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New results for deformed defects
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We extend a deformation prescription recently introduced and present some new soluble nonlinear problems
for kinks and lumps. In particular, we show how to generate models that present the basic ingredients needed
to give rise to dimension bubbles. Also, we show how to deform models that possess lumplike solutions to get
to new models that support kinklike solutions.
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I. INTRODUCTION

Defects play an important role in high energy physics
see, e.g., Refs.@1–10# and references therein. In models d
scribed by real scalar fields, defect solutions are usually
pological ~kinklike! or nontopological~lumplike!. In the
present work we deal with models described by a single
scalar field, and our goal is to extend the deformation pro
dure introduced in Ref.@1# to new models, which suppor
kinklike or lumplike solutions. To do this, in Sec. II we firs
consider the standard procedure. There we make the d
mation prescription as general as possible, and we introd
new examples. Next, in Sec. III we implement two distin
extensions, one giving rise to a semivacuumless model
the corresponding domain wall, which serves as the seed
generation of dimension bubbles, as proposed in Refs.@2–4#.
In the other extension we show how to implement deform
tions using nonbijective functions to deform models hav
lumplike solutions to generate new models that supp
kinklike solutions.

II. STANDARD PROCEDURE

We begin with a theory of a single real scalar field in~1,1!
space-time dimensions. The Lagrangian density is as us
and we useV5V(f) to represent the potential that identifie
the model. We also use the metric (1,2), and we work with
dimensionless fields and coordinates. The equation of mo
for static fields isd2f/dx25V8(f), where the prime stand
for the derivative with respect to the argument. We consi
the broad class of potentials having at least one critical p
f̄ @that is, V8(f̄)50], for which V(f̄)50. In this case,
solutions satisfying the conditions

lim
x→2`

f~x!5f̄, lim
x→2`

df

dx
50 ~1!

obey the first order equation~a first integral of the equation
of motion! (df/dx)252V@f(x)#. For these solutions, th
energy densities split into two equal parts of the gradient
potential energy densities.

Many important examples can be presented. Thef4

model, withV4(f)5(12f2)2/2, is the prototype of theorie
having topological solitons~kinklike solutions! connecting
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two minima. In this case the solutions aref(x)56tanh(x).
A situation where nontopological~lumplike! solutions exist
is the ‘‘invertedf4 model,’’ with potential given byV4i(f)
5f2(12f2)/2. In this case the lumplike defects aref(x)
56sech(x). One notes that the potential need not be no
negative for all values off but the solution must be suc
that V„f(x)…>0 for the whole range2`,x,1`.

Both topological and nontopological solutions can be d
formed, according to the prescription introduced in Ref.@1#,
to generate infinitely many new soluble problems. Th
method can be described in general form via the follow
statement. Letf 5 f (f) be a bijective function having a con
tinuous nonvanishing derivative. For each potentialV(f)
bearing solutions satisfying conditions~1!, the f-deformed
model, defined byṼ(f)5V@ f (f)#/@ f 8(f)#2, possesses so
lutions given byf̃(x)5 f 21

„f(x)…, wheref(x) is a solution
of the static equation of motion for the original potenti
V(f).

We prove this assertion by noting that the static equat
of motion of the new theory is written in terms of the o
potential as

d2f

dx2
5

1

f 8~f!
V8@ f ~f!#22V@ f ~f!#

f 9~f!

@ f 8~f!#3
. ~2!

On the other hand, taking the second derivative with resp
to x of the deformed defectf̃(x), one finds

d2f̃

dx2
5

1

f 8~f̃ !

d2f

dx2
2

f 9~f̃ !

@ f 8~f̃ !#3 S df

dx D 2

. ~3!

It follows from the equation of motion and fromf̃(x) that
d2f/dx25V8@ f (f̃)# and (df/dx)252V@ f (f̃)# so that f̃
satisfies Eq.~2!, as stated. The ratio between the energy d
sity of the solutionf(x) of the undeformed model and th
solution f̃(x) of the f-deformed potential is «/ «̃
5(d f /df)2.

Naturally, the deformation procedure heavily depends
the deformation functionf (f). Assume thatf : R→R is
bijective. In this case, thef deformation~and the deformation
implemented by its inversef 21) can be applied successive
and one can define equivalence classes of potentials re
©2004 The American Physical Society02-1
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to each other by repeated applications of thef ~or the f 21)
deformation. Each of such classes possesses an enume
number of elements which correspond to smooth defor
tions of a representative one, all having the same topolog
characteristics. The generation sequence of new theorie
depicted in the diagram below.

As an example not considered in Ref.@1#, take thef6 model.
This model, for which the potential V6(f)5f2

(12f2)2/2 has three degenerate minima at 0 and61,
is important since it allows the discussion of first-ord
transitions. It possesses kinklike solutio
f(x)56A@16tanh(x)#/2, connecting the central vacuum
with the lateral ones. Takef (f)5sinh(f) as the deforming
function. The sinh-deformedf6 potential is

Ṽ~f!5
1

2
tanh2~f!@12sinh2~f!#2 ~4!

and the sinh-deformed defects are

f̃~x!56arcsinhA@16tanh~x!#/2. ~5!

Notice that, sincef 8(f).1 for the sinh deformation, the
energy of the deformed solutions is diminished with resp
to the undeformed kinks. The reverse situation emerge
one takes the inverse deformation implemented byf 21(f)
5arcsinh(f).

Interesting situations arise if one takes polynomial fun
tions implementing the deformations. Considerp2n11(f)
5( j 50

n cjf
2 j 11, with cj.0 for all 0< j <n. These are bijec-

tive functions fromR into R possessing positive derivative
Fixing n50 corresponds to a trivial rescaling of the fiel
For n51, taking c05c151, one has f (f)5p3(f)5f
1f3 with the inverse given by f 21(f)
5(2/A3)sinh@arcsinh(3A3f/2)/3#. Thus, thep3-deformed
f4 model, for which the potential has the form

Ṽ~f!5
1

2 S 12f222f42f6

113f2 D 2

, ~6!

supports topological solitons given by

f̃6~x!56
2

A3
sinhF1

3
arcsinhS 3A3

2
tanh~x! D G . ~7!

Naturally, the inverse deformation can be implemented, le
ing to another new soluble problem. But if one takesn>2,
the inverse ofp2n11 cannot in general be expressed analy
cally in terms of known functions. This leads to circum
stances where one knows analytically solutions of potent
which cannot be expressed in terms of known functions a
06770
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conversely, one has well-established potentials for wh
solitonic solutions exist but are not expressible in terms
known functions.

The procedure can also be applied to potentials presen
nontopological, lumplike, solutions which are of direct inte
est to tachyons@5#. Take, for example, the Lorentzian lum
f l(x)51/(x211) which solves the equation of motion fo
the potentialV(f)52(f32f4) and satisfies conditions~1!.
Unlike the topological solitons, this kind of solution is no
stable. In fact, the ‘‘secondary potential,’’ which appears
the linearized Schro¨dinger-like equation satisfied by th
small perturbations aroundf l(x) @6#, is given by

U~x!5V9„f l~x!…512
x221

~x211!2
. ~8!

This potential is a symmetric volcanolike potential. It h
zero mode given byh0(x);f l8(x)522x/(x211)2, which
does not correspond to the lowest energy state since it h
node. DeformingV(f)52(f32f4) with f (f)5sinh(f)
leads to the potentialṼ(f)52 tanh2(f)@sinh(f)2sinh2(f)#
which possesses the lumplike solutionf̃ l(x)
5arcsinh@1/(x211)#.

III. EXTENDED PROCEDURES

The deformation prescription is powerful. The conditio
under which our procedure~see Ref.@1#! holds are main-
tained if we consider a function for which the contradoma
is an interval ofR, that is, if we takef : R→I ,R. In this
case, however, the inverse transformation~engendered by
f 21: I→R) can be applied only for models where the valu
of f are restricted toI ,R. We illustrate this possibility by
asking for a deformation that leads to a model of the fo
needed in Ref.@3#, described by a ‘‘semivacuumless’’ poten
tial, in contrast with the vacuumless potential studied
Refs. @7,8#. Consider the new deformation functionf (f)
5121/sinh(ef), acting on the potential V4(f)5(1
2f2)2/2. The deformed potential is

Ṽ~f!5
1

2
e22f sech2~ef!@2 sinh~ef!21#2, ~9!

which is depicted in Fig. 1. The kinklike solution is

f̃~x!5 lnFarcsinhS 1

12tanh~x! D G . ~10!

The deformed potential~9! engenders the required profile:
has a minimum atf̄5 ln@arcsinh(1/2)# and another one a
f→`. It is similar to the potential required in Ref.@3# for
the existence of dimension bubbles. The bubble can be g
erated from the above~deformed! model, after removing the
degeneracy betweenf̄ and f→`, in a way similar to the
standard situation, which is usually implemented with thef4

potential, the undeformed potential that we used to gene
Eq. ~9!. An issue here is that such a bubble is unsta
against collapse, unless a mechanism is found to balance
2-2
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inward pressure due to the surface tension in the bubble
Ref. @3#, the mechanism used to stabilize the bubble requ
another scalar field, in a way similar to the case of nonto
logical solitons previously proposed in Ref.@9#. This natu-
rally leads to another scenario, which involves at least t
real scalar fields.

The deformation procedure can be extended even furt
by relaxing the requirement off being a bijective function,
under certain conditions. Suppose thatf is not bijective but it
is such that its inversef 21 ~which exists in the context o
binary relations! is a multivalued function with all branche
defined in the same intervalI ,R. If the domain of definition
of f 21 contains the interval where the values of the solutio
f(x) of the original potential vary, thenf̃(x)5 f 21

„f(x)…
are solutions of the new model obtained by implementing
deformation withf. However, one has to check whether t
deformed potentialṼ(f)5V@ f (f)#/@ f 8(f)#2 is well de-
fined on the critical points off. In fact, this does not happe
in general but occurs for some interesting cases.

Consider, for example, the functionf (f)52f221; it is
defined for all values off and its inverse is the doubl
valued real functionf 21(f)56A(11f)/2, defined in the
interval @21,̀ ). If we deform thef4 model with this func-
tion we end up with the potentialṼ(f)5f2(12f2)2/2. The
deformed kink solutions are given by f̃(x)
56A@11f(x)#/2 with f(x) replaced by the solution
@6tanh(x)# of the f4 model, which reproduce the know
solutions of thef6 theory. The important aspect, in th
present case, is that the tanh kink corresponds to field va
restricted to the interval (21,11) which is contained within
the domain of definition of the two branches off 21(f). The
fact that thef6 model can be obtained from thef4 potential
in this way is interesting, since these models have dist
characteristics. Notice that the critical point off atf50 does
not disturb the deformation in this case; this always occ
for potentials having a factor (12f2), since the denomina
tor of Ṽ(f) is canceled out. One can go on and apply t
deformation to thef6 model; now, one finds the deforme
potential Ṽ6(f)5(1/2)f2(12f2)2(122f2)2, with solu-
tions given by

f̃~x!56A1/2A16A@16tanh~x!#/2, ~11!

FIG. 1. The deformed potentialṼ(f) of Eq. ~9!, plotted as a
function of the scalar fieldf; the dashed line shows the potential
the undeformedf4 model.
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corresponding to kinks connecting neighboring minima~lo-
cated at21, 21/A2, 0, 1/A2, and 1! of the potential, which
is illustrated in Fig. 2. We can repeat the procedure for
potentialṼ6(f), to obtain a sequence of soluble polynom
potentials, all having exact kinklike solutions. This res
should be contrasted with Ref.@10#, which shows that it is in
general hard to find solutions when the model includ
higher-order powers in the scalar field.

The deformation implemented by the functionf (f)
52f221 can also be applied to a potential possess
lumplike solutions. Consider the invertedf4 potential
V4i(f)5f2(12f2)/2, which has the lump solutionsf(x)
56sech(x). The deformed potential, in this case, is give
by Ṽ4i(f)5(1/2)(12f2)(f221/2)2. This potential, which
is also unbounded from below, vanishes forf561/A2,
61, has an absolute maximum atf50, and local minima
and maxima for61/A2 and6A5/6, respectively. Figure 3
shows a plot of this potential. Again, the number of solutio
duplicates using such a deformation: there are two solutio
f̃(x) l

(6)56A@11sech(x)#/2, which correspond to lumps
running between the local minima and the lateral zeros of
potential, and also

f̃~x!k
(6)5H 7A@12sech~x!#/2, x<0,

6A@12sech~x!#/2, x>0,
~12!

which correspond to kinklike solutions connecting t
minima 61/A2. This is a very unusual example where no
topological or lumplike solutions are deformed into topolog
cal or kinklike solutions.

FIG. 2. The deformed potentialṼ6(f) and the undeformedf6

model ~dashed line!, plotted as functions off.

FIG. 3. The deformed potentialṼi4(f) and the undeformed
invertedf4 model ~dashed line!, plotted as functions off.
2-3
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Potentials that have a factor (12f2) can also be de-
formed using the functionf (f)5sin(f), producing many in-
teresting situations. In fact, suppose the potential can be w
ten in the form V(f)5(12f2)U(f). This is always
possible for all well-behaved potentials that vanish at b
valuesf561, as shown by Taylor expansion. Then, t
sine deformation leads to the potentialṼ(f)5U@sin(f)#,
which is a periodic potential, the critical points of sin(f) not
causing any problem to the deformation process. The inv
of the sine function is the infinitely valued functionf 21(f)
5(21)k arcsin(f)1kp, with kPZ and arcsin(f) being the
first determination of arcsin(f) ~which varies from2p/2,
for f521, to1p/2, whenf511), defined in the interva
(21,11). So for each solution of the original potentia
whose field values range in the interval (21,11), one finds
infinitely many solutions of the deformed, periodic, pote
tial.

Consider first thef4 model. Applying the sine deforma
tion to it, one getsṼ(f)5cos2(f)/2, which is one of the
forms of the sine-Gordon potential. The deformed solut
thus obtained is given byf̃(x)5(21)karcsin@6tanh(x)#
1kp, which correspond to all the kink solutions~connecting
neighboring minima! of this sine-Gordon model. For ex
ample, the kink solutions6tanhx, which connect the
minima f561 of thef4 model in both directions, are de
formed into the kinks 6arcsin@ tanh(x)#52 arctan(e6x)
2p/2 ~which run between2p/2 and p/2) if one takesk
50 while, for k51, the resulting solutions connect th
minima p/2 and 3p/2 of the deformed potential.

This example can be readily extended to other polynom
potentials, leading to a large class of sine-Gordon type
potentials. For instance, thef6 model, V(f)5f2(1
2f2)2/2, deformed by the sine function, becomes the pot
tial Ṽ(f)5(1/2)cos2(f)@12cos2(f)#, which has kinklike so-
lutions given by

f̃~x!56~21!k arcsinA@16tanh~x!#/21kp. ~13!

On the other hand, if one considersV(f)5(12f2)3/2,
which is unbounded below and supports kinklike solutio
connecting the two inflection points at61, one gets the
potential Ṽ(f)5(1/2)cos4(f), which is solved byf̃(x)
56(21)k arcsin(x/A11x2)1kp.

Another particularly interesting situation where nontop
logical solutions are deformed into topological solutions a
. D
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pears if one considers the invertedf4 model, which presents
lumplike solutions. The sine deformation of the potent
V(f)5f2(12f2)/2 leads to the potential Ṽ(f)
5sin2(f)/2. In this case, the lump solutions ofV(f),
namely, f(x)56sech(x), are deformed into f̃(x)
56(21)karcsin@sech(x)#1kp. Consider the (1) solution
and take initiallyk50. As x varies from2` to 0, sech(x)
goes from 0 to 1, and arcsin@sech(x)#52 arctan(ex) changes
from 0 to p/2. If one continuously makesx go from 0 to
1`, then the deformed solution passes to thek51 branch
of arcsin(f), 2arcsin@sech(x)#1p @52 arctan(ex) for 0
<x,1`], which varies fromp/2 to p asx goes from 0 to
1`. Thus, in this case, the lump solution1sech(x) of the
inverted f4 model is deformed into the kink of the sine
Gordon model connecting the minimaf50 andf5p. Un-
der reversed conditions~taking thek51 branch before the
k50 one!, the lump solution2sech(x) leads to the antikink
solution of the sine-Gordon model running from the min
mumf5p to 0. The other topological solutions of the sin
Gordon model are obtained by considering the other adja
branches of arcsin(f).

IV. COMMENTS AND CONCLUSIONS

In previous work on deformed defects@1#, we stressed
that the deformation procedure strongly depends on a fu
tion f 5 f (f), the deformation function, and there we co
sidered only bijective functions that obeyf : R→R. In the
present work, we have extended the deformation proced
with the inclusion of two new possibilities. First, we hav
considered deformation functions such thatf : R→I with
I ,R, which gives rise to new models such as the one
cently considered in Ref.@3#, requiring a semivacuumles
potential. Furthermore, we have shown how to deal w
nonbijective functions to build new models. This last ca
leads to very interesting possibilities for deforming mod
that support nontopological defects, to give rise to mod
that support topological defects.
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