In

the following, we only treat horizontal motion (i.e., h = 0),

since motions in a general direction can be simulated by

combining horizontal and vertical filtering, the latter being

easily accomplished through the former, for a p/2-rotated

input. Thus, we have only two independent filter parame-

ters to consider, which we chose to be u0 and xU (keeping

in mind that u1 = –u0/xU). The first issue we wish to ad-

dress regards the latter parameter, which is the position of

the singularity point of the affine transformation.

We recall that the 1D Green’s functions of Eqs. (12) and

(14) have been derived for the unbounded ranges (xU, + ¥)

and (–¥,xU), respectively. On the other hand, a practical

domain for motion simulation will be a finite subset of

(–¥, + ¥). Thus we have that, if xU lies outside such do-

main, a single Green’s function (G+ or G–) will be involved

in the motion simulation, and if xU lies inside it, one has to

consider both G filters. The position of the singularity point

Fig. 5 Plots of f1ðxÞ ¼ sinðx2Þ
x (circles), f2ðxÞ ¼ MU f1½ �ðxÞ ¼

sin
x�u0
1þu1

� 	2

x�u0
1þu1

� 	

(continuous line), and f1*G (crosses), for parameters u0 ¼ 2
3

and

u1 ¼ � 1
3
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relative to the image domain represents therefore an

additional degree of freedom which can be exploited for

the generation of a broader class of motions (we should

mention here that the importance of affine fixed points for

motion synthesis and analysis has long been recognized

[20–25]).

Still regarding xU, we should also remark that the

Green’s function is not defined at that point. Thus, in our

simulations, whenever needed, we simply kept the original

intensity value there. Points in the neighborhood of xU, on

the other hand, where G is defined and varies rapidly, will

require oversampling. As a rule, area sampling should

always be used, in order to minimize errors [26].

Some care is also required in the computation of G(x,n),

which corresponds to an integral evaluated at a pixel of the

input image. A proper discretization procedure (we used

the trapezoidal rule) is important to ensure unitary gain in

the summation.

When performing both horizontal and vertical filtering,

we are obviously free to choose independent Green’s

function parameters along the two directions. Thus, in the

experiments described below, we also consider the values

for v0 and yV, the latter being the fixed point along the

vertical. This is defined, similarly to xU, as yV ¼ � v0

v2
;

where v2 is the rate of change of the optical flow along the

y-direction (see Section 2, above).

Finally, we should comment that, in our implementations

of the exact matching operator, linear interpolation was

used whenever dealing with non-integer displacements.

4 Experimental results

Animated motion sequences illustrating the application of

our approach can be found at the web site http://

www.graphics.ufba.br/FAPESB/motion/ . Here we discuss

the general features of such experiments. It should be noted

that, as a rule, in the figures presented here, only a subset of

the images comprising the animations have been included.

Given a single input image, its companions in each

artificial motion sequence have been generated as de-

scribed in Section 3 above, with xU, yV, u0 and v0 chosen in

such a way as to produce the desired effects. As already

mentioned, whenever simulating motion in a direction

other than the horizontal, two filterings of the input im-

age—along the horizontal and the vertical—were com-

bined.

As a general rule, the motion sequences result more

compelling when the values of u0 are small, since the loss

of high frequency information is less severe in this case. It

should nevertheless be remarked that the blurring effect

entailed by Green’s function filtering is important in con-

veying a convincing motion impression to the human eye.

In our experiments, we found that u0 in the range of 1 to 8

pixels per frame yields good results, with the values up to 3

pixels/frame basically entailing negligible blur. The values

for u1 (which are obtained from those for u0 and the chosen

xU) are usually a fraction of those for u0. Similar consid-

erations hold as well for v0, v2 and yV. Please note that, in

the experiments reported here, the origin of the coordinate

system is assumed to be at the image’s bottom left corner,

with positive coordinate axes running rightwards (x-axis)

and up (y-axis).

We start by comparing motion simulations yielded by

the approximate and the exact affine models. Figure 6b was

obtained by the direct application of the affine matching

operator (8), and Fig. 6c, by the integral operator of Eq.

(10). It should be noted that the image in Fig. 6b is sharp,

while there is loss of high frequencies in the Green’s-

function version of Fig. 6c. This happens because the im-

age intensities in Fig. 6c are spreaded out, instead of

simply displaced, as in Fig. 6b. However, as already re-

marked, it is precisely this non-trivial blurring effect that

helps to produce a more compelling motion impression.

The role of motion blur in the creation of images that are

more realistic and pleasing to the eye is well known, and

algorithms have long been developed to incorporate such

effect in computer graphics [6]–[9]. With the Green’s

function approach, this comes along naturally with the

motion synthesis process.

As a further example, Fig. 7 compares the direct and the

Green’s function approaches in the case of a zoom. Again

we note that the synthesized image is sharp in the exact

matching case, while the blur of the Green’s function pair

lends more realism to the image sequence, especially when

simulating fast camera motions. Moreover, if the warping-

pair images are presented to an observer in random order,

he/she won’t be able to tell which one was the origina-

l—i.e., it will not be clear if the motion was a zoom-in or a

zoom-out. In contrast, from the Green’s-function pair, the

kind of motion intended is immediately apparent, and

motion cues can be inferred even from the second image

alone, what could in principle allow the estimation of the

direction and magnitude of the movement [27–29].

Fig. 6 Example of motion synthesis through affine matching (2D

translation). a Original image. b Motion synthesized via exact

matching. c Motion synthesized via the G-filter. The parameters in

both cases were (u0,u1) = (4, 0.001)
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Next, still considering a zoom simulation, we compare

the motion blur effects induced by the Green’s function

approach and by two other models, briefly described below.

Motion Blur Model by Acha and Peleg [15]. In the

Acha–Peleg model, the motion-blurred image is obtained

by first warping the input, and then applying a space-

invariant 1D blur kernel along the desired direction. Here,

in order to simulate a zoom-in, we considered two 1D af-

fine warpings followed by gaussian blur, along the hori-

zontal and vertical directions.

Zoom Motion-Blur Model by Martinsen et al. [16]. This

model is specific for zoom-in simulation. Here, an image

pixel at position (x,y) is replaced by the average of those

pixels located on a straight line starting at (x,y) and

pointing towards the center pixel ðcx; cyÞ ¼ ðw2 ; h
2
Þ; where w

and h are the image width and height, respectively. The

blur length is a free parameter of the algorithm.

Figure 8 shows examples of zoom images generated

with the above-described models, and with the Green’s

function approach. The images in Figs. 8a and c, corre-

sponding to the Acha–Peleg and Green’s function mod-

els, respectively, have been generated with the same

affine motion parameters, (u0, u1, xU) = (v0, v2, yv) = (–

4, 0.0625, 64). The image in Fig. 8b, corresponding to

the model by Martinsen et al., has been generated for c
= 7 and (cx, cy) = (64, 64). Below each image, an

enlarged portion of its upper right corner is presented, in

Figs. 8d–f.

From the images it can be noted that the camera zoom

effect, as produced by the Acha–Peleg model, is poor

mainly due to the uniform blur induced. The model by

Martinsen et al., on the other hand, conveys a proper zoom

impression, but introduces some artifacts, evident, for in-

stance, over the woman’s hat and on the background area

(see Figs. 8b and e). In contrast, the Green’s function im-

age is free from artifacts, showing a much more even

appearance. It also presents less blur over its central region,

as should be expected, since the motion field would be very

small there.

Similarly to Martinsen’s, and contrary to Acha–Peleg’s,

the Green’s function algorithm implements a one-step

motion/motion-blur simulation process, but, as will be-

come clear from what follows, it has a much broader

applicability, not being restricted to zoom simulation.

Next, we will show how its parameters can be chosen, in

order to synthesize different classes of motions.

The case when u1 = 0, illustrated by Fig. 9, has already

been considered in [13]. The corresponding Green’s

function is that of Eq. (4), which arises from a matching

equation with constant coefficients. In this case, there is

no singular point. A nonuniform rotation plus a transla-

tion can be inferred from the generated sequence. The

impression of rotation is stronger when an increasing

series of u0 values is considered, e.g. u0 = 1, 2,…, 8, as

in Fig. 9. We observed that the blurring of the object

edges (in the present case, basically on the right-hand

side) plays an important role in conveying a vivid rotation

impression. The 1D affine model introduces new simu-

lation possibilities, through the additional parameter u1.

Below, we discuss these.

2D translation A. This can be obtained with affine

parameters such that xU lies outside the image domain.

Here we illustrate the horizontal translation case, for u0,

u1 > 0. A compelling translation impression is produced

by sequences of increasing u0 and u1 values. For instance,

the example in Fig. 10 was generated with (u0, u1) = (1,

0.001), (2, 0.002), (3, 0.003),…, (7, 0.007). Since U(x), the

overall displacement, grows with x, at each frame the blur

is stronger to the right. On the other hand, the increasing u0

and u1 values also lead to increasing blur with time.

2D translation B: This simulation is similar to the for-

mer case, but also combines horizontal and vertical filter-

ing. The result is the motion of the pixels along straight

lines running top–down and leftwards (Fig. 11). The

parameter settings were (u0, u1) = (–2, 0.008) and (v0, v2) =

(–1, 0.004), for the second frame; (u0, u1) = (–4, 0.016)

and (v0, v2) = (–2, 0.008), for the third; and (u0, u1) = (–8,

0.031) and (v0, v2) = (–4, 0.016), for the fourth. The sin-

gular points lie outside the image.

The generation of more complex motions is illustrated

by the examples below:

Fig. 7 Example of motion synthesis through affine matching (zoom).

The second image of the pair on the left has been synthesized via

exact matching, while the one on the right was generated via Green’s

functions. The parameters in both cases were (u0, u1, xU) = (–8,

0.125, 64) (horizontal motion) and (v0, v2, yV) = (–8, 0.125, 64)

(vertical motion)
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Pulsating heart. In this case (Fig. 12), the singular point

xU lies at the center of the image, which is of 254 · 273

pixels. An expansion in the second frame, obtained with

affine parameters (u0, u1, xU) = (–2, 0.015, 137) is

followed by a contraction in the third, generated with (2,

–0.015, 137).

Zoom-out. Here (Fig. 13), a superposition of filtering

along the horizontal and vertical directions was performed.

The affine parameters were (u0, u1, xU) = (v0, v2, yV) = (2,

–0.03, 64), for generating the second frame, and (u0, u1, xU)

= (v0, v2, yV) = (3, –0.044, 64), for generating the third

frame, both from the input image. The images are 128 ·
128. Here we identify a contraction transformation [31];

since, in both cases u1 = v2, the singular point is classified

as a focus of contraction [20, 21].

Fig. 8 Zoom motion blur:

a Acha–Peleg model, for (u0, u1,

xU) = (v0, v2, yV) = (–4, 0.0625,

64), and gaussian standard

deviation of 5 pixels. b Model

by Martinsen et al., with center

(cx, cy) = (64, 64) and blur

length c = 7. c Green’s function

approach with (u0, u1, xU) =

(v0, v2, yV) = (–4, 0.0625, 64)

Fig. 9 Motion simulation with u1 = 0 (U(x) = u0). From top to

bottom: input image and Gu-filtered sequence for parameter values u0

= 3 and u0 = 6, with h = 0�

Fig. 10 2D translation A. From top to bottom: input image and

G-filtered sequence for parameter values (u0, u1) = (4, 0.004), and (7,

0.007). The singular point, xU = –1000, lies outside the image
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Zoom-in. Obtained similarly as zoom-out, but with af-

fine parameters (u0, u1, xU) = (v0, v2, yV) = (–2, 0.031, 64)

and (u0, u1, xU) = (v0, v2, yV) = (–4, 0.063, 64), respec-

tively, for generating the second frame, and the third

(Fig. 14). Here we identify an expansion transformation

[31]; since, in both cases u1 = v2, the singular point is

classified as a focus of expansion [20, 21].

Deforming ball. Here (Fig. 15), the same recipe as in

pulsating heart was followed, except that a larger number

of frames was generated. The parameter settings were (u0,

u1) = (–16, 0.286), (–12, 0.215), (–8, 0.214), (–4, 0.071),

(4, –0.071), (8, –0.214), (12, –0.215) and (16, –0.286),

respectively. The singular point, xU = 56, lies at the center

of the image, which is 113 · 101.

Funny eye. This simulation was generated by com-

bining an expansion along the horizontal and a contrac-

tion along the vertical. The resulting motion (Fig. 16) is

along a hyperbole whose axes are parallel to the image

borders and intersect at the image center. The parameter

settings were (u0, u1, xU) = (–2, 0.022, 92) and (v0, v2,

yV) = (2, –0.026, 78) for the first frame; (u0, u1, xU) =

Fig. 11 2D translation B. From top to bottom: input image and G-

filtered sequence for parameter values (u0, u1) = (–2, 0.008) plus

(v0,v2) = (–1, 0.004), for the second frame; and (u0, u1) = (–8, 0.031)

plus (v0,v2) = (–4, 0.016), for the fourth frame

Fig. 12 Pulsating heart. From top to bottom: input image and

G-filtered sequence for parameter values (u0, u1) = (–2, 0.015) and

(2, –0.015). The singular point, xU = 137, lies at the center of the

image

Fig. 13 Zoom-out. From top to bottom: input image and G-filtered

sequence for parameter values (u0, u1) = (v0, v2) = (2, –0.03) (second
frame), and (u0, u1) = (v0, v2) = (3, –0.044) (third frame), with xU =

yV = 64

Pattern Anal Applic (2008) 11:45–58 53

123



(–4, 0.043, 92) and (v0, v2, yV) = (4, –0.051, 78), for the

second, and (u0, u1, xU) = (–6, 0.065, 92) and (v0, v2, yV) =

(6, –0.077, 78), for the third. The images are 184 · 156.

Here we identify a stretching transformation [31]; since u1

and v2 have opposite signs, the singular point is a saddle

point [20, 21].

5 Conclusions and future works

We have reported the study of a data-driven motion syn-

thesis approach based on the 1D affine matching equation,

thus extending preliminary work presented in [13, 30, 32].

Here we have analysed more thoroughly the affine

matching operation, recognizing its translation and scale

components, and the existence of a singular (fixed) point,

whose position plays an important role in motion synthesis.

Following that, we considered the Green’s function solu-

tion to an approximate version of the affine matching

equation, and analysed its use for the simulation of a broad

class of motions. We have found that the blur entailed by

the Green’s function operator helps to convey a more

compelling motion impression than obtained with the exact

Fig. 14 Zoom-in. From top to bottom. input image and G-filtered

sequence for parameter values (u0, u1) = (v0, v2) = (–2, 0.031)

(second frame), and (u0, u1) = (v0, v2) = (–4, 0.063) (third frame),

with xU = yV = 64

Fig. 15 Deforming ball. From top to bottom: input image and

G-filtered sequence for parameter values (u0, u1) = (–16, 0.286) and

(16, –0.286), with xU = 56

Fig. 16 Funny eye. From top to bottom: input image and G-filtered

sequence for parameter values (u0, u1, xU) = (–2, 0.022, 92)

(horizontal) plus (v0, v2, yV) = (2, –0.026, 78) (vertical), for the

second frame; and (u0, u1, xU) = (–6, 0.065, 92) (horizontal) plus (v0,

v2, yV) = (6, –0.077, 78) (vertical), for the third frame
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matching operator. Moreover, we also found that, by a

judicious choice of matching parameters, the Green’s

function filter allows the simulation of effects such as

translation, rotation, zoom-in and zoom-out, and also of

complex non-rigid motions, such as those of a squeezing

ball or a pulsating heart. Also with relation to the Green’s

functions, it is worth mentioning that, from a practical

point of view, there are advantages in our employing them

as a means for solving the approximate matching equa-

tions, since the discretization of a differential equation

leads to a sparse linear algebraic system with a large

condition number, whereas the discretization of an integral

operator leads to a dense matrix with a small condition

number [33]. Finally, we stress that the image synthesis

algorithm, whose application we have reported here, has

been greatly improved over its preliminary version pre-

sented in [13, 30, 32].

As compared to the ‘‘motion without movement’’ of

Freeman et al. [5], mentioned in Section 1 as also consti-

tuting a fully data-driven approach, we should remark that

our algorithm produces motion with movement, meaning

that we generate real displacement of the image features,

and not just an illusion of motion, as conveyed by irradi-

ance modulation.

One of the most promising extensions of the present

work lies in the possible use of the Green’s functions as a

basis for motion representation. We would then be able to

project a computed optical flow onto this basis set, in order

to derive motion coefficients that would indicate the pres-

ence and nature of a local motion. The construction of a

multi-resolution version of such a representation is also

envisioned, what would certainly lead to a reduction of the

computational complexity of the process.

In a different vein, we also consider the extension of the

present affine approach to 2D matching.

6 Originality and contributions

The overall contribution of the work reported here is the

study of a data-driven motion synthesis approach based on

the 1D affine matching equation, thus extending and

improving preliminary work presented in [13, 30, 32].

More specifically, we provide

• A thorough analysis of the affine matching operation,

recognizing its translation and scale components, and

the existence of a singular (fixed) point, whose position

plays an important role in motion synthesis;

• The analysis of a Green’s function solution to an

approximate version of the affine matching equation,

and its use for the simulation of a broad class of effects,

such as translation, rotation, zoom-in and zoom-out,

and also of complex nonrigid motions, such as those of

a squeezing ball or a pulsating heart. Great realism is

achieved by such means, especially when simulating

fast camera motions, since the Green’s function

approach allows the introduction of motion blur

simultaneously with the motion effect, what cannot be

obtained with standard warping techniques;

• A comparison of the Green’s function approach with

two motion blur simulation techniques also based on

the 1D affine model, showing that our results are

qualitatively superior.

The work is original not only in its theoretical aspects,

pertaining to the analysis of affine matching, but also in

what relates to the implementation of the motion synthesis

algorithm arising from it, which led to more compelling

simulations than achieved before [30].
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Appendix: Numerical validation of the experiments

As a means of validating the experiments in Section 4, we

have used a software for motion estimation—kindly pro-

vided to us by Professor Michael Black—which is based on

affine regression [34]. In it, the 2D affine model is ex-

pressed as

~U
~V

� �
¼ ~u0

� ~v0

� �
þ ~u1 ~u2

� ~v1 ~v2

� �
� x� cx

y� cy

� �
; ð23Þ

where (cx, cy)
T denotes the coordinates of the central image

point. Comparing the above with Eq. (16), we find the

relations

u0 ¼ ~u0 � ~u1cx � ~u2cy � u�0
u1 ¼ ~u1

u2 ¼ ~u2

v0 ¼ � ~v0 þ ~v1cx � ~v2cy � v�0
v1 ¼ � ~v1

v2 ¼ ~v2

8>>>>>><
>>>>>>:

ð24Þ

Taking the above into account, we have thus employed

Michael Black’s program to estimate the affine motion

components, in order to compare them with the input
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parameters of the Green’s filter. In each considered se-

quence, the input image and a synthesized one have been

used for this purpose. It should be noted that, since we have

restricted ourselves here to a separable 2D affine model, it

is expected that we should find ~u2 � ~v1 � 0; in all the

experiments. Below, we present the validation results only

for a subset of the more complex simulated sequences,

namely those illustrated in Figs. 12–16.

Zoom-out. Table 1 presents the optical flow parameters

yielded by [34], along with those used as input to the

Green’s filter. The third frame in Fig. 13 has been used.

We see that a very good correspondence is obtained in

this case, for all the parameters.

Zoom-in. Again, the estimated and input parameters are

very consistent, as shown by Table 2. The second frame in

Fig. 14 has been used.

Funny eye. The second frame in Fig. 16 has been used.

Table 3 shows the estimated and input parameters. Again,

the correspondence is fairly good.

Next, we discuss two examples where the validation

through Michael Black’s program has not been possible, those

of the pulsating heart and the deforming ball simulations.

Pulsating heart. Table 4 shows the input parameters and

those estimated from the third frame of Fig. 12. The data

are inconsistent.

A similar situation occurs with the deforming ball, as

shown below:

Deforming ball. Table 5 shows the input parameters and

those estimated from the second frame of Fig. 15. Again,

the data are not consistent, although the errors are some-

what smaller than in the pulsating heart experiment.

We conjecture that the problem, in the above simula-

tions, may arise from the fact that, in both cases, the input

images consist of the superposition of a central object over

a dark background, what could somehow induce errors in

the estimation process. In order to check such hypothesis,

we performed an additional test based on an image where

such a clear-cut figure/background segmentation is not

present. For this purpose, we chose the input image to the

zoom experiments, applying over it a Green’s filter with

parameters (u0, u1, xU) = (2, –0.031, 64), in order to

simulate only horizontal motion, as in the deforming ball

and pulsating heart examples. The generated pair appears

in Fig. 17.

Table 1 Zoom-out (Fig. 13)

Validation results

Estimated parameters Input parameters

u0
* 3.291884 u0 3

~u1 –0.046732 u1 –0.044

~u2 –0.000591 u2 0

v0
* 3.178174 v0 3

~v1 –0.004338 v1 0

~v2 –0.047586 v2 –0.044

On the left-hand side, we present the flow parameters estimated

through [34], and, on the right-hand side, the input parameters of the

Green’s filter. Here (cx, cy) = (64, 64)

Table 2 Zoom-in (Fig. 14)

Validation results

Estimated parameters Input parameters

u0
* –2.264054 u0 –2

~u1 0.032386 u1 0.031

~u2 –0.000073 u2 0

v0
* –2.110715 v0 –2

~v1 –0.000666 v1 0

~v2 0.032579 v2 0.031

On the left-hand side, we present the flow parameters estimated

through [34], and, on the right-hand side, the input parameters of the

Green’s filter. Here (cx, cy) = (64, 64)

Table 3 Funny eye (Fig. 16)

Validation results

Estimated parameters Input parameters

u0
* –1.628218 u0 –2

~u1 0.016469 u1 0.022

~u2 –0.000277 u2 0

v0
* 1.63986 v0 2

~v1 0.000104 v1 0

~v2 –0.020761 v2 –0.026

On the left-hand side, we present the flow parameters estimated

through [34], and, on the right-hand side, the input parameters of the

Green’s filter. Here (cx, cy) = (92, 78)

Table 4 Pulsating heart (Fig. 12)

Validation results

Estimated parameters Input parameters

u0
* 16.971032 u0 2

~u1 –0.005220 u1 –0.015

~u2 0.019643 u2 0

v0
* 14.340458 v0 0

~v1 0.009142 v1 0

~v2 0.001964 v2 0

On the left-hand side, we present the flow parameters estimated

through [34], and, on the right-hand side, the input parameters of the

Green’s filter. Here (cx, cy) = (137, 127)
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Table 6, below, shows the estimated and input param-

eters, which, in this case, prove fairly consistent.

From the foregoing discussion, we may conclude that,

except in the case of images with the characteristics of

Figs. 12 and 15—i.e., with a sharp figure/background sep-

aration—the Green’s function simulations can be numeri-

cally validated by the motion estimation algorithm of [34].
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Ceará, in Fortaleza, Brazil, and a

D.Sc. (2007) from Instituto

Nacional de Matemática Pura e
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ense, in Niterói, Brazil. His

main research interest is in

Computer Vision.

Paulo Cezar P. Carvalho
holds a B.Sc. (1975) in Civil

Engineering from Instituto Mili-

tar de Engenharia—IME, an

M.Sc. (1980) in Statistics from

Instituto Nacional de Matemática
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de Cergy-Pontoise, in France,

jointly with Universidade Fed-

eral de Minas Gerais. All de-

grees are in Computer Science.

He is Professor at Universidade

Federal de Juiz de Fora and his

main research interest is in

Computer Graphics and Vision.

58 Pattern Anal Applic (2008) 11:45–58

123

http://www.cs.brown.edu/people/black/
http://www.cs.brown.edu/people/black/

	Motion synthesis through 1D affine matching
	Abstract
	Introduction
	1D affine matching
	Properties of the affine matching transformation
	Green&rsquo;s function solution
	Extension to 2D affine matching

	Implementation issues
	Experimental results
	Conclusions and future works
	Originality and contributions
	Acknowledgments
	Appendix: Numerical validation of the experiments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


