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Abstract

This article describes some geometric aspects of a class of affine connections in homogeneous
spaces, that emerged in an earlier paper by the authors, related to the geometry of statistical models.
We describe the geodesics as well some properties of the curvature of these connections.
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1. Introduction

Theα-connections where introduced in the statistical literature in 1980s (see[1,2]) as
a differential geometric tool for studying parametric models. The idea was to refine the
classical concept of Fisher information, which is a Riemannian metric attached to a statistical
model. Both these geometric objects are defined by means of integrals over some measure
space, making them very hard to analyze by the standard differential geometric methods.

In [3] the authors consider a set-up, based on Lie group theory, in which it is possible to
take advantage of the symmetries and describe the possible affine connections in homoge-
nous spaces arising asα-connections of the so-called transformational statistical models.
In particular, we were laid to consider invariant affine connections on symmetric spaces.
It was proved in[3] that only those symmetric spaces whose restricted root system are of

∗ Corresponding author.
E-mail addresses:marcoanf@ufba.br (M.A.N. Fernandes), smartin@ime.unicamp.br (L.A.B. San Martin).

0393-0440/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0393-0440(02)00225-5



370 M.A.N. Fernandes, L.A.B. San Martin / Journal of Geometry and Physics 47 (2003) 369–377

typeAl admit such connections which are different from the canonical Riemannian one. In
particular, the non-compact symmetric space SL(n,R)/SO(n) has a one-parameter family
of invariant connections, which at the origino = SO(n) is given by

α

∇AB = α

(
AB+ BA

2
− tr(AB)

n
In

)
.

HereA,B ∈ s, the subspace of the symmetric matrices with zero trace, which we identify
to the tangent space of SL(n,R)/SO(n) ato andIn is the identityn×n matrix. In[3] some
properties of these connections were already discussed. However, many questions related to
their geometry remained unsolved. The purpose of this article is to develop these properties
further.

Whenα = 1 we denote the connection simply by∇AB. This is the only case to be
considered, since for generalα �= 0, the computations are similar. For this connection we
describe its geodesics inSection 2. Afterwards, inSection 3, we prove that the curvature
tensorR(A,B,C) and all its covariant derivatives belong to the subspace spanned byA and
B. We apply this fact to prove the following properties of∇: (i) the Ricci tensor is zero;
(ii) ∇ is not compatible with any Riemannian metric.

Before starting, it is convenient to fix some notations, remind a few of the geometry
of the symmetric space SL(n,R)/SO(n), more details on the subject can be seen in[4].
WriteM = G/K = SL(n,R)/SO(n), the symmetric space of the positive definite matrices
andsl(n,R) = so(n) ⊕ s, for the Cartan decomposition of the Lie algebra ofG given by
splitting the tangent space at the origin ofM.

The groupG acts transitively inM by g(hK) = (gh)K, and for eachg ∈ G, the map
g : M → M defined forg(ξ) = gξ is a diffeomorphism that satisfies:

(dg)ξ(Ã(ξ)) = (Ad(g)(A))∼(gξ), (1)

where

Ã(ξ) = d

dt
(exp(tA)(ξ))|t=0,

and Ad(g) : sl(n,R) → sl(n,R), g ∈ G is the adjoint map. Still in relation to the Lie
algebra ofG, we know that the roots ofsl(n,R) relative ath, Cartan subalgebra formed for
the diagonal matrices of trace zero are given by

(λi − λk)(H) = (H,Eii − Ekk) = tr(H(Eii − Ekk)),

for eachi �= k, i, k = 1, . . . , n, whereEik is the basicn× n matrix whoseik entry is 1 and
all the others are zero.

2. Geodesics

Using a geometric characterization of theα-connections, made in[3] we shall obtain here
a description of the geodesics for theα-connections in the symmetric spaceM = G/K of
positive definite matrices.
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Theα-connections for a models considered here have ageometric interpretation which
were described in[3]. LetS be the vector space of all symmetricn × n matrices. We have
thats = {A ∈ S : trA = 0} is a subspace of codimension one ofS, complemented by the
line spanned by the identity 1. The trace form tr(AB) an inner product onS. With respect to
this inner product the line of scalar matrices is orthogonal tos. We denote byS+ the cone
of the positive semi-definite matrices inS.

There is a natural action of Sl(n,R) onS given by the law

(g,A) �→ g · s = gAg∗,

whereg∗ means transposition of matrix. The induced infinitesimal action ofsl(n,R) onS
is given by the derivative

d

dt
(etXsetX

∗
)

∣∣∣∣
t=0

= Xs+ sX.

EachX ∈ sl(n,R) induces the linear vector field

X̃(s) = Xs+ sX.

If a · 1, a �= 0 is a scalar matrix inS then its orbitO(a) under Sl(n,R) is the subset of
matrices with determinantan which are positive definite ifa > 0 or negative definite if
a < 0. Sinceg(a · 1)g∗ = a · 1 if and only if g is an orthogonal matrix, it follows that
O(a), a �= 0, identifies with the homogeneous space Sl(n,R)/SO(n,R). These orbits have
codimension one inS, and the tangent spaceTa1O(a) is the subspace of matrices with trace
zero. Note that the line of scalar matrices complementsTa1O(a) in S. Similarly, one checks
easily that

S = TsO(a) ⊕ [s], (2)

where [s] stands for the line spanned bys ∈ O(a). From this decomposition we obtain the
following connection∇ onO(a):

(∇XY)(s) = prs((dY)s(X(s))). (3)

Here prs : S→ TsO(a) is the projection coming from the decomposition in(2), andX, Y
are vector fields inO(a) with Y viewed as a mappingY : O(a) → S so that(dY)s stands
for its differential ats. The definition of∇ is analogous to the Levi–Civita connection
of the Riemannian metric induced in an immersed submanifold of an Euclidean space.
However here the projection is not orthogonal with respect to tr(AB), since the line [s−1]
is orthogonal toTsO(a) so that prs is orthogonal if and only ifs = a · 1. Each orbitO(a),
a �= 0 is diffeomorphic to Sl(n,R)/SO(n,R). Hence we have a family of connections∇a

in Sl(n,R)/SO(n,R). It was checked in[3] that∇a is aα-connection for eacha.
In discussing geodesics we simplify matters and takea = 1. The other cases follow

analogously. Thus we consider the orbitO(1) and put∇ = ∇1. Due to invariance it is
sufficient to find the geodesics going through the origin. Lets = s(t), dets = 1, be a
geodesic of∇. Then∇ṡ ṡ = 0 and therefore by the above description of∇ the projection of
s̈ is annihilates. This means thats̈ = esfor some constante. We compute this constant by
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taking the second derivative of the equality dets = 1. Using a well known formula for the
derivative of the determinant we get

tr(s−1ṡ)dets = 0,

hence tr(s−1ṡ)dets = 0. Taking another derivative and using(s−1)′ = −s−1ṡs−1, we get

(−tr(s−1ṡs−1ṡ) + tr(s−1s̈))dets + tr(s−1ṡ)2 dets = 0.

But tr(s−1ṡ) = 0 and det(s) = 1. Hence

tr(s−1s̈) = tr(s−1ṡs−1ṡ).

Now, s̈ = es, so that tr(s−1s̈) = e tr(1) = ne. Therefore, the equation satisfied by the
geodesics through the identity is

s̈ = tr(s−1ṡs−1ṡ)

n
s. (4)

Since this equation looks hard to integrate explicitly we shall give a geometric description
of the trace of the geodesics, and then write down a reparametrization of them.

Proposition 2.1. The traces of the geodesic of∇ in S1 are the subsets

S1 ∩ V,

whereV ⊂ S is a two-dimensional subspace which has non-empty intersection withS1.

Proof. We check first thatS1 ∩V is a curve, that is, a one-dimensional submanifold in case
the intersection is not empty. In fact, denoted byP the restriction toV of det. ThenP is a
polynomial function onV . Takes ∈ S1 ∩V . By the well known formula for the differential
of det

dPs(s) = d(det)s(s) = tr(ss−1)det(s) = n �= 0.

This shows that everys ∈ S1 ∩ V is a regular point ofP . Now,S1 ∩ V is a connected com-
ponent of a level set ofP . Hence the intersection is indeed a one-dimensional submanifold.

Next we verify thatS1∩V can be entirely parametrized by a curves(t) such that its second
derivatives̈ is a multiple ofs, and hence satisfiesEq. (4). For this let∇̃ de be the connection
S1∩V defined analogously to∇ by projecting onto the tangent space along the line spanned
by s ∈ S1 ∩ V . Note that this is possible because dPs(s) �= 0, so that the line spanned bys
is transversal to the tangent space ofS1 ∩ V at s. Now, lets : (α, ω) ∈ R → S1 ∩ V be a
geodesic of∇̃. Thens̈(t) is a multiple ofs(t) for all t, by definition of∇̃. Hence,s satisfies
(4), so that it is also a geodesic of∇. The trace of this geodesics is the wholeS1 ∩ V . In
fact, suppose that limt→ωs(t) = s∞ ∈ S1 ∩ V . Then by the usual argument we can extend
s with a geodesic going throughs∞, concluding the proof. �

Now, we shall obtain parametrizations of the geodesic curvesS1∩V . We restrict attention
to those subspacesV containing the identity 1, having in mind that the other subspaces are
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obtained by translation. In fact, if the two-dimensional subspaceV meetsS1, then for some
g ∈ Sl(n,R), gVcontains 1, and we can use the equality

g(S1 ∩ V) = S1 ∩ gV.

Thus letV be such that 1∈ V and dimV = 2. As before lets be the subspace of matrices
with zero trace. Then there existsA ∈ s such thatV is spanned by{1, A}. If we take
conjugation by an element of SO(n,R) we can assume thatA is diagonal, that is

A = diag{x1, . . . , xn},
with x1 + · · · + xn = 0. In this caseS1 ∩ V becomes the subset of diagonal matrices

diag{tx1 + s, . . . , txn + s},
satisfying

(tx1 + s) · · · (txn + s) = 1, txi + s > 0. (5)

To get a parametrization of this curve note that the matrices

diag

{
1

n
+ tx1, . . . ,

1

n
+ txn

}
,

1

n
+ txi > 0,

belong to the interior of the simplex

∆ = {(y1, . . . , yn) : y1 + · · · + yn = 1, yi ≥ 0}.
On the other hand, the map(y1, . . . , yn) ∈ int∆

(y1, . . . , yn) ∈ int∆ �→ 1
n
√
y1 . . . yn

(y1, . . . , yn),

is a bijection between∆ and the set of diagonal symmetric matrices with det= 1. Thus a
parametrization of our curve is given by

t �→ 1
n
√
(1 + tx1) · · · (1 + txn)

(1 + tx1, . . . ,1 + txn). (6)

Its domain is the largest interval such that 1+ txi > 0 for all i. At this point we re-order if
necessary the basis so that the matrixA = diag(x1, . . . , xn) satisfiesx1 ≥ · · · ≥ xn. In this
casex1 > 0 andxn < 0 and the domain of definition of the above parametrization becomes(

− 1

x1
,− 1

xn

)
.

Now we use the parametrization(6) to write down some further equations related to the
geodesic of the given curve. Another parametrization of(6) is obtained by writingt = φ(u).
The reparametrization is a geodesic if and only if the second derivative is a multiple of the
curve. Thus we writes(u) as

s = 1

R
(1 + φx1, . . . ,1 + φxn),
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whereR = n
√
(1 + φx1) · · · (1 + φxn). In order to perform the computations we write

li = logsi,

wheresi, i = 1, . . . , n are the coordinates ofs. We have

l′i = s′i
si
, l′′i = s′′i

si
−
(
s′i
si

)2

. (7)

Now the condition̈s = cs for s to be a geodesic means thats′′i /si is independent of the
index i. By the expressions(7) this happens if and only ifl′′i + (l′i)

2 does not depends on
i = 1, . . . , n. A straightforward computation yields:

• li = log(1 + φxi) − 1

n
(log(1 + φx1) + · · · + log(1 + φxn)),

• l′i = φ′
(

xi

1 + φxi
− 1

n

(
x1

1 + φx1
+ · · · + xn

1 + φxn

))
,

• l′′i = φ′′
(

xi

1 + φxi
− 1

n

(
x1

1 + φx1
+ · · · + xn

1 + φxn

))

+ (φ′)2
(

− x2
i

(1 + φxi)2
+ 1

n

(
x2

1

(1 + φx1)2
+ · · · + x2

n

(1 + φxn)2

))
,

• (l′i)
2 = (φ′)2

(
x2
i

(1 + φxi)2
− 2

n

xi

1 + φxi

(
x1

1 + φx1
+ · · · + xn

1 + φxn

)

+ 1

n2

(
x1

1 + φx1
+ · · · + xn

1 + φxn

)2
)

.

Looking at these expressions we see that the term ofl′′i + (l′i)
2 which depends explicitly on

i is given by

xi

1 + φxi

(
φ′′ − 2(φ′)2

n

(
x1

1 + φx1
+ · · · + xn

1 + φxn

))
.

Therefore the reparametrizationφ turns the curve into a geodesic if and only if it satisfies
the second order differential equation

φ′′ = 2(φ′)2

n

(
x1

1 + φx1
+ · · · + xn

1 + φxn

)
. (8)

Taking logarithms this equation is written as

(logφ′)′ =
(

2

n
log(1 + φx1) · · · (1 + φxn)

)′
.

Hence(8) is equivalent to

φ′ = ((1 + φx1) · · · (1 + φxn))
2/n + c, (9)
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where the constantc accounts for the initial condition in the second derivative in(8). If we
chooseφ so thatφ(0) = 0 andφ′(0) = 1 we arrive at the equation for the geodesics.

Proposition 2.2. The geodesics of the connection∇ = ∇1/4 starting at the identity matrix
1 in the direction of the matrix

A = diag{x1, . . . , xn}, x1 + · · · + xn = 0,

is given by

γ(u) = 1√
φ′(u)

(1 + φ(u)x1, . . . ,1 + φ(u)xn),

whereφ is the solution of the first order differential equation

φ′ = ((1 + φx1) · · · (1 + φxn))
2/n,

with φ(0) = 0.

It is convenient to make the following remark about the domain of definition of the
first orderequation (9): first if somexi = 0 then theith term does not appear, hence
we assume thatxi �= 0 for everyi. In this case the equation is not Lipschitz inφ when
φ = −1/xi. Therefore, if we takex1 ≥ · · · ≥ xn the domain of definition of the equation
is (−1/x1,−1/xn), which is precisely the domain of the original parametrization.

3. The curvature tensor

Given a differentiable manifoldM with an affine connection∇, atensor of the type(r, s)
is a map

T : χ(M) × · · · × χ(M)︸ ︷︷ ︸
r×

→ χ(M) × · · · × χ(M)︸ ︷︷ ︸
s×

,

that is linear in each componentχ(M) considered as module onC∞(M). Thecovariant
derivative ofT , ∇T is the tensor of type(r + 1, s) defined by

(∇T)(A1, . . . , Ar)= (∇AT)(A1, . . . , Ar) = ∇A(T(A1, . . . , Ar))

=
r∑

i=1

T(A1, . . . ,∇AAi, . . . , Ar),

for A1, . . . , Ar,∈ χ(M). Thesecond covariant derivative ofT , ∇2T = ∇(∇T) is then a
tensor of the type(r + 2, s) given by

(∇2T)(A1, . . . , Ar, B) = (∇B(∇T))(A1, . . . , Ar),

A1, . . . , Ar, B ∈ χ(M). In general, themthcovariant derivative,∇mT is inductively defined
by ∇(∇m−1T).
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Now, using the usual formula for the curvature

R(A,B,C) = ∇A∇BC − ∇B∇AC − ∇[A,B]C, A,B,C ∈ s,
a direct computation yields forR(A,B,C) the following expression

1

n
(tr(AC)B − tr(BC)A + tr([A,B]C)In)) − 1

[A,B]C
− C[A,B].

Note that if we restrictR to the totally geodesic submanifold of the diagonal matrices of
M, then

R(A,B,C) = 1

n
(tr(AC)B − tr(BC)A). (10)

Our next objective it is enough to compute the covariant derivatives ofR in this submanifold,
that is, we want to compute∇mR(A,B,C), forA,B,C ∈ h. For this we introduce the tensor
of the type(r,0), Tr : s× · · · × s→ C∞(M), defined by

Tr(A1, . . . , Ar) = tr(A1 · · ·Ar).

An easy computation shows that

∇Tr(A1, . . . , Ar+1)

= −rTr+1(A1, . . . , Ar+1) + 1

n

r∑
i=1

(T2 ⊗ Tr−1)(Ai, Ar+1, A1, . . . , Âi, Ar).

Also, if we putS(A1, . . . , Ar, Ar+1) = Tr(A1, . . . , Ar)Ar+1, then we get

(∇Tr)(A1, . . . , Ar, Ar+2)Ar+1 = (∇S)(A1, . . . , Ar+1, Ar+2).

Using these notations we arrive at the following formulas:

• R(A,B,C) = (1/n)(T2(A,C)B − T2(B,C)A).
• (∇R)(A,B,C,D) = −(2/n)(T3(A,C,D)B − T3(B,C,D)A).
• −(n/6)(∇2R)(A,B,C,D,E) is given by{(

T4 − 1

3n
U

)
(A,C,D,E)

}
B +

{(
T4 − 1

3n
U

)
(B,C,D,E)

}
A,

whereU(A,C,D,E) is the tensor

T2(A,E)T2(C,D) + T2(D,E)T2(A,C) + T2(C,E)T2(A,D).

We can proceed successively and compute the covariant derivatives of any order. We
shall refrain ourselves to develop a general formula for these derivatives. But it is clear
from these formulas that the following statement holds.

Proposition 3.1. If A and B are zero trace diagonal matrices then the covariant derivatives
∇mR belong to the subspace spanned by A and B, for all m ∈ N, where∇0R = R.
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In the sequel we shall obtain some applications of the formulas obtained so far.
First let us consider theRicci tensor. For a general connection this is the(2,0)-tensor

defined by

Ric(A,B) = tr(C �→ R(A,B,C)), A,B,C ∈ χ(M).

In our case ifA,B,C ∈ s then the mapC �→ R(A,B,C) is an element ofgl(s), having
trace zero. Hence, Ric≡ 0.

As a second application we ask weather there exists a Riemannian metricg compatible
with the affine connection∇. Recall that this holds if

Ag(B,C) = g(∇AB,C) + g(B,∇AC), A,B,C ∈ χ(M).

It is known that for a connection compatible with a given metric, the Lie algebra of the
holonomy group in a point of the manifold is a subalgebra ofso(n) (see[5]). On the other
hand, such Lie algebra is spanned by

(∇mR)(A,B,C1, . . . , Cm), A,B,C1, . . . , Cm ∈ χ(M), m = 0,1,2, . . .

We shall use these facts to prove that∇ is not compatible with any metric.
For this chooseA,B,C,D,E ∈ h satisfying tr(BC) = tr(BE) = 0, DB = A. Then by

Proposition 3.1, we have

〈(∇R)(A,B,C,D),E〉 = 〈(∇R)(A,B,E,D), C〉.
Equivalently,(∇R)(A,B,C) is a non-zero self-adjoint operator ofh. Hence, it has real
eigenvalues, showing that this operator cannot belong toso(n). This is enough to prove that
∇ is not compatible with a Riemannian metric.

We note that by(10)

〈R(A,B,C),D〉 = 〈C,R(A,B,D)〉,
that is,R(A,B) ∈ so(n), so that we in fact need the covariant derivative of the curvature.
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