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Abstract

We have studied the performance of the back-propagation neural network with different architectures and activation functions to

fit potential energy curves and dipolar transition moment functions of the OH molecule from the ab initio data points of Bau-

schlicher and Langhoff [J. Chem. Phys. 87 (1987) 4665]. The neural network fittings are tested in different moments of the training

process by computing the vibrational levels, the transition probabilities between A2Rþ and X2P electronic states, and the radiative

lifetimes. The results from the neural network fittings are then compared with experimental values, previous results calculated by

Bauschlicher and Langhoff and the ones obtained by using of extended Rydberg function fitting.
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1. Introduction

The study of nuclear motions in molecules is relevant

in such problems as the determination of rovibrational

states, photodissociation process and molecular reactive

scattering, where the Born–Oppenheimer approxima-

tion is usually considered. This approximation implies

that the molecular dynamics is governed by a potential

energy surface (PES) obtained from the electronic en-

ergy and the nuclear repulsion term. There are two im-
portant steps to obtain the PES: (i) the calculation of the

electronic energy for a set of nuclear configuration using

ab initio and/or semiempirical methods and (ii) the fit-

ting of the potential energy surface from these points.

The fitting process is usually done by power series in an

appropriate coordinate system [1–3], using local func-

tions such as the cubic spline [4–6], or semiempirical

potentials with adjustable parameters to reproduce ex-
perimental and theoretical results [7,8]. However, alter-
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native procedures to those methods have always been

sought [9–15]. One of them is the multilayer neural
network (NN) method to fit the PES [16–22].

Artificial neural network is a highly nonlinear com-

putational device based on the organizational structure

of the brain and in its learning process [23,24]. It consists

in an interconnected processing units called ‘‘neurons’’

typically arranged in layers. Each neuron receives a set

of input signals and transforms them, emitting a output

signal, as a synapse, by using a function (activation or
transfer function). The output signal is directed to other

neurons through links affected by a connection weights.

These weights are determined by an adaptive method

known as learning or training process, where the neural

network self-organizes to reproduce some desired be-

haviour. The learning process is, to modelling problems,

fulfilled by control of the error performed by NN in the

reproduction of known examples. The most simple and
widely used algorithm to train the multilayer neural

network is the back-propagation (BP) procedure [24,25].

The BP algorithm is an interactive gradient technique

that minimizes the global error between the exact and

the neural network output. However, there are many
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other more sophisticated minimization algorithms such

as second order optimization methods [25–29]. Because

its versatility, NNs have been used in a variety of ap-

plications in chemistry and physics [24,30–32]. Particu-

larly in both theoretical chemistry and atomic and
molecular physics NNs have been recently applied with

great success in many subject areas [33–41].

In present work, the central aspect is the fitting of the

fundamental (X2P) and excited (A2Rþ) electronic po-

tential energy curves (PECs) and the corresponding di-

polar transition moment function (DTMF) to the OH

molecule from ab initio points by using multilayer

neural networks. The choice of the OH system is moti-
vated by the existence of several theoretical studies

based on ab initio [42–46] and semiempirical calcula-

tions [47–49]. Our major goal is to discuss the implica-

tions of using different NN architectures (types of

activation functions, number of neurons and number of

layers) in the quality and accuracy of the fitted PEC and

DTMF. For this, we employ them to determine vibra-

tional frequencies, probabilities in the A2Rþ ! X2P
transitions and the radiative lifetime of the A2Rþ state

of the title system. Note that the transition probabilities

are very sensitive to the PECs and DTMF involved in

the process. The study of an one-dimensional system

enables us to realize an exhaustive and comparative

analysis between different possible choices for NN ar-

chitectures concerning the quality of the PEC and

DTFM; this because it is easier to compute such prop-
erties as vibrational levels and transition probabilities.

Similar studies for multidimensional problems should be

prohibitive because the computational cost to calculate,

for example, the vibrational energy levels should be very

high. Such an analysis is useful in the attempt to es-

tablish the NNs as a technique to fit molecular potential

energy surfaces.

In particular, we employ the BP procedure to train
neural networks with different types of activation func-

tions (sigmoidal, hyperbolic tangent and linear func-

tions), number of neurons (3, 4, and 6), and number of

layers (one or two hidden layers). For these learning

processes, we consider the ab initio data points of X2P
and A2Rþ electronic states and the corresponding di-

polar transition moment function obtained by Bau-

schlicher and Langhoff [45]. It is interesting to point out
that the stop condition for training process of the neural

network is not based solely on the error function but

also on the accuracy of the calculated vibrational levels

obtained from the fitted NN potential energy curves.

The vibrational levels are calculated using the discrete

variable representation (DVR) method (see [50–52] and

references therein). Transition probabilities in

A2Rþ ! X2P and the radiative lifetimes are then ob-
tained for the best neural network fittings. In order to

test the accuracy of our results, we compare them with

the experimental values [53–55], with the results calcu-
lated by Bauschlicher and Langhoff in [45], and with the

values obtained using the extended Rydberg function [3]

fitting applied to the same ab initio data.

The structure of the paper is the following. Section 2

presents the basic theory of neural network, while the
theoretical framework and the main aspects of the DVR

method are shown in Section 3. Section 4 presents the

different neural networks fittings of the potential energy

curves and dipolar transition moment function, and the

results to vibrational levels, transition probabilities and

lifetimes calculations. The paper is closed with some

concluding remarks in Section 5.
2. Neural network

A neural network performs an input–output mapping

based on the associations of basic units called neurons.

A single neuron receives an input, a vector of elements

fxig, and the output yj is computed by

yj ¼ f
Xn
i¼1

wjixi

 
þ wj0

!
; ð1Þ

where f is the activation function and wji are the syn-

aptic weights associated to the synaptic connections (wj0

is a bias). The activation function is responsible for the

non-linear behavior of the neural networks [56]. There

are many types of them. But, as we already said in
Section 1, here the following ones are considered:

f ðzÞ ¼ 1

1þ expð�zÞ ; ð2Þ

f ðzÞ ¼ tanhðzÞ; ð3Þ

f ðzÞ ¼ z; ð4Þ
that are named as sigmoidal (s), hyperbolic-tangent (t)
and linear (l) activation functions, respectively.

A neural network structured as a set of layers of

neurons, where the response signal of each neuron in a

layer is an input signal for the neurons in the next layer,

is known as multi-layer perception. The multi-layer

perception has a simple form and is widely used to treat
interpolation problems [57]. In that case, the output of

the ith neuron on the kth layer is

yðkÞi ¼ f ðkÞðzðkÞi Þ; ð5Þ
with zðkÞi given by

zðkÞi ¼
Xnk
j¼1

wðkÞ
ij y

ðk�1Þ
j þ wðkÞ

i0 ; ð6Þ

where wðkÞ
ij is the synaptic weight of the connection from

the jth neuron of the ðk � 1Þth layer to the ith neuron

of the kth layer, wðkÞ
i0 is the bias, and yðk�1Þ

j is the output

of the jth neuron of the ðk � 1Þth layer. An appropriated
architecture for the present applications is a fully con-
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nected NN with one input neuron without activation

function (the nuclei distance R), some hidden layers, and

an output layer with one neuron (the potential energy

[V ðRÞ] or the dipolar transition moment function [DðRÞ]
values for the particular geometry). Usually, such an
architecture is described by listing the number of neu-

rons in each layer, followed by letters denoting the ac-

tivation function used in the layer. For instance, Fig. 1

displays a 1-3s-1l structure which represents an NN with

three layers, where the hidden layer has three neurons

with the sigmoidal activation function and in the output

layer is used the linear one. This NN corresponds to the

following functional form:

yð2Þ1 ¼ f ð2Þ
X3
j¼1

wð2Þ
1j f

ð1Þðwð1Þ
j1 x1

 
þ wð1Þ

j0 Þ þ wð2Þ
10

!
ð7Þ

with x1 ¼ R and y1 ¼ V ðRÞ or DðRÞ.
The next step is to obtain the best set of synaptic

weights that fits a known set of input–output values

fxi;Eig; i ¼ 1; . . . ;m; in the present case we have, re-

spectively, the nuclear configurations and the ab initio

results of potential energy or the dipolar transition

moment. By the training process of our NN we minimize

the following error function:

�2 ¼ 1

2

Xm
i¼1

ðEi � yðNÞ
i Þ2; ð8Þ

where yðNÞ
i is the output of the NN for the ith input (xi).

The BP algorithm that we have utilized here is com-

posed by following steps: (i) the initial weights are ob-

tained randomly and (ii) the weights are corrected

according to

DwðlÞ
ji ¼ wðlÞnew

ji � wðlÞold
ji ¼ �g

o�

owðlÞ
ji

; ð9Þ

where DwðlÞ
ji is the correction for the weight wðlÞ

ji and g is a
positive scale factor. Using the chain rule, we obtain

DwðlÞ
ji ¼ gdðlÞj yðl�1Þ

i ; ð10Þ
Fig. 1. The neural network with 1-3s-1l architecture.
where yðl�1Þ
i is the output of the ith neuron of the

ðl� 1Þth layer and the generalized delta function dðlÞj has

the following definition:

dðlÞi ¼
Xr
k¼1

dðlþ1Þ
k wðlþ1Þ

ki

 !
of ðlÞðzÞ

oz
ð11Þ

for l 6¼ N , and

dðNÞ
i ¼ ðEi � yiÞ

of ðNÞðzÞ
oz

ð12Þ

for the output layer. In order to avoid that the numerical

process is stopped at local minima during the minimi-

zation progress, we use the following generalization of

Eq. (10):

DwðlÞ
ji ¼ gdðlÞj yðl�1Þ

i þ lDwðlÞprevious
ji ; ð13Þ

where l is the momentum constant. Both g and l are

taken between zero and one. The weights are corrected

using Eq. (13) until the fitting (or the root-mean-square

error) attains the desired accuracy. The term ‘‘desired

accuracy’’ is defined in each context of use.
3. Transition probabilities

The rovibrational energy levels associated with a

particular electronic state of OH system are character-

ized by the potential energy curve that describes such an

electronic state. These rovibrational levels are then ob-
tained by solving the radial equation for the nuclear

motion [43]

� �h2

2l
d2

dR2
Xm;lðRÞ þ V ðRÞ

�
þ lðlþ 1Þ

2lR2
� Em;l

�
Xm;lðRÞ ¼ 0;

ð14Þ
where V ðRÞ is the PEC, l is the reduced mass, l and m are
the rotational and the vibrational quantum numbers,

and Xm;lðRÞ is the rovibrational wave function with ei-

genenergy Em;l. We point out that we have considered in

present work the case l ¼ 0 only, and we do not main-

tain this index in the notation. We emphasize that to
solve Eq. (14) it is generally necessary to have an ana-

lytical function for the PEC and that the accuracy of the

vibrational eigenfunctions and eigenvalues depends di-

rectly of the PEC quality.

Moreover, the knowledge of the DTMF, associated

with accurated vibrational wave functions, allows the

evaluation of the radiative transition probabilities (Am0m00)

for arbitrary transition between the vibrational levels of
two electronic states and the respective lifetime of the

excited level (sm0). The transition dipole matrix elements

and the Franck–Condon factor are obtained from

Dm0m00 ¼ hXm0 ðRÞjDðRÞjXm00 ðRÞi; ð15Þ

qm0m00 ¼ hXm0 ðRÞjXm00 ðRÞi; ð16Þ
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where DðRÞ is the electronic DTMF; Xm0 ðRÞ and Xm00 ðRÞ
are the vibrational wave functions of the upper and

lower states. In terms of Dm0m00 , the spontaneous transi-

tion probability (or Einstein A-coefficient) from a bound

vibrational level m0 of an upper electronic state into a
vibrational level m00 of a lower electronic state is given by

[43]

Am0m00 ¼ 2:03� 10�6gm3m0m00 Dm0m00j j2s�1; ð17Þ
where g is a statistical weighting factor equal to 2 for

R ! P transitions; Dm0m00 is given in atomic unit and mm0m00
is the transition frequency measured in cm�1. The ra-
diative lifetime of a vibrational energy level of the ex-

cited electronic state is the reciprocal of the sum of all

Einstein coefficients for that level

sm0 ¼
X
m00

Am0m00

 !�1

: ð18Þ

In this work we use the discrete variable representation

method [58–61] to calculate the vibrational eigenener-

gies and eigenfunctions. The DVR method is described

with enough detail in many other papers (e.g., see

[50–52] and references therein), but here we give a brief

introduction.
The DVR procedure consists: (i) to build a set of

basis functions UaðRÞ with the following property:

UaðRbÞ ¼
dabffiffiffiffiffiffi
xa

p ; a; b ¼ 1; . . . ; k; ð19Þ

where fRag and fxag, a ¼ 1; . . . ; k are the pivots and

weights of a Gaussian quadrature; (ii) to expand the trial
wave function with the basis (19); and (iii) to solve the

associated eigenvalue–eigenvector problem. In this

method the matrix elements of the potential energy us-

ing the basis (19) are given by

Vab ’ V ðRaÞdab; ð20Þ

while the kinetic energy matrix elements can be calcu-
lated analytically. A characteristic of the DVR method

is that the value of an eigenfunction in a quadrature

point is simply the coefficient of the DVR function as-

sociated with this point divided by the root of the related

weight (XmðRaÞ ¼ cma=
ffiffiffiffiffiffi
xa

p
). Thus, integrals (15) and (16)

are calculated by

Dm0m00 ’
X
a

xaXm0 ðRaÞDðRaÞXm00 ðRaÞ

¼
X
a

cm
0

aDðRaÞcm
00

a ; ð21Þ

qm0m00 ’
X
a

xaXm0 ðRaÞXm00 ðRaÞ ¼
X
a

cm
0

a c
m00

a : ð22Þ

In particular, here we have utilized the DVR method

generated for an equally spaced set of points and

weights [60], and Eq. (14) has been solved for different
potential energy curves fitted by using neural network

method and extended Rydberg function.
4. Results

The neural network method described in Section 2 is

used to fit the potential energy curves of the X2P and

A2Rþ electronic states and the associated dipolar tran-

sition moment function for the OH molecule. The ab

initio points we have utilized as the input–output values

of the neural network training process were the ones

calculated by Bauschlicher and Langhoff [45]. They
computed the potential energies and the dipolar transi-

tion moment for 19 nuclear distances between 1.3 and

4.4 bohr by using a multireference CI (MRCI), and

employed them to calculate the differences between vi-

brational energy levels (DGm¼1=2 ¼ Emþ1 � Em), the tran-

sition probabilities (Am0m00) and radiative lifetimes (sm0 ).
We compare our results obtained from different archi-

tectures of neural networks, where the activation func-
tions were varied, the number of neurons and the

number of layers, with the Bauschlicher and Langhoff

(BL) ones [45], the experimental values of Coxon et al.

[53–55], and the ones calculated by using the extended

Ryderberg function (ERF) [3] fitting. The ERF is a good

representation of a typical diatomic potential given by

VER ¼ De 1

"
þ
X
k

akðR� ReÞk
#
expð�cðR� ReÞÞ; ð23Þ

which has a minimum of depth De at R ¼ Re. We point

out that we have utilized k6 8 for the ERF fitting.
Initially, we fit X2P and A2Rþ PECs and the

A2Rþ ! X2P DTMF for the OH system employing

various fully connected NNs with one input neuron

without activation function, one output neuron with the

linear function and one or two hidden layers with the

sigmoidal (s) and hyperbolic tangent (t) activation

functions. To NNs with one hidden layer we varied the

number of neurons of such a layer in 3, 4 and 6, while to
NNs with two hidden layers we used two neurons at

each one, totalizing eight different NNs to fit the PECs

and the DTMF. The training process was stopped when

the root-mean-square error of each neural network fit-

ting reached the plateau of 10�4–10�5 a.u. In order to

eliminate the overfitting problem, we also supervised

this process analysing the accuracy of the calculated

vibrational levels when compared to experimental and
BL values. Examples of these fittings for the X2P and

A2Rþ electronic states, and the A2Rþ ! X2P DTM

function are shown in Figs. 2 and 3, respectively.

To determine the quality of the NN fittings to po-

tential energy curves we have calculated the vibrational

energy levels using the equally spaced DVR method [60].

Specifically, the vibrational energy separations DGm�1=2



Fig. 3. The dipolar transition moment for A2Rþ �X2P of OH using

neural network fitting: 1-3t-1l (dashed line) and 1-3s-1l (dotted line);

they are indistinguishable here because both fittings are essentially

identical. The ab initio data points [45] are denoted by squares.

Fig. 2. The electronic ground state and A2Rþ electronic excited state of

the OH using 1-3t-1l (dashed line) and 1-3s-1l (dotted line) neural

network fittings (they are indistinguishable here because both fittings

are essentially identical). The ab initio data points [45] are denoted by

circles and squares.
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for the X2P and A2Rþ electronic states of OH have been

calculated from the potential energy curves we have

fitted using the various neural network architectures and

the extended Rydberg function. These results are then

presented in Tables 1 and 2, respectively, where the BL

and experimental ones are also displayed for illustration.

Assuming as reference the DGm�1=2 obtained from ERF

fitting, the best fits are obtained with the NN architec-
ture 1-3s-1l for the X2P state (root-mean-square error

between ERF and NNs values of 2.34 cm�1) and 1-6t-1l
structure for the A2Rþ state (root-mean-square error of

1.17 cm�1). Moreover, we point out that all results from

NN fitting present a good agreement with the ERF ones,

even in the case where the neural networks have the

smallest number of neurons.
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Another criteria to judge the accuracy of the neural

network potential energy curver (NNPECs) is the cal-

culation of Franck–Condon (FC) factors (qm0m00) between
vibrational wave functions of the ground and excited

electronic states. The FC factor explicits the quality of
the PEC by the analysis of the wave function of the

nuclear problem. The differences between qm0m00 calculated
using NNPECs and using ERF fitting are shown in

Table 3. The ERF results are shown also as reference

data. We can see in Table 3 that the best results are

obtained with the 1-4t-1l structure, while the neural

networks with two hidden layers presented the worst

results. Similar results have been verified also for the
vibrational levels of the X2P and A2Rþ electronic states

(see Tables 1 and 2).

Now, to verify the quality of the DTMFs we have

fitted with various neural network structures, we have

calculated the transition probabilities in A2Rþ ! X2P.

In particular, in Table 4 all calculations were carried

out using the vibrational states obtained with the ERF

fitting, being varied only the dipolar transition mo-
ment functions. This arbitrary choice was done to

eliminate any influence of the PECs in the analysis of

the DTMF fitting. The transition probabilities calcu-

lated by Bauschlicher and Langhoff [45] are shown

also for comparison. Assuming as reference the ERF

results, we can verify that the best results are those

obtained with fitted DTMFs using the following NN

structures: 1-3t-1l and 1-4s-1l. In spite of the worst
results are calculated with the fits that used more

neurons at the hidden layer, all values obtained from

neural network fitting present excellent agreement with

ERF ones.

The next step is then to determine the neural network

transition probabilities (NNTP), i.e., the Am0m00 calculated

using the neural network dipolar transition moment

functions and the vibrational states obtained from the
neural network potential energy curves. In particular,

we restricted the study for the case that all fittings have

been carried out employing neural networks of same

structure. In Table 5 we compare the calculated NNTP

for the 1-3t-1l, 1-3s-1l and 1-4s-1l structures with the

respective ones shown in Table 4. Note that the values of

NNTP for the three structures are in excellent agreement

with the transition probabilities calculated with the ERF
procedure, being the NNTP obtained using the 1-3t-1l
the best ones.

Finally, the radiative lifetimes Eq. (18) are deter-

mined from the transition probabilities presented in

Table 5. They are then compared with the ones cal-

culated by Bauschlicher and Langhoff [45] in Table 6.

We note that the radiative lifetimes which have been

obtained from neural network transition probabili-
ties with 1-3t-1l structure present the best agreement

with the ones calculated using the ERF transition

probabilities.



Table 4

Calculated vibrational transition probabilities for OH (A2Rþ ! X2P) relative to A00 ¼ 1000

m0m00 Ref. [45] ERF Neural network

1-3t-1l 1-4t-1l 1-6t-1l 1-3s-1l 1-4s-1l 1-6s-1l

0; 0 1000 1000 1000 1000 1000 1000 1000 1000

0; 1 4.5 4.5 4.5 4.6 4.6 4.5 4.5 4.6

1; 0 328.8 328.4 328.5 327.7 327.7 328.5 328.4 327.6

1; 1 597.4 597.5 597.4 596.9 596.5 598.3 597.7 598.5

1; 2 5.4 5.5 5.5 5.5 5.5 5.5 5.5 5.6

2; 0 68.6 68.5 68.6 68.1 68.0 68.7 68.5 68.4

2; 1 482.8 483.2 483.2 482.6 482.6 483.3 483.1 483.0

2; 2 314.6 314.7 314.7 313.9 313.5 315.5 314.9 315.2

2; 3 3.8 3.9 3.9 3.9 3.9 4.0 3.9 3.9

3; 0 12.9 12.9 12.9 12.8 12.7 13.0 12.9 13.0

3; 1 173.1 173.4 173.5 172.8 172.7 173.6 173.5 173.1

3; 2 486.6 488.6 488.5 488.1 487.9 489.1 488.6 489.4

3; 3 138.1 138.0 138.0 137.4 137.1 138.3 138.1 137.9

3; 4 1.6 1.6 1.5 1.5 1.6 1.6 1.5

All results utilize the vibrational states obtained from the ERF PEC fitting being varied only the DTMFs.

Table 3

Calculated Franck–Condon factors (qm0m00 ) between vibrational levels of A2Rþ ! X2P transition

m0m00 ERF Neural network

1-3t-1l 1-4t-1l 1-6t-1l 1-2t-2t-1l 1-3s-1l 1-4s-1l 1-6s-1l 1-2s-2s-1l

0; 0 0.9057 )0.0016 )0.0011 )0.0018 )0.0060 )0.0004 )0.0016 )0.0009 0.0000

0; 1 0.0911 0.0016 0.0012 0.0019 0.0060 0.0005 0.0017 0.0012 0.0001

1; 0 0.0863 0.0013 0.0008 0.0015 0.0050 0.0004 0.0012 0.0005 0.0001

1; 1 0.7110 )0.0016 )0.0008 )0.0021 )0.0081 0.0013 )0.0009 0.0004 0.0024

1; 2 0.1903 0.0005 0.0002 0.0008 0.0034 )0.0013 0.0002 )0.0003 )0.0020
2; 1 0.1691 )0.0002 )0.0005 0.0001 0.0009 )0.0014 )0.0010 )0.0017 )0.0018
2; 2 0.5040 0.0011 0.0008 0.0012 )0.0015 0.0047 0.0030 0.0040 0.0062

2; 3 0.2875 )0.0006 )0.0004 )0.0011 0.0007 )0.0024 )0.0011 )0.0015 )0.0033
3; 1 0.0246 0.0001 0.0001 0.0002 0.0010 )0.0003 0.0001 0.0000 )0.0005
3; 2 0.2348 )0.0011 )0.0006 )0.0012 )0.0020 )0.0022 )0.0024 )0.0023 )0.0026
3; 3 0.3023 0.0027 0.0007 0.0040 0.0031 0.0053 0.0044 0.0055 0.0069
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Table 6

Calculated radiative lifetimes sm0 (ns) for A
2Rþ state

m0 Ref. [45] ERF 1-3t-1l 1-3s-1l 1-4s-1l

0 672.2 661.3 660.8 661.5 663.1

1 724.5 712.9 711.4 710.8 710.4

2 774.9 761.9 761.0 760.1 758.4

3 811.8 811.9 812.2 809.7
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5. Concluding remarks

The study we have carried out in the present work has

the following motivation: to discuss the implications in

the quality and accuracy of the potential energy surfaces

and dipolar transition moment function when we em-

ploy different architectures of the neural network

method in the fitting process using ab initio data points.
For this, the vibrational eigenenergies and eigenfunc-

tions of the X2P and A2Rþ electronic states, the

A2Rþ ! X2P transition probabilities and the radiative

lifetime of the A2Rþ state of the OH molecule have been

calculated from the fitted PECs and DTMFs. The re-

sults obtained using the fittings done with extended

Rydberg functions were utilized as reference ones to

judge the efficiency of neural network method to fit the
curves of interest. From this comparison, we could

confirm that the neural network method is able to fit the

potential energy curves and dipolar transition moment

functions of the diatomic molecules. We also could

demonstrate that a neural network with one hidden

layer and a reduced number of neurons is sufficient to fit

PECs and DMTF with great accuracy. This result is

particularly useful for multi-dimensional problems
where it is of great importance the employment of in-

terpolation functions with a small number of free pa-

rameters. Moreover, the neural network method does

not require previous knowledge of the shape of the

surface, uses a small set of ab initio points for the fit, and

can be easily generalized to larger molecules. Therefore,

the neural network approach can be considered a good

choice to fit multi-dimensional PESs and DTMFs.
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