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Thermodynamic and magnetic properties of Ising models defined on the triangular Apollonian network are
investigated. This and other similar networks are inspired by the problem of covering a Euclidian domain with
circles of maximal radii. Maps for the thermodynamic functions in two subsequent generations of the con-
struction of the network are obtained by formulating the problem in terms of transfer matrices. Numerical
iteration of this set of maps leads to very precise values for the thermodynamic properties of the model.
Different choices for the coupling constants between only nearest neighbors along the lattice are taken into
account. For both ferromagnetic and antiferromagnetic constants, long-range magnetic ordering is obtained.
With exception of a size-dependent effective critical behavior of the correlation length, no evidence of
asymptotic criticality was detected.
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I. INTRODUCTION

The investigation of magnetic models on scale-invariant
networks has attracted the attention of scientists since the
1980sf1,2g. Besides the fact that, on such graphs, renormal-
ization procedures can lead to exact resultsf3g, they have
been explored as models for systems that are not translation-
ally invariant, neither in the positions of the spins nor in the
coupling constants mediating the interactions between them.
In this respect, the analysis of disordered and aperiodic mod-
els on scale-invariant graphs, which include hierarchical lat-
tices f4–6g, Cayley treesf7g, or Sierpinski gaskets and car-
petsf8,9g, have provided valuable insight into the behavior
of critical phenomena of nonhomogeneous systems on Eu-
clidean lattices.

A further family of scale-invariant graphs are Apollonian
networkssANsd, the simplest of which is illustrated in Fig. 1.
This lattice can be defined based of the ancient problem of
filling space with spheres, first tackled by the Greek math-
ematician Apollonius of Pergaf10g. In its two-dimensional
version, corresponding to the problem of the plane filled by
circles, the nodes of this network are defined by the positions
of the centers of the circles, while edges are drawn between
any pair of nodes corresponding to pairs of touching circles
f11g. The resulting network corresponds to the contact force
network of the packingf12g. ANs can also be used to de-
scribe generically other scale-free situations, such as space-
filling porous mediaf13g or the connections between densely
located cities, for which one is interested in fluid flow, car
traffic or electric supply. Therefore, it is useful to study not
only the geometric properties of ANs, but also transport and
ordering on them.

In a previous paperf14g, we analyzed several of the AN’s
properties. In particular, we have shown that it has small-

world properties, a scale-free degree distribution, a very high
clustering coefficient, and a very short diameter, all this hav-
ing been confirmed independently by Doyeet al. f15g. More-
over, the AN can be embedded in the Euclidian plane, which
is not the case for other scale invariant lattices, e.g., hierar-
chical lattices or Cayley trees. One can, of course, define
other similar lattices based on modified packing rulesf16g.
Although the numerical values for exponents depend on the
topology of each realization, basic properties characterizing
complex networks remain the same.

In our first work, we devoted our attention to several
physical models of the ANselectrical resistance, percolation,
magnetic orderingd, pointing out the most striking features.
In this work, we review our investigations on the properties
of several Ising models on the AN, and present a thorough
discussion regarding, on one hand, some of the details of the
transfer matrixsTMd methods and, on the other hand, the
most important thermodynamic and magnetic properties.

The results we obtain qualitatively represent a class of
models that has not yet been explored, being highly moti-
vated by the recent development of complex networks.

We think the results discussed herein are quite relevant for
the understanding of the behavior of magnetic models on
lattices where interactions among spins are not restricted to
their immediate geometrical neighborhood. For instance,
they can be quite useful for the description of actual polydis-
perse packing of magnetic particles that occurs in tectonic
faults since, as mentioned before, the network matches that
of the contact forces. On the other hand, such lattices can be
useful for modeling several other magnetic systems with dis-
order and long-range interaction on a microscopic level, al-
though such models might require the inclusion of more re-
alistic features not considered in the present study. The
results for spin models can be extended to discuss properties
of models for social interactions, e.g., those related to opin-
ion formation or voter decision, where the concept of neigh-
borhood is definitely not well described by regular lattices.
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Several choices for rules defining the values of the cou-
pling constants are considered, including both ferromagnetic
sFd and antiferromagneticsAFd interactions. As will be
shown, we found long-range magnetic ordering for almost all
choices of couplings without any noticeable evidence of a
phase transition to a paramagnetic phase at a finite tempera-
ture. For particular choices of F and AF bonds, the geometry
of the network induces the presence of competition and frus-
tration within closed loops of an odd number of sites, giving
rise to residual entropy and changes in the correlation length.
The behavior of this quantity deserves a detailed discussion,
as it points to a transition from long- to short-range correla-
tion only for finite-sized systems, as discussed in a similar
way for magnetic models on scale-free latticesf17g.

The scale invariance in the AN topological structure can
be explored in the analysis of physical models by the use of
mathematical methods based on the renormalization of cou-
pling constants or physical properties at successive stages of
construction of the model. Moreover, the very precise results
obtained for such models are complementary to results fol-
lowing from simulations for disordered models.

The rest of this paper is organized as follows: in Sec. II
we discuss our models. In Sec. III we obtain the maps for the
free energy and its derivatives, as well as for the correlation

length. Results are discussed in Sec. IV, while concluding
remarks are presented in Sec. V.

II. ISING MODELS

The AN is constructed recursively. In each generation, it
incorporates a new set of sites, which correspond to the cen-
ters of the new circles added to the packing filling the holes
left in the previous generation. In the present work we con-
sider the lattice which starts with three touching circles
drawn on the vertices of an equilateral triangle, and the pack-
ing problem is restricted to filling the space bounded by
these three initial circles, as shown in Fig. 1sad. If n denotes
the current generation of the network, the number of sites
Nsnd is asymptotically three times that of the previous gen-
eration; i.e.,Nsn+1d=3Nsnd−5, or Nsnd=s3n−1+5d /2. The
number of edges linking nodes increases withn according to
Bsn+1d=Bsnd+3fNsn+1d−Nsndg. As a consequence,Bsnd
=s3+3nd /2, Bsnd /Nsnd→3 in the limit of largen, so that on
average, each site is linked to six other sites, which is the
coordination number of the triangular lattice.

Once the AN has been defined, it is possible to define
many different models on it. In this work we focus on a set
of interacting Ising spinssi = ±1 placed on each site of the
network. Interactions are restricted to pairs of spins placed
on nodes linked by edges, as described in Sec. I. Thus, some
spins placed far apart may interact, while pairs of spins
placed relatively close to each other might not. This can be
of interest to model special disordered systems that have in-
teractions of all ranges.

For the packing problem, it is important to calculate the
radius of each circlecsi ,nd, which depends both on the gen-
erationn as well as on the local environment; i.e., the gen-
erations of the three circles that it touches:npsi ,kd , k
=1,2,3. It is possible to include this dependence into the
magnetic model, by defining coupling constantssor local
fieldsd depending on the distance between nodes; i.e.,
Jfn, i ,npsi , jdg. We restrict ourselves, however, to a simpler
situation, where the coupling constantsJ only depend on the
generationn at which the edge was introduced into the net-
work. In Fig. 1sbd we illustrate the first three steps of the
construction of the model.

To have a physically interesting model, it may be reason-
able to choose values forJ that increase withn. Indeed,
whenn increases, the average length of the edges introduced
in that generation decreases and, as the spins get closer, we
might expect that the interactions among them become stron-
ger. However, to avoid the divergence of the energy within
the lattice, it is necessary to renormalize the value of allJ’s
as n increases. To accomplish this, we defineJn,m, m
=1, . . . ,n as the value of the constant introduced in themth
generation, when the lattice has been built up to itsnth gen-
eration, and require thatJn,m decreases withn−m. A suffi-
ciently general choice would be

Jn,m =
s±1dmJ0

sn − m+ 1da , s1d

whereJ0 may have ferromagnetics.0d or antiferromagnetic
s,0d character, the exponenta controls how the interactions

FIG. 1. Third generationsn=3d of construction of the AN. In
sad, we show the optimal circles that define the network. Insbd, sites
represented by squares, circles, and diamonds are introduced in the
first, second, and third steps of construction, respectively. Links
represented by dotted, dashed, and solid lines correspond ton=3,
m=3, 2, and 1 in Eq.s1d or n=1, 2, and 3 in Eq.s8d, respectively.
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decay with the differencen−m, and yields a possibility of
choosing the interactions according to the generation at
which they were introduced.

One of the extreme situations,a=0, corresponds to equal
interactions along all edges in the network. On the other
hand, in thea→` limit, the model contains only finite in-
teractions for the subset of edges that were introduced in that
last generationn, as illustrated in Fig. 1sbd. The number of
these surviving bonds is given byBsnd−Bsn−1d=3n−1, so
that the average coordination number is reduced to four.
Moreover, the lattice is then composed by four-sided poly-
gons, so that competition and frustration due to the presence
of antiferromagnetic bonds can never occur in thisa limit.

To close this section, we write down the formal Hamil-
tonian of this model:

Hn = − o
si,jd

Ji,jsisj − ho
i

si , s2d

where all pairs of nearest neighbors denoted bysi , jd are
defined according to the construction rules of the network,
and the constantsJi,j must be chosen from the set defined in
Eq. s1d according to the value ofm in which the edge was
introduced. We also include a constant magnetic fieldh,
which allows for the evaluation of magnetic properties. The
notation in Eq.s2d does not include the selection of the
bonds that are taken into account. The evaluation of a parti-
tion function can in fact be set up in very proper terms
through the transfer matrix formalism.

III. TRANSFER MATRIX AND RECURRENCE
RELATIONS

The numerical evaluation of the partition function for
magnetic models on scale-invariant graphs with a finite num-
ber of end nodes has been performed with the help of TM
derived maps for a large number of lattices and models. The
problem in which we are interested in this work is also suit-
able to be analyzed within this framework. For the sake of
simplicity, let us first consider the homogeneous casea=0,
and seth=0. If we consider the first generationn=1, we
observe that a 232 TM M1, which takes into account all
interactions between the sitesi andk of Fig. 1, can be written
as

M1 = Sa1 b1

b1 a1
D = Sasa2 + b2d 2ab2

2ab2 asa2 + b2d
D , s3d

where a=b−1=expsbJ0d. M1 can be used to describe one
single cell or a linear chain of triangles that are connected by
their bases. It is also possible to define a 234 TM L1, that
describes the interactions among sitesi, j , andk, where the
column labelsk are composed from the pairs j ,kd according
to the lexicographic order, i.e.,k=2s j −1d+k, according to

L1 = Sc1 d1 d1 d1

d1 d1 d1 c1
D = S a3 ab2 ab2 ab2

ab2 ab2 ab2 a3 D . s4d

Of course, we note thata1=c1+d1 andb1=2d1.
Within the proposed framework, all interactions between

the sites i and k, for any higher-order generationsn

=2,3,4, . . ., should be written in terms of a single 232
TM’s Mn, with the same distribution of matrix elements as
M1. Moreover, the matrix elements ofMn should be written
in terms of those of the matrices of the lower generation
n−1 only. This turns out to be feasible since the Apollonian
lattice, in a generationn+1, can be decomposed into three
sublattices, each one of them being a deformed lattice of
generationn. Since the coupling constants do not depend on
the actual distance between the sites, each of the three sub-
lattices entails the same coupling constants and magnetic
structure as then-lattice. Thus, a matrixMn+1 can indeed be
written in terms of three matricesMn. To achieve this we
remark that, in any generation, the three sublattices share
their three outmost sites, which we label asi, j , k, and,. This
last one occupies the geometrical center of thesn+1d lattice.
Mn+1 can be then defined using

sMn+1di,k = o
j ,,

sLndi,j,sLndi,,ksLn
t dk,j,, s5d

and

sLn+1di,jk = o
,

sLndi,j,sLndi,,ksLn
t dk,j,. s6d

As one can easily observe by direct evaluation of Eqs.s5d
and s6d, all matricesMn and Ln share the same matrix ele-
ment distribution asM1 andL1. Thus, it is possible to imme-
diately write down recurrence relations for the elements of
Ln+1 in terms of those ofLn as

cn+1 = cn
3 + dn

3,

s7d
dn+1 = cndn

2 + dn
3,

from which the elementsan+1=cn+1+dn+1 and bn+1=2dn+1
can be obtained.

However, a direct evaluation of the matrix elements de-
fined by the Eqs.s5d–s7d shows that they do not exactly
describe the interactions between the sitesi and k. For in-
stance, in the generationn=2, the number of magnetic bonds
is equal to the number of edgesBsn=2d=6. On the other
hand, we see that the Boltzmann weights inM2 are expressed
by combinations of expsbrJ0dexps−bsJ0d, with r +s=9 in-
stead ofr +s=6. This is due to the fact that each one of the
interactions between the site, and its neighborsi, j , andk
appears twice in Eq.s5d. To describe the thermodynamics of
the system with the help of Eqs.s5d–s7d, it is necessary to
carry out a small correction, namely, to redefinea andb as
a=b−1=expsbJ0/2d. With this modification, the Boltzmann
weights in each element are expressed by exponentials of
bsr −sdJ0, wherer +s=Bsnd−3/2. Thus, for each spin con-
figuration, the ratio between the correct energy and that one
provided by Eqs.s5d and s6d is roughly proportional to
fBsnd−3/2g /Bsnd, which →1 in the limit n→`.

These definitions are sufficient for only the uniform inter-
action modela=0. Further modifications in Eqs.s5d–s7d are
required to obtain the correct maps for generala. To cast this
into a single recurrence relation, we first note that it is not
necessary to use two labelsn and m to insert the correct
coupling constants intoMn. As these matrices are recursively
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defined, the largest and most abundantJn,n corresponds to the
constant introduced intoM1, which is reproduced in ever
growing number by the successive use of equations likes5d
and s6d. On the other hand, the smallest and least frequent
Jn,1 represents the constant that is inserted into the sequence
of TMs exactly at thenth generation. Thus, we consider

Jn,m → Jn =
s±1dnJ0

sn − 1da . s8d

Note that the changes carried into the denominator of Eq.s8d
requires one to explicitly setJ1=0, andJn+1→Jn. This strat-
egy is necessary to avoid taking into account more than once
the effect of bonds introduced whenn=1, and it is somehow
equivalent to the redefinition ofa andb discussed above.

We then modify Eqs.s5d and s6d according to

sMn+1di,k = o
j ,,

sLndi,j,sLndi,,ksLn
t dk,j,sCndi,,sCnd,,jsCnd,,k

s9d

and

sLn+1di,k = o
,

sLndi,j,sLndi,,ksLn
t dk,j,sCndi,,sCnd,,jsCnd,,k,

s10d

where the 232 TMs Cn are defined by

Cn = Spn qn

qn pn
D = S expsbJnd exps− bJnd

exps− bJnd expsbJnd
D . s11d

With these definitions, it is possible to observe that the num-
ber of nonzero coupling constants in the lattice isBsnd−3 so
that, in then→` limit, Eqs. s8d–s11d accurately describe the
thermodynamic properties of the model. The recurrence
maps for the matrix elements derived froms9d ands10d read

cn+1 = cn
3pn

3 + dn
3qn

3,

s12d
dn+1 = cndn

2pn
2qn + dn

3pnqn
2,

From Eq. s7d or s11d it is possible to derive recurrence
maps for the free energyfn=−T lnscn+dnd /Nsnd and correla-
tion length jn=1/ lnfscn+dnd / scn−dndg at two subsequent
generations,fn+1= fn+1sfn,jn;Td and jn+1=jn+1sfn,jn;Td can
easily be derivedf18,19g. This set of maps can be increased
by working out explicit recurrence relations for the deriva-
tives of fnsTd with respect to both the temperature and the
magnetic field, obtaining the entropyssTd, the specific heat
csTd, the spontaneous magnetizationmsTd=msT,h=0d, and
the magnetic susceptibilityxsT,h=0d. For this last purpose,
we have to considerhÞ0 and insert it into the matricesMn.
This modification breaks the up-down symmetry of the prob-
lem, so that the matricesMn andLn have a larger number of
distinct matrix elements. This is a straightforward procedure
that has been carried out for other modelsf18,19g. In the
Appendix we present the full set of recurrence maps used in
this work.

IV. RESULTS

We study the thermodynamic functions, i.e., the free en-
ergy f, the entropys, the specific heatc, the spontaneous
magnetizationm, and the correlation lengthj, as a function
of the temperatureT, as shown in Figs. 2–5. They were ob-
tained by numerically iterating the set of maps shown in the
Appendix, starting withT dependent initial conditions, until
a valuen*sTd. This temperature dependent value is set auto-
matically, by requiring that onesor a setd of the intensive
quantities and/or the correlation length, have converged to a
fixed value, within a previously established relative toler-
ance. This is usually,10−15, as we work with double preci-
sion variables. Convergence based only on the value off and
its derivatives is much faster than forj, specially when the
system is in the ordered phase. Otherwise stated, if we call
nx

*sTd ,x= f ,s,c,m,j, the value ofn at which the functionx
has converged for that particular value ofT, then we find that
nj

*sTd always assumes the largest value.
In Figs. 2sad–2sdd, we show the entropys, the specific

heatc, spontaneous magnetizationmsh=0d, and correlation
length j, for three distinct values ofa, when all coupling
constants have ferromagnetic character; i.e.,J0.0 and
s+1dn in Eq. s8d. The qualitative behavior does not depend on
the values ofa s0, 1, and`d; i.e., whether interactions are
only shortsa→`d or long rangesa=0d. For all cases we see
that, for low values ofT, long-range correlation sets in, as is
evident from the spontaneous magnetization and the numeri-
cal divergence ofj. The remarkable feature, however, points
to the absence of any criticality whenT is increased. The
insert in Fig. 2sbd shows that, whena=0, m goes to zero
smoothly, as exps−Td, with no evidence of a sharp transition
to m=0 at a well-defined critical temperature. If we consider
a.0, we still find a smooth, but stronger, decay; namely, as
m,exps−Tld. The curve for the specific heat is also smooth,
showing a typical Schottky maximum, again without any
evidence of a divergence, that would be expected for a usual
phase transition.

The results for the correlation lengthsdd are also distinct
from those found for other scale-invariant models, as the
diamond hierarchical latticef19g. There,j is finite for large
valuesT and numerically diverges for all values ofT below
a well-defined critical valueTc which in our case means
attaining a value larger than 1016, the largest allowed number
in our algorithm. Within this region, the actual value reached
by jsTd, has no precise meaning. Typically it is much higher
than those in the disordered phase, and is also characterized
by the presence of random fluctuations. As mentioned be-
fore, nj

*sTd is larger thannx
*sTd ,x= f ,s,c,m, but even if we

stop the iterations atnf
*sTd, j has already reached this very

high plateau. This shows that it is not actually necessary to
proceed further with the iteration of the maps, as we would
obtain only a meaningless value forj.

In the present case, if we usenf
*sTd to stop the iteration of

the maps, we observe thatj diverges at low temperatures,
expressing long-range order. WhenT is increased beyond a
given value ofT* , it converges to a well-defined value, sug-
gesting the break of long-range correlation. However, if the
iteration procedure is pursued to a value ofn.nf

*sTd we
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observe that theT interval in which j diverges becomes
larger. This finding has driven us to proceed with the itera-
tion of the maps in a different way. We fix a value
n̄.nf

*sT=1d, and iterate the maps until reachingn̄ for all
values within a largeT interval, as shown in Fig. 2scd. It is
then possible to precisely evaluate a critical valueTcsn̄d, as
the value ofT where the behavior ofj changes. In Fig. 3 we
show howTcsn̄d depends onn̄, for several distinct values of
a. Our findings for this unusual kind of critical behavior
suggest a power lawTcsnd,ntsad, with t going continuously
from tsa=0d=1 to tsa=`d=1/2. We recall that a similar

behavior has been reported for spin models on another scale-
free latticef17g.

In Fig. 4 we show that antiferromagnetic interactions
sJ0,0d change the thermodynamic behavior of the model.
The most interesting situation is observed fora=0. All tri-
angles in the lattice are frustrated and, as expected, a residual
entropys0=0.222 is measured. This best numerical value is
smaller than that for the triangular lattices0=0.3238. . .f20g,
and much smaller than that obtained for the Ising model on
the Sierpiski gaskets0=0.493. . .sSGd f21–23g.

At the same time, we find finite well-defined values forj
for all values ofT, which are robust with respect to the value
of n̄ where the iterations are stopped. This is illustrated in
Fig. 4sdd, which also shows that, asT→0, j decays like
exps−1/Td, typical for the one-dimensional chain. This is a
somewhat unexpected behavior, as the presence of frustra-
tion usually does not allow for long-range correlation of spin
orientation, even atT=0 se.g., the AF Ising model on the SG
f23gd. At the same time, this result must be related to the
nonvanishing behavior for the magnetization, shown in Fig.
4scd. It indicates that the number of spins pointing in each
direction is not the same. Once again, this behavior is differ-
ent from that obtained for other frustrated lattices, like the
planar triangular lattice or the SG. Finally, the behavior of
the specific heat looks like those found whenJ0.0, for any
value ofa.

In Fig. 4 we also draw curves for the thermodynamic
functions whena=1, and`. In Fig. 4scd we see that the
magnetization curve always saturates atmsT→0,h→0d
=1/3. This indicates that, in this limit, the number of spins
pointing in opposite directions is not the same, as is the case

FIG. 2. Thermodynamic functions for the ferromagnetic model. Solid, dashed, and dotted lines indicatea=0,1, and̀ , respectively.

FIG. 3. Size-dependent critical temperature for distinct values
of a.
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for the triangular lattice, but stay in proportion 2/3 to 1/3
independent ofa. For some range of values ofa, m goes
through a maximumfe.g., atsT,md=s1.2,0.351dg when a
=1, so that a reentrant behavior at low temperatures is ob-
served.

Let us also discuss how the presence of interactions with
different signs affects the behavior of the system; i.e., when
we takes−1dn in Eq. s8d. As expected, the result depends on
whetherJ0.0 or ,0. In the first case, competition and frus-
tration give rise to residual entropy whena=0, as illustrated
in Fig. 5sad. However, we note that the value ofs0 is smaller
s,0.152d than in the case of equal AF interactions. This
happens because not all triangular units are built by an odd
number of AF bonds, as we can easily see by inspecting the
first generations with the help of Fig. 1sbd. Fora=0, we note
as well the presence of a double Schottky peak in the specific
heatfFig. 5sbdg. For aÞ0 there is no remarkable difference
between the curves fors or c with respect to those obtained
for interactions with the same sign. The results also show
that the low-temperature magnetization saturates at the value
m=7/9 only whena=0; otherwisem=1.

Finally, whenJ0,0 and alternating sign are considered,
no frustrated bonds and, consequently, no residual entropy is
found. The curves for the specific heat are also smooth like
all other cases. The magnetization curves saturate again to
m=1/3 asT→0 for all values ofa. However, reentrant be-
havior similar to that found for some of the AF cases has not
been observed, so that the typical shape is that shown in Fig.
5scd.

V. CONCLUSIONS

We have studied a family of Ising models on an AN using
the transfer matrix technique. On one hand we considered
ferro-magnetic and antiferromagnetic couplings and, on the
other hand, we generalized the interaction as being depen-
dent on the generation, in the sign as well as in the strength
quantified by an additional parametera.

For purely ferromagnetic couplings, we always find order
in the thermodynamic limit independent ofa, which is in
agreement with what has been found on other scale-free lat-
tices f17g. Interestingly, the effective critical temperature at
which the correlation length diverges goes to infinity with
the system size with a power law in the number of genera-
tions with an exponent that depends ona. For antiferromag-
netic couplings we find a disordered phase for any finite
temperature, but a diverging correlation length atT=0. This
latter observation is unusual as it does not appear, for in-
stance, on the Sierpinski gasketf23g.

Considering the AN as a model for the connections be-
tween cities as described in Ref.f14g our result can be ap-
plied to the formation of opinions wherein spin up means
one opinion and spin down the other one. The results for the
ferromagnetic case implies that independent of the strength
of the couplings between the cities as long as it is not zero,
one single opinion will finally prevail.

If the Appolonian network describes the force lines in a
dense polydisperse packing with each particle having a mag-
netic moment, as is the case in tectonic faultsf24g, our result
for the ferromagnetic Ising model would imply that if all

FIG. 4. Thermodynamic functions for the antiferromagnetic model. Solid, dashed, and dotted lines indicatea=0, 1, and̀ , respectively.
j is drawn only fora=0 and reciprocal temperature axis.
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particles have a moment of equal strength, one always finds
a spontaneous magnetization.

Our calculations can be generalized to random couplings
sspin glassd which, in fact, is work in preparation. One can
also imagine studying other more complex magnetic models
on the ANs, such the Potts model, the XY model, or the
Heisenberg model, and one can also study the magnetic
properties of Apollonian packings of different topologies or
higher dimensions, and even the case of the random Apollo-
nian packingf25g.

ACKNOWLEDGMENTS

H. J. Herrmann thanks the Max Planck Research for sup-
port R. F. S. Andrade was partially supported by CNPq.

APPENDIX

The maps for the free energy and correlation length de-
rived from Eqs.s12d read

fn+1 =
3Nnfn

Nn+1
−

T

Nn+1
h3 ln an + lnh1 + 3znbns2 + bnd

+ 3zn
2f1 + 2bns1 + bnd2g

+ zn
3s1 + 2bnds2 + bnd2j − 6 ln 2j, s13d

jn+1 = jn†1 + jn„lnh1 + 3znbns2 + bnd + 3zn
2f1 + 2bns1 + bnd2g

+ zn
3s1 + 2bnds2 + bnd2j

− lnfzn
−1bn

4 + zns1 + 4bn + 2bn
2 + 2bn

3d

+ zn
2s4 + 10bn + 11bn

2 + 2bn
3d

+ zn
2s3 + 10bn + 10bn

2 + 4bn
3dg…‡−1 s14d

where zn=scn−dnd / scn+dnd, an=pn+qn, bn=spn−qnd / spn

+qnd, andNn=Nsnd.

FIG. 5. Thermodynamic functions for the model with alternating ferro- and antiferromagnetic coupling, starting withJ0=1. Solid,
dashed, and dotted lines indicatea=0,1, and` respectively, andJ0.0. In scd, three curves for the magnetization whenJ0=−1 and same
values ofa saturate atm=1/3 arealso drawn.
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