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Abstract
We investigate the effects of aperiodic interactions on the critical behaviour
of an interacting two-polymer model on hierarchical lattices (equivalent to
the Migadal–Kadanoff approximation for the model on Bravais lattices),
via renormalization-group and transfer-matrix calculations. The exact
renormalization-group recursion relations always present a symmetric fixed
point, associated with the critical behaviour of the underlying uniform model.
If the aperiodic interactions, defined by substitution rules, lead to relevant
geometric fluctuations, this fixed point becomes fully unstable, giving rise to
novel attractors of different nature. We present an explicit example in which
this new attractor is a two-cycle attractor, with critical indices different from
the uniform model. In the case of the four-letter Rudin–Shapiro substitution
rule, we find a surprising closed curve whose points are attractors of period two,
associated with a marginal operator. Nevertheless, a scaling analysis indicates
that this attractor may lead to a new critical universality class. In order to
provide an independent confirmation of the scaling results, we turn to a direct
thermodynamic calculation of the specific-heat exponent. The thermodynamic
free energy is obtained from a transfer-matrix formalism, which had been
previously introduced for spin systems, and is now extended to the two-polymer
model with aperiodic interactions.

PACS numbers: 64.60.Ak, 64.60.Cn, 61.44.−n

1. Introduction

In some recent publications [1–4], we have used renormalization-group (RG) and transfer-
matrix (TM) techniques to investigate the effects of aperiodically distributed (but not
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disordered) interactions on the critical behaviour of ferromagnetic spin models. In a real-
space renormalization calculation for simple hierarchical structures, we have written exact
recursion relations in order to show that relevant geometric (aperiodic) fluctuations play a very
similar role to disorder. These calculations lead to the formulation of an exact extension for
deterministic, aperiodic interactions of the well-known Harris criterion for the relevance of
disorder [5], in a form coincident with Luck’s heuristic, general derivation of this extension [6].
Also, we have shown that relevant geometric fluctuations give rise to distinct critical exponents,
associated with the appearance of new attractors in parameter space. The independent transfer-
matrix calculations have confirmed these results and provided deeper insight into more refined
details of the thermodynamics of aperiodic spin systems, such as log-periodic oscillations of
thermodynamic functions.

Now we consider a model of two directed polymers on a diamond hierarchical lattice,
with an aperiodic, layered distribution of interaction energies, according to various substitution
rules (see [7, 8] for extensive reviews of substitution sequences and their applications to
statistical models). Although the qualitative description of the critical behaviour is essentially
similar, the exact renormalization-group recursion relations in parameter space turn out to
be much simpler as compared to the calculations for spin systems. The case of two-letter
substitution rules is particularly simple. For irrelevant geometric fluctuations, the critical
behaviour is governed by a symmetric fixed point, with no changes with respect to the
uniform case. For relevant fluctuations, we show that this symmetric fixed point becomes
fully unstable, and the critical behaviour is associated with a novel two-cycle attractor of
saddle-point character. However, for more complex substitution rules, such as the Rudin–
Shapiro sequence of four letters (which is known to mimic Gaussian random fluctuations
in a sense [8]) there appears a surprisingly rich structure in the four-dimensional parameter
space. Besides the expected symmetric fixed point, there are non-diagonal fixed points and
continuous lines of two-cycle attractors, associated with a marginal operator, which might
give rise to non-universal critical exponents. A scaling analysis indicates that this structure
is responsible for a novel critical universality class. In order to check these results, we
resorted to an independent thermodynamic calculation, on the basis of a transfer-matrix
scheme.

The layout of this paper is as follows. In section 2, we define the polymer model, and
present some renormalization-group calculations for two- and four-letter (Rudin–Shapiro)
substitution rules. We show the existence of some surprising structures in parameter space,
and, in particular, discuss a number of scaling results for the critical behaviour. We then
proceed to formulate an extension of the transfer-matrix scheme for a two-polymer model.
Although this technique has already been used for spin systems, its extension for this new
situation requires a considerable amount of analytical work, as described in sections 4 and 5.
In section 3, we formulate the transfer-matrix scheme for a two-polymer model. In section 4,
we study in great detail the algebraic structure of the transfer matrices, in order to unveil,
in section 5, the existence of a recursion relation for the eigenvalues of the transfer matrices
associated with two successive generations of the hierarchical structure. In section 6, we use
the recursion relations in order to write down explicit thermodynamic functions. In section 7,
we present the results for aperiodic models, which are compared to the renormalization-group
predictions.

2. The interacting polymer model

The binding–unbinding phase transition in a disordered model of two directed and interacting
polymers on a hierarchical lattice has been investigated by Mukherji and Bhattacharjee [9], and
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we follow these authors on the definition of the model. We simply place two directed polymers
on a diamond hierarchical. They start at one end of the lattice and stretch continuously to the
other end (the root sites). There is an attractive interaction, −ε, whenever a bond of the lattice
is shared by a monomer of each polymer. This energy can be made to depend on the position of
the bond along a branch, in a random or deterministic fashion. Note that, although seemingly
artificial, the model is nothing else than a bona fide Migadal–Kadanoff approximation for the
same interacting problem on a genuine Bravais lattice.

In the basic cell of a diamond lattice, with q branches and p bonds per branch, there are
configurations of energy −pε, where the two polymers occupy the same p bonds of a branch,
and configurations of zero energy, where the polymers stretch along different branches. Using
the Boltzmann factor y = exp(βε) and the combinatorial coefficient C2

q = q(q − 1)/2, it is
easy to write the RG recursion relation

y ′ = 1

q
yp +

q − 1

q
. (1)

Taking p = 2, for example, we see that besides the trivial fixed points, y∗ = 1 and ∞,
associated with zero and infinite temperatures, there is a non-trivial fixed point, y∗ = q − 1,
which is physically acceptable for q > 2 (there is no phase transition on the simple diamond
lattice with q = 2 branches). Also, from the linearization of the recursion relation about the
non-trivial fixed point, we have the thermal eigenvalue

� = 2(q − 1)

q
. (2)

In order to obtain the specific-heat exponent, α, one should note that, as the polymers are
one-dimensional objects, the thermodynamic extensivity of this model relates to the polymer
length, instead of the volume. Thus, the important density is the free energy per monomer,
which is assumed to behave according to the fundamental scaling relation

f (y ′) = pf (y). (3)

From this relation, we have the critical exponent associated with the specific heat,

α = 2 − ln p

ln �
. (4)

This quantity will be used to characterize the possible universality classes of the model,
depending on q, p and the presence of aperiodically distributed interactions.

Consider, for example, for p = 2, a layered distribution of interactions [1], εa and εb,
chosen according to the two-letter period-doubling sequence,

a → ab b → aa. (5)

In figure 1 we give an example of the construction of a simple diamond lattice with this
kind of aperiodicity, starting from the letter a. Along each branch the interaction energies
are distributed according to the letters of the aperiodic sequence generated by the recursive
application of the rule. The same arguments as used in the last paragraph to derive equation (1)
for the uniform case, lead to a pair of recursion relations,

y ′
a = 1

q
yayb +

q − 1

q
(6)

and

y ′
b = 1

q
y2

a +
q − 1

q
(7)
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Figure 1. Initial stages of the construction of a Migadal–Kadanoff hierarchical lattice with q = 2
branches and p = 2 bonds per branch, and layered aperiodic interactions according to the period
doubling rule, a → ab, b → aa (letters a and b indicate the two possible values of the interaction
energy, εa and εb).

where ya,b = exp(βεa,b) and εa,b > 0 is the interaction energy at bonds of types a and b,
respectively. For ya = yb = y, we recover the recursion relation associated with the uniform
model.

It is easy to see that, for q > 2, there is no physically acceptable non-trivial fixed point,
except the symmetric fixed point, y∗

a,b = y∗ = q − 1. The linearization of the recursion
relations (6) and (7) in the neighbourhood of this symmetric fixed point leads to the matrix
form (

�y ′
a

�y ′
b

)
= y∗

q

(
1 1
2 0

) (
�ya

�yb

)
(8)

with eigenvalues �1 = 2y∗/q = 2(q − 1)/q and �2 = −y∗/q = −(q − 1)/q. Therefore,
if q > 2, we have �1 > 1 and |�2| < 1, which shows that the geometric fluctuations are
completely irrelevant in this case (since �1 is the same eigenvalue associated with the non-
trivial fixed point of the underlying uniform model, and the behaviour is irrelevant along the
other direction).

We now turn to a more interesting case. Consider a diamond lattice with p = 3 bonds
and q branches. Suppose that the (layered) interactions are chosen according to a period-3
two-letter sequence, a → abb and b → aaa. The new recursion relations are given by

y ′
a = 1

q
yay

2
b +

q − 1

q
(9)

and

y ′
b = 1

q
y3

a +
q − 1

q
. (10)

For q > 3, there is a single non-trivial fixed point, at a symmetric location,

y∗
a = y∗

b = y∗ = − 1
2 + 1

2

√
4q − 3. (11)

The linearization in the neighbourhood of this fixed point leads to the matrix equation(
�y ′

a

�y ′
b

)
= (y∗)2

q

(
1 2
3 0

) (
�ya

�yb

)
(12)

with eigenvalues

�1 = 3
y∗2

q
= 3

2q
[2q − 1 −

√
4q − 3] (13)

and

�2 = −2
y∗2

q
= − 1

q
[2q − 1 −

√
4q − 3]. (14)
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For 3 < q < 3 +
√

5, it is easy to see that �1 > 1 and |�2| < 1. As in the case of
the simple diamond lattice with p = 2 bonds, geometric fluctuations are irrelevant and the
critical behaviour is identical to the uniform case. However, for q > 3 +

√
5 = 5.236 068 . . . ,

we have |�2| > 1, and the symmetric fixed point becomes fully unstable, and, therefore,
cannot be reached from arbitrary initial conditions (the values of εa and εb). For example,
for q = 5, we have y∗

a = y∗
b = y∗ = 1.561 552 . . . , with eigenvalues �1 = 2.140 568 . . .

and �2 = 0.951 363 . . . < 1. For q = 6, however, we have y∗
a = y∗

b = y∗ = 1.791 287 . . . ,

with eigenvalues �1 = 2.573 958 . . . and �2 = 1.143 981 . . . > 1. But, as in the case
of spin models on hierarchical lattices [2], there is a two-cycle in parameter space. It
is easy to numerically locate this cycle at (y∗

a , y∗
b ) = (1.419 001 . . . , 2.267 305 . . .) and

(2.049 103 . . . , 1.309 541 . . .), with eigenvalues of the linearized second iterate given by
�1 = 2.624 300 . . . > 1 and �2 = 0.772 598 . . . < 1. A new critical universality class
is therefore expected to be defined by this attractor.

The behaviour in parameter space is much more interesting if we consider the Rudin–
Shapiro, four-letter substitution rule, a → ac, b → dc, c → ab, d → db. Consider a simple
diamond lattice with p = 2 bonds and q branches. It is straightforward to write four algebraic
recursion relations,

y ′
a = yayc/q + (q − 1)/q y ′

b = ydyc/q + (q − 1)/q (15)

y ′
c = yayb/q + (q − 1)/q y ′

d = ydyb/q + (q − 1)/q (16)

which lead to the symmetric fixed point

y∗
a = y∗

b = y∗
c = y∗

d = y∗ = q − 1. (17)

From the linearization about this fixed point, we have the eigenvalues

�1 = 2
q − 1

q
�2 =

√
2
q − 1

q
�3 = −

√
2
q − 1

q
�4 = 0. (18)

The introduction of aperiodic interactions becomes relevant for the simple diamond lattice if
q > 2 +

√
2 = 3.41 . . . , which corresponds to |�2| = |�3| > 1.

Recursion relations (15) and (16) are so simple that we can perform a number of detailed
calculations. In particular, it is easy to show the existence of additional, non-diagonal fixed
points, given by

y∗
a,d = 1

4(q − 1)
[q(q2 − 2q + 2) ± q

√
(q2 − 2)(q2 − 4q + 2)] (19)

y∗
b,c = q − q − 1

y∗
d,a

. (20)

The Jacobian matrix associated with the linear form in the neighbourhood of these fixed
points can be written as

1

q




y∗
c 0 y∗

a 0
0 0 y∗

d y∗
c

y∗
b y∗

a 0 0
0 y∗

d 0 y∗
b


 . (21)

Besides two trivial eigenvalues, �3 = 0 and �4 = −1, there is an additional pair of eigenvalues
(|�1| > 1 and |�2| < 1) given by the solutions of the quadratic equation

2q4�2 − 4q2(q2 + q − 1)� + q4 + 8q3 − 4q2 − 8q + 4 = 0. (22)
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As |�4| = 1, we have a typical case of marginal behaviour, which cannot be analysed without
resorting to higher-order calculations. However, the marginal operator does not give rise to
a line of fixed points, as could be expected. Instead, with an additional algebraic effort, it is
possible to show the existence of a continuous line whose points are two-cycles, by solving
the polynomial equations

ya,b,c,d = y ′′
a,b,c,d (ya, yb, yc, yd) (23)

where y ′′ is the second iterate of the recursion relations. Given any q > 2 +
√

2, these
equations lead to a pair of one-parameter algebraic curves, which meet smoothly and form
a single, non-intersecting closed curve, containing the non-diagonal fixed points. Any point
belonging to this closed curve is mapped onto another point on the curve upon one iteration
of the recursion relations, and back to itself upon a further iteration. We have used algebraic
computation to check this result very thoroughly. As an example, for q = 4, we have the
equations

ya = 3
t + 4

4t − 3
(24)

yb = −3
70t2 + 71t − 114 ± g(t)

t[6t2 − 137t + 78 ± g(t)]
(25)

yc = −6t2 − 128t + 114 ± g(t)

3t (t + 4)
(26)

and

yd = t (27)

with

g(t) = (36t4 − 2220t3 + 15 529t2 − 27 132t + 12 296)1/2 (28)

and the parameter t taking values between 1.5142 . . . and 5.4112 . . . . In figure 2 we show a
three-dimensional projection of this attractor. The linearization of the second iterates about
any point of the curve leads to the eigenvalues 0,−1 and a conjugate pair, |�1| > 1 and
|�2| < 1 (the values of which do not depend on the point about which linearization is being
carried out). The effects of the marginal eigenvalues on the specific-heat exponent, related to
the existence of an extended attractor in parameter space, have to be checked very carefully,
so we turn to the direct thermodynamic analysis of the free-energy singularity.

Before proceeding to the transfer-matrix calculations, however, it is worth remarking that,
from a broad renormalization-group perspective, the relevance and irrelevance of aperiodic
distributions of couplings is related to the existence or not of a second eigenvalue with
modulus larger than unity. The general structure of the recursion relations can be used to
derive a relevance criterion which is ultimately based on the geometry of the lattice (that is,
the values of p and q), and some measure of the ‘strength’ of the aperiodic fluctuations, such
as the wandering exponent [6].

3. Transfer-matrix formulation

One of us has successfully used a transfer-matrix (TM) technique to obtain the thermodynamic
properties of several spin models on fractal lattices [3, 4]. The essential step of this scheme
consists in the derivation of maps relating the eigenvalues of the transfer matrices associated
with two subsequent generations, G and G + 1. In a certain sense, this formalism is equivalent
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Figure 2. Three-dimensional projection of the attractor of the RG recursion relations for the
Rudin–Shapiro aperiodic sequence, in a lattice with p = 2 and q = 4. The non-diagonal fixed
points are shown as circles.

to a method used by Derrida et al [10] for establishing a map for the free energy, although it
enables the calculation of a correlation length, which turns out to be very useful for locating
the critical temperature (in spin systems).

In order to introduce the transfer-matrix formulation, let us define the model in a
mathematically more precise way. Again, we will consider a simple diamond hierarchical
lattice (remembering that it has q branches and p bonds per branch in each basic cell). At
a generation G of the hierarchical construction, the lattice has qG branches, each of them
formed by pG bonds. A polymer A, extending from one root site to the other, is formed
by pG connected monomers, and represented by a directed continuous path between the two
root sites. A given monomer, labelled i (0 � i � pG − 1), occupies one of the qG available
branches at the ith position along the path. We may define a numbering for the qG branches of
the lattice, and let the variables ai indicate which one is occupied by the ith monomer; clearly,
1 � ai � qG, with analogous definitions for the other polymer, B. The two polymers interact
at position i, with energy −εi < 0, if the ith monomers of the two distinct polymers occupy the
same bond (note that the energy depends only on the position i, since we will consider layered
interactions). If the ith monomers occupy distinct bonds, the interaction energy vanishes.

This definition of the two-polymer model can be summarized by the Hamiltonian

HG = −
pG−1∑
i=0

εiδ(ai, bi) (29)

where δ(ai, bi) indicates a Kronecker delta.
In figure 3, we illustrate the simplest case, for G = 1, p = 2 and q = 2. Note that, in fact,

we are considering a periodic chain of N hierarchical cells, each one grown up to generation
G. For a single cell, as each monomer can independently occupy any of the q branches, there
are qp possible configurations for each position i (remember that, as p = 2, i can have only
two values in each cell), so that a total of 16 possible states can be devised for this specific
situation. However, we have to take into account that each polymer is required to form a
continuous path between the root sites, so that several configurations have to be excluded.
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Figure 3. Periodic chain of N hierarchical cells joined by the root sites, each consisting of the first
generation of a diamond lattice with p = 2 and q = 2. This is the initial stage of the construction
of the transfer-matrix formalism for the interacting polymer model.

Formally, we may calculate the partition function including these forbidden configurations,
if we introduce in the Hamiltonian an additional term of the form η

∑
iVi(ai, ai+1, bi, bi+1),

with η → ∞, such that Vi = 0 for the acceptable configurations and Vi > 0 whenever ai ,
ai+1 and bi, bi+1 are not properly constrained. The explicit form of this potential is somewhat
cumbersome, and will not be given here.

Although it is straightforward to write a partition function for the particular case illustrated
in figure 3,

Z1 = (2eβε0 eβε1 + 2)N (30)

the calculation of ZG, for arbitrary values of G, and hence of the thermodynamic properties
of the model, represents a much more difficult task. This is the reason to invoke the transfer-
matrix technique. However, this problem of interacting polymers, with interaction energies
depending on monomer positions along the bonds, requires a completely new definition of the
transfer matrices.

For the sake of simplicity, we restrict the presentation of the formalism to the homogeneous
(uniform) system, which requires a smaller number of different types of elementary TMs. It
is straightforward to work out an extension for the more complex situation of a model with
aperiodic interactions.

With the inclusion of the infinite-energy term, equation (29) can be written in the
symmetrized form,

HG = −ε

2

pG−1∑
i=0

[δ(ai, bi) + δ(ai+1, bi+1)] + η

pG−1∑
i=0

Vi(ai, ai+1, bi, bi+1) (31)

where we impose periodic boundary conditions, apG = a0 and bpG = b0. Now we define the
q2G × q2G matrices,
(
M(i)

G

)
aibi ;ai+1bi+1

= exp

{
βε

2
[δ(ai, bi) + δ(ai+1, bi+1)] + βηVi(ai, ai+1, bi, bi+1)

}
(32)

and recall that the index i ranges from 0 to pG −1 (the length of each polymer in generation G

is pG). Also, it should be remarked that, in the double indices of M(i)
G , each term aibi must be

interpreted as a tensor product of the variables ai and bi , each of them taking qG independent
values. The Boltzmann weights at each M(i)

G relate to the attracting energy between two
monomers and to whether the ith monomer, placed at the bond ai (bi), can be linked to the
(i + 1)th monomer at the bond ai+1 (bi+1), without violating the continuity constraint. The
definition of the TMs in equation (32) leads to the formal identification of the partition function
with the trace of a product of TMs,

ZG = Tr
pG−1∏
i=0

M(i)
G ≡ Tr MG. (33)

Note that in this equation we considered N = 1, since periodic boundary conditions have
already been enforced.
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In the following we will show that MG has one non-zero eigenvalue, which we call ηG,
and which is obviously its trace. For the sake of clarity, we now state the result that ηG is
given by a recursion relation,

ηG = q
[
η2

G−1 + (q − 1)χ4
G−1

]
(34)

with

χG = q(2G−1) (35)

and η0 = y2. The next two sections are devoted to the derivation of this result, and some
readers may be interested in skipping directly to section 6, where we establish recursion
relations for the relevant thermodynamic functions.

4. Detailed structure of the matrices

The essential difficulty in the evaluation of ZG has been shifted to the calculation of the
eigenvalues of a product of different kinds of TMs, M(i)

G . In order to emphasize the main
ideas of the method, let us explore in greater detail the structure of the matrices in the case
illustrated in figure 3, where now the partition function is the one given by equation (30), with
ε1 = ε2 (remember we are considering uniform interactions for the time being). Defining now
y = exp(βε/2), we note that the TMs M(i)

G=1 assume the two distinct forms,

M(1)
1 =




y2 y y2 y

y 1 y 1
y2 y y2 y

y 1 y 1


 =

(
1 1
1 1

)
⊗

(
y2 y

y 1

)
≡ L(1)

1 ⊗ J(1)
1 (36)

and

M(0)
1 =




y2 0 0 0
0 1 0 0
0 0 y2 0
0 0 0 1


 =

(
1 0
0 1

)
⊗

(
y2 0
0 1

)
≡ L(0)

1 ⊗ J(0)
1 (37)

depending on whether the bonds at sites i and i + 1 meet at a single vertex, where all four
bonds are connected, or at two vertices, where the bonds are connected pairwise. Comparing
equations (36) and (37), we note that several matrix elements in equation (36), which are equal
to y and 1, are replaced by 0 in equation (37). They result from the presence of the term
exp(−βη) → 0 in the Boltzmann weights, indicating that the polymer that arrives at a vertex
where only two bonds meet cannot jump to a bond not incident to that vertex. For this simple
situation, equation (33) reduces to

ZG=1 = Tr
(
M(1)

1 M(0)
1

) = Tr
(
L(1)

1 L(0)
1 ⊗ J(1)

1 J(0)
1

)
. (38)

The four eigenvalues of M1 = M(1)
1 M(0)

1 are given by the independent products of the
eigenvalues of L(1)

1 L(0)
1 (which are 2 and 0) and those of J(1)

1 J(0)
1 (which are y4 + 1 and 0).

Thus, M(1)
1 M(0)

1 has one single non-vanishing eigenvalue, which is � = 2(y4 + 1).
Restricting the analysis to p = 2, we can show that a similar result is valid for any q,

as M(1)
1 and M(0)

1 are expressed in terms of Kronecker products of matrices with the same
structure as those which are present in equations (36) and (37). All elements of the q × q

matrix L(1)
1 are equal to unity;

(
J(1)

1

)
1,1 = y2,

(
J(1)

1

)
1,l

= (
J(1)

1

)
l,1 = y for l = 2, . . . , q, while

all other elements are set to unity; L(0)
1 is the identity q × q matrix, while J(0)

1 is a diagonal
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Figure 4. Second stage of the construction of the transfer-matrix formalism. Now, each cell on
the periodic chain is a diamond lattice of the second generation.

matrix with y2 in the first entry, and 1 along the rest of the diagonal. The only non-vanishing
eigenvalue is � = q(y4 + q − 1), which confirms the previous result for q = 2.

If we go into the next generation, G = 2 (see figure 4), the basic cell of length 22

is associated with three different types of matrices, M(j)

2 , j = 0, 1, 2. They describe,
respectively, the situations where the bonds at position i meet with those at position i + 1
at 1, 2 or 4 distinct vertices, each one with connectivity 2q2, 2q and 2q0. For q = 2, these
matrices are

M(2)
2 =

(
1 1
1 1

)
⊗

(
1 1
1 1

)
⊗




y2 y y y

y 1 1 1
y 1 1 1
y 1 1 1


 (39)

M(1)
2 =

(
1 0
0 1

)
⊗

(
1 1
1 1

)
⊗




y2 y 0 0
y 1 0 0
0 0 1 1
0 0 1 1


 (40)

and

M(0)
2 =

(
1 0
0 1

)
⊗

(
1 0
0 1

)
⊗




y2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (41)

The presence of 0 in equations (40) and (41), and the form of the matrices for larger values
of q follow from the same kind of arguments already used to discuss the generation G = 1.

To evaluate the partition function Z2 it is necessary to identify the order in which the factors
M(1)

2 , M(2)
2 and M(3)

2 are multiplied to form the matrix M2. This can be easily realized if we
recall the association of the different matrix types with the various kinds of vertices along the
hierarchical lattice. We thus have

M2 = M(0)
2 M(1)

2 M(0)
2 M(2)

2 (42)

from which it is straightforward to calculate Z2.
Let us now obtain the structure of the matrices MG for any G. This follows from

equation (33), from the hierarchical structure of the lattice and from the detailed discussion
of the form of matrices M(i)

1 and M(i)
2 . The first important property related to the structure

of the lattice is that, along each branch, there are sites with different connectivities, and
they appear according to a well-defined sequence. The difference in connectivities results
in local variations of degrees of freedom, since the polymers can choose among different
numbers of branches. The inner sites can be of G types, the connectivities of which are
2, 2q, 2q2, . . . , 2qG−1, while the root sites have connectivity 2qG. We identify the type of
a site by the variable s, such that the connectivity of a particular site is 2qs . Let SG be the
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sequence of pG numbers that identifies the order in which the several kinds of sites appear
along a branch in generation G. For instance, S1 = {0, 1} and S2 = {0, 1, 0, 2}. We note that
SG can be obtained by the concatenation of two sequences SG−1, replacing the last symbol
(G − 1) by G. Also, we observe that SG contains 2G−1 symbols 0, 2G−2 symbols 1 and so
forth, until one single symbol G−1 (at the central position) and one symbol G at the rightmost
position. As equation (42) suggests, the matrix associated with a site of type s is M(s)

G , so that
MG decomposes into a product of elementary matrices in a well-defined order,

MG = M(0)
G M(1)

G M(0)
G M(2)

G M(0)
G M(1)

G M(0)
G M(3)

G · · · M(0)
G M(G)

G . (43)

We now study the structure of the q2G ×q2G matrices M(i)
G . Each of them can be expressed

by the Kronecker product of two qG × qG matrices, LG and JG, so that

MG = [
L(0)

G L(1)
G L(0)

G L(2)
G L(0)

G L(1)
G L(0)

G L(3)
G · · · L(0)

G L(G)
G

]
⊗ [

J(0)
G J(1)

G J(0)
G J(2)

G J(0)
G J(1)

G J(0)
G J(3)

G · · · J(0)
G J(G)

G

]
≡ QG ⊗ RG (44)

where the sequence SG controls the numbering order in both QG and RG. Then, we note from
equations (39)–(41) that each L(i)

G can be further expressed by the Kronecker product of G

matrices of order q, each of which is either the unit q ×q matrix I or the constant q ×q matrix
K, with all elements set to unity.

The factor K expresses allowed transitions of the polymer from a given branch to
neighbouring ones, while I indicates a restriction for the polymer to change from one branch
to another. So, it is easy to see that L(G)

G , which describes the site with connectivity 2qG, is
formed by the product of G matrices K, while L(0)

G , related to sites with connectivity 2q0, is
formed by products of matrices I only. If we define A⊗G to be the Kronecker product of G

matrices A, then we can write the general form of the matrices L(g)

G as

L(g)

G = I⊗(G−g) ⊗ K⊗g. (45)

Also, it should be noted that, for g < G, the matrices L(g)

G and L(g)

G−1 are related by

L(g)

G = I ⊗ L(g)

G−1. (46)

The matrices J(i)
G cannot be further decomposed in terms of Kronecker products, but they

can be expressed as

J(g)

G = L(g)

G + H(g)

G (47)

where H(g)

G is given by

(
H(g)

G

)
ij

=




y2 − 1 if i = j = 1

y − 1 if i = 1 j ∈ {2, . . . , qg}
y − 1 if i ∈ {2, . . . , qg} j = 1

0 otherwise

. (48)

If g < G, it is also possible to see that

H(g)

G = H(g)

G−1 ⊕ 0 ⊕ 0 ⊕ · · · ⊕ 0 (49)

where 0 indicates the null qG−1 × qG−1 matrix, which appears q − 1 times in the direct sum.
This expression can also be written as

H(g)

G =




1 0 0 . . . 0
0 0 0 0
0 0 0 0
...

. . .
...

0 0 0 . . . 0




⊗ H(g)

G−1 (50)
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where the first matrix is of order q. Combining this last equation with equation (46), we obtain

J(g)

G = I ⊗ L(g)

G−1 + H(g)

G =




J(g)

G−1 0 0 . . . 0

0 L(g)

G−1 0 . . . 0

0 0 L(g)

G−1 . . . 0
...

...
...

. . .
...

0 0 0 . . . L(g)

G−1




(51)

which is valid for g < G. In this expression, the 0 represent null matrices of order qG−1,
so that J(g)

G is a block-diagonal matrix, with one J(g)

G−1 block and q − 1 blocks L(g)

G−1 in the
diagonal.

The particular structure of the matrices L(g)

G and J(g)

G leads to a recurrence relation for the
only non-zero eigenvalue of MG in terms of the corresponding eigenvalue of MG−1. This will
be shown in the next section.

5. Eigenvalues of the matrix MG

The eigenvalues of MG are given by all distinct products of the eigenvalues of QG and RG.
Let us first consider the eigenvalues of QG. According to equation (44), QG is expressed by
the usual matrix products of matrices which are themselves Kronecker products of only two
types of matrices, I and K. Then it is easy to show that

QG = K ⊗ K2 ⊗ K4 ⊗ · · · ⊗ K2G−2 ⊗ K2G−1
. (52)

Using the relation

Kn = qn−1K (53)

and the identity

G−1∑
g=1

(2g − 1) = 2G − G − 1 (54)

it is possible to write equation (52) as

QG =

G−1∏

g=0

q2g−1


 K⊗G. (55)

The rank of K is unity, and its only non-zero eigenvalue is q. It follows that qG is the only
non-zero eigenvalue of K⊗G, so that χG, the eigenvalue of QG, is given by

χG = q(2G−1). (56)

Now, let us calculate the eigenvalues of RG, defined through equation (44). First, we
write RG in the form

RG =
2G∏
l=1

J(SG)l
G =


2G−1∏

l=1

J(SG)l
G


 J(G)

G (57)
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where (SG)l represents the lth number in the sequence SG. Then, we note that the matrix J(G)
G

can be written as

J(G)
G =




J(G−1)
G−1 EG−1 EG−1 . . . EG−1

FG−1 L(G−1)
G−1 L(G−1)

G−1 . . . L(G−1)
G−1

FG−1 L(G−1)
G−1 L(G−1)

G−1 . . . L(G−1)
G−1

...
...

...
. . .

...

FG−1 L(G−1)
G−1 L(G−1)

G−1 . . . L(G−1)
G−1




(58)

where all the elements of the qG−1 × qG−1 matrix EG−1 are equal to unity, with the exception
of those of the first row, which are equal to y. The matrix FG−1 is the transpose of EG−1. For
g < G, we recall that equation (51) uncovers the block-diagonal structure of J(g)

G , so that

2G−1∏
l=1

J(SG)l
G =




∏2G−1
l=1 J(SG)l

G 0 . . . 0

0
∏2G−1

l=1 L(SG)l
G . . . 0

...
...

. . .
...

0 0 . . .
∏2G−1

l=1 L(SG)l
G


 (59)

with q blocks of order qG−1 in the diagonal. Let us now introduce the notation

	J =
2G−1∏
l=1

J(SG)l
G−1 (60)

with the analogous definition for the product of the matrices L(g)

G . Making use of equations (58)
and (59), we obtain

RG =




	JJ(G−1)
G−1 	JEG−1 	JEG−1 . . . 	JEG−1

	LFG−1 	LL(G−1)
G−1 	LL(G−1)

G−1 . . . 	LL(G−1)
G−1

	LFG−1 	LL(G−1)
G−1 	LL(G−1)

G−1 . . . 	LL(G−1)
G−1

...
...

...
. . .

...

	LFG−1 	LL(G−1)
G−1 	LL(G−1)

G−1 . . . 	LL(G−1)
G−1




. (61)

Let us consider the entries of this matrix. Take, for instance,

	LL(G−1)
G−1 =


2G−1∏

l=1

L(SG)l
G−1


 L(G−1)

G−1

=

2G−1∏

l=1

L(SG)l
G−1





 2G−1∏

l=2G−1+1

L(SG)l
G−1


 L(G−1)

G−1 . (62)

The first factor is clearly QG−1, as the sequence SG is equivalent to SG−1 until the position
l = 2G−1. However, SG is also identical to SG−1 between the positions l = 2G−1 + 1 and
l = 2G − 1, according to the rule to generate SG from SG−1. Thus, this factor, multiplied by
L(G−1)

G−1 , also leads to QG−1,

	LL(G−1)
G−1 = Q2

G−1. (63)

Following the same arguments, it is possible to show that

	JJ(G−1)
G−1 = R2

G−1 (64)
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so that

RG =




R2
G−1 	JEG−1 	JEG−1 . . . 	JEG−1

	LFG−1 Q2
G−1 Q2

G−1 . . . Q2
G−1

	LFG−1 Q2
G−1 Q2

G−1 . . . Q2
G−1

...
...

...
. . .

...

	LFG−1 Q2
G−1 Q2

G−1 . . . Q2
G−1




. (65)

Now we recall that RG is a product of the matrices J(g)

G , including J(G)
G . The rank of this

last matrix is unity, as one sees from equation (58). Using the Frobenius inequality for the
rank of matrices [11], we then see that the rank of RG is also unity. Then, the only non-zero
eigenvalue λG equals the trace of RG, so that

λG = Tr R2
G−1 + (q − 1) Tr Q2

G−1. (66)

However, it is clear that Tr R2
G−1 ≡ λ2

G−1. Also, from equation (56), we have Tr Q2
G−1 ≡

χ2
G−1, so that

λG = λ2
G−1 + (q − 1)χ2

G−1. (67)

As λ0 = y2, this equation gives rise to a recursion relation for the eigenvalues of RG. If we
call ηG the only non-zero eigenvalue of MG, we may write

ηG = χGλG = χG

[
λ2

G−1 + (q − 1)χ2
G−1

]
. (68)

From equation (33), one sees that ZG = ηG, since the trace is just this non-zero eigenvalue.
Now, using equation (56), we have

χG = qχ2
G−1 (69)

from which we are finally led to the map

ηG = q
[
η2

G−1 + (q − 1)χ4
G−1

]
. (70)

6. Thermodynamic functions

If we take the Boltzmann constant kB = 1, the free energy per monomer of the system may
be written as

fG = − T

2G
ln ZG = − T

2G
ln ηG. (71)

Defining an auxiliary map, KG = χ2
G

/
ηG, we have

fG = fG−1 − T

2G
ln

(
1 + (q − 1)K2

G−1

) − T

2G
ln 2 (72)

where

KG = qK2
G−1

1 + (q − 1)K2
G−1

. (73)

The recursive iteration of equations (72) and (73), with the initial conditions f0 = −ε and
K0 = exp(−βε), leads to the free energy per monomer for any generation G, which converges
to a well-defined free energy in the thermodynamic limit, G → ∞. Maps for additional
thermodynamic functions, such as the entropy and the specific heat, can be obtained by taking
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Figure 5. Entropy and specific heat for a uniform model, in a lattice with p = 2 and q = 4,
calculated using the transfer-matrix technique. In this figure ε/kB = 1.

the derivative of equations (72) and (73) with respect to temperature. For the entropy per
monomer, for example, we obtain

sG = sG−1 +
1

2G
ln

(
1 + (q − 1)K2

G−1

)
+

T

2G

2(q − 1)KG−1

1 + (q − 1)K2
G−1

∂KG−1

∂T
+

1

2G
ln 2 (74)

where
∂KG

∂T
= 2qKG−1(

1 + (q − 1)K2
G−1

)2

∂KG−1

∂T
. (75)

As an example, in figure 5 we show the results for the entropy and specific heat of a uniform
model on the lattice with p = 2 and q = 4. Numerical analysis shows there is a genuine
singularity, associated with a divergence of the specific heat at a critical temperature. Note the
interesting behaviour of the system above the transition temperature, with a constant entropy
per monomer, and, consequently, zero specific heat. On physical grounds, this result should
have been anticipated, since the polymers are completely unbound on the high-temperature
phase, and the maximum amount of disorder is attained independently of temperature. The
RG approach, however, does not yield such a global picture of the thermodynamics, which is
possible only in the TM framework.

To check the reliability of the method, and its compatibility with the RG results, we
may compare the critical temperature and exponent it yields with those predicted by the
renormalization-group calculation. For any value of q, the fixed point y∗ = q − 1, with
y = (exp βε), gives the critical temperature

TC = ε

kB

1

ln(q − 1)
(76)

with a critical exponent given by equations (4) and (2). For q = 4 and ε/kB = 1, we have
TC = 0.910 239 . . . and α = 0.290 488 . . . . The numerical analysis of data in figure 4 leads
to TC 
 0.910 239 and α 
 0.2905, which confirms the accuracy of the method.

Now we remark that the models we are interested in include more than one interaction
energy, depending on the position i along the path between the root sites. The basic steps
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of the TM scheme can be adapted in order to obtain the corresponding maps, although much
attention has to be paid to all the details. For instance, if we consider an aperiodic model with
the presence of two distinct interaction energies, which are placed along the lattice according
to the period-doubling sequence a → ab, b → aa, the method requires the definition of two
matrices Ma

G and Mb
G, the eigenvalues of which are η

(a)
G and η

(b)
G . The maps for η

(a)
G and η

(b)
G

are written as

η
(a)
G = q

[
η

(a)
G−1η

(b)
G−1 + (q − 1)χ4

G−1

]
(77)

and

η
(b)
G = q

[(
η

(a)
G−1

)2
+ (q − 1)χ4

G−1

]
. (78)

Note that each one of these eigenvalues gives rise to a different partition function, associated
with the choice of a or b as the initial letter to be iterated according to the inflation rule. We
are always interested in sequences generated by the recursive application of the rule to the
initial letter a.

If the aperiodicity is induced by the four-letter Rudin–Shapiro sequence, a → ac,

b → dc, c → ab, d → db, the set of four maps for the eigenvalues is given by

η
(a)
G = q

[
η

(a)
G−1η

(c)
G−1 + (q − 1)χ4

G−1

]
(79)

η
(b)
G = q

[
η

(c)
G−1η

(d)
G−1 + (q − 1)χ4

G−1

]
(80)

η
(c)
G = q

[
η

(a)
G−1η

(b)
G−1 + (q − 1)χ4

G−1

]
(81)

and

η
(d)
G = q

[
η

(b)
G−1η

(d)
G−1 + (q − 1)χ4

G−1

]
. (82)

The free energy per monomer, along with its temperature derivatives, can be similarly defined,
so that the singularity at the phase transition can be analysed directly.

7. Discussions and results

As discussed in section 2, the RG analysis of the uniform model indicates the presence of
a second-order phase transition for q > 2, with the specific-heat critical exponent given by
equation (4). In the case of irrelevant aperiodicity, that is, when the diagonal fixed point has one
relevant eigenvalue, α is given by the same expression. For the period-3 sequence, however,
the diagonal fixed point is completely unstable, and the two-cycle should be responsible for
the critical behaviour, as in the case of the spin models [2]. In this case, the scaling analysis
must be somewhat adapted to take into account that two renormalization-group iterations are
needed in order that the system goes back to the vicinity of one of the two points that are part
of the two-cycle [10]. The result is simply that the specific-heat critical exponent is now given
by

α = 2 − 2
ln p

ln �
(83)

where � is the leading eigenvalue of the linearized second-iterate of the RG recursion relations
about any one of the two points of the attractor. The results of this analysis have already been
given elsewhere [1], and will not be repeated here.

For the model with Rudin–Shapiro aperiodic interactions, we remarked above that there
exist two non-diagonal fixed points together with the curve composed of two-cycles, and that
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Figure 6. Specific heat of the model with Rudin–Shapiro aperiodicity, in a lattice with p = 2 and
q = 4, calculated using the transfer-matrix technique. In this figure εd is 100 times greater than
the other energies.

the linearization of the second iterates of the recursion relations about any point on the two-
cycle curve gives the same eigenvalues. For each q > 2 +

√
2, we may therefore determine

numerically which value of α equation (83) predicts, and then compare it with the direct
analysis of the singularity which comes from the TM method. It is also possible to obtain
α in the usual way, linearizing the recursion relations (first iterate) about the non-diagonal
fixed points, using the leading eigenvalue that comes from the solution of equation (22). The
coincidence of the values is already an important hint of the correctness of scaling predictions,
and we have indeed verified it for several choices of q.

In figure 6 we show the TM results for the specific heat in a lattice with q = 4, with
a certain choice of interaction energies. The first interesting feature is the appearance of
log-periodic oscillations in the low-temperature phase, as in spin models [3]. This is a natural
consequence of the discrete scale-invariance of the aperiodic sequence (due to its self-similar
character), which implies a natural rescaling factor in the renormalization group [12]. Several
different values of the interaction energies must be separately analysed, and the net result is an
exponent α = 0.252 ± 0.08. Two points must be carefully stressed: first, that some choices
for the energies (εa = εd and εb = εc, for instance) give rise to an effectively periodic model,
because of the symmetries of the Rudin–Shapiro rule, and should therefore be kept out of the
analysis; second, α does not show any important dependence on the values (provided they are
not of the form that makes the model effectively periodic, of course), which points to a true
‘aperiodic universality class’ associated with the Rudin–Shapiro geometrical perturbation of
the model. Now, for q = 4, the scaling result is α = 0.253 692 . . . , in striking agreement
with the TM value. The same scenario is present for several other values of q we have tested,
which leads us to believe in the correctness of the methods.

In conclusion, we have presented detailed renormalization-group and transfer-matrix
calculations for a class of interacting polymer models on diamond-like hierarchical lattices,
with aperiodically distributed coupling constants. Although straightforward, the exact
renormalization-group analysis has revealed a surprising family of attractors in the case of
Rudin–Shapiro aperiodicity, and this prompted us to resort to the transfer-matrix formalism
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to check the scaling results. However, we had to develop a complete reformulation of this
method, in order to apply it to the polymer problem. The transfer-matrix calculations have
confirmed the results of the simple scaling analysis, but have also revealed peculiarities of the
transition that were not accessible to the renormalization-group study. What is most important
is to note that aperiodic perturbations may lead to new universality classes, adding up to
the usual criteria of dimensionality and symmetry. In a sense, the breakdown of translation
invariance may be relevant to the determination of new types of universal behaviour, and the
particular way in which this invariance is broken must be taken into account. The introduction
of disorder, for example, is a way of breaking translation invariance, and there are several
instances in which its effects on critical behaviour are well known. Aperiodic distributions of
couplings are another way of accomplishing this, and, although more difficult to implement
physically, they are amenable to more controlled calculations, such as those presented in this
paper.
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