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We investigate the critical behavior of tiN:component Euclideah¢* model, in

the largeN limit, in three situations: confined between two parallel planes a dis-
tancelL apart from one another; confined to an infinitely long cylinder having a
square transversal section of at€a and to a cubic box of volumg?. Taking the

mass term in the forrm(z):a(T—To), we retrieve Ginzburg—Landau models which

are supposed to describe samples of a material undergoing a phase transition,
respectively, in the form of a film, a wire and of a grain, whose bulk transition
temperature(Ty) is known. We obtain equations for the critical temperature as
functions of L and of Ty, and determine the limiting sizes sustaining the
transition. ©2005 American Institute of PhysiceEDOI: 10.1063/1.1828589

I. INTRODUCTION

Models with fields confined in spatial dimensions play important roles both in field theory and
in quantum mechanics. Relevant examples are the Casimir effect and superconducting films,
where confinement is carried on by appropriate boundary conditions. For Euclidean field theories,
imaginary time and the spatial coordinates are treated exactly on the same footing, so that an
extended Matsubara formalism can be applied for dealing with the breaking of invariance along
any one of the spatial directions.

Relying on this fact, in the present work we discuss the critical behavior of the Euchdefan
model compactified in one, two, and three spatial dimensions. We implement the spontaneous
symmetry breaking by taking the bare mass coefficient in the Lagrangian parametrim&i as
=a(T-Ty), with >0 and the parametdrvarying in an interval containing,. With this choice,
considering the system confined between two parallel planes a didteajz@t from one another,
in an infinitely long square cylinder with transversal section @&e4?, and in a cube of volume
V=L3, in dimensionD=3, we obtain Ginzburg—Landau models describing phase transitions in
samples of a material in the form of a film, a wire and a grain, respectiVglgtanding for the
bulk transition temperature. Such descriptions apply to physical circumstances where no gauge
fluctuations need to be considered.

We start recapitulating the general procedure developed in Ref. 1 to treat the nfagsive
theory in Euclidean space, compactified id-dimensional subspace, with<D. This permits to
extend to an arbitrary subspace some results in the literature for finite temperature field theory
and for the behavior of field theories in the presence of spatial boundéige.shall consider the
vector N-componeni(A ¢*)p Euclidean theory at leading order inN,/thus allowing for nonper-
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turbative results, the system being submitted to the constraint of compactification of a
d-dimensional subspace. After describing the general formalism, we readdress the renormalization
procedure we use treating the simpler situatiod=fL, which corresponds to the system confined
between parallel planga film), analyzed in Ref. 5 for the case of two componeNts2. We then

focus on two other particularly interesting casesdef2 andd=3, in the three-dimensional Eu-
clidean space, corresponding, respectively, to the system confined to an infinitely long cylinder
with square transversal sectioa wire) and to a finite cubic boxa grain. Extending the inves-
tigation to these new cases demands further developments in the subject of multidimensional
Epstein functions.

For these situations, in the framework of the Ginzburg—Landau model we derive equations for
the critical temperature as a function of the confining dimensions. For a film, we show that the
critical temperature decreases linearly with the inverse of the film thickness while, for a square
wire and for a cubic grain, we obtain that the critical temperatures decrease linearly with the
inverse of the side of the square and with the inverse of the edge of the cube, respectively, but with
larger coefficients. In all cases, we are able to calculate the minimal systenitlsidaess,
transversal section area, or volunielow which the phase transition does not take place.

Il. THE COMPACTFIED MODEL

In this section we review the analytical methods of compactification ofNfmponent
Euclidean\¢* model developed in Ref. 1 We consider the model described by the Hamiltonian
density,

1 1 A
H=20,0a0"@a+ §ﬁ¢a¢a+ N(‘Pa@a)za (1)

“2
in EuclideanD-dimensional space, confined taalimensional spatial rectangular box of sidgs
j=1,2,...d. In the above equation is the renormalizedcoupling constantﬁ% is a boundary-
modified mass parameter depending{b} i=1,2,... d, in such a way that

{ Llli}m mo(Ly, ... ,Le) =mi(T) = a(T-Ty), 2
oo
mS(T) being the constant mass parameter present in the usual free-space Ginzburg—Landau model.
In Eq.(2), Ty represents the bulk transition temperature. Summation over repeated “color” indices
a is assumed. To simplify the notation in the following we drop out the color indices, summation
over them being understood in field products. We will work in the approximation of neglecting
boundary corrections to the coupling constant. A precise definition of the boundary-modified mass
parameter will be given later for the situation DE3 with d=1, d=2, andd=3, corresponding,
respectively, to a film of thickneds;, to a wire of rectangular sectidn, X L, and to a grain of
volumelLXLy,XLs.

We use Cartesian coordinates (x4, ... ,Xq,2), Wherez is a (D —d)-dimensional vector, with
corresponding momentuk=(ky, ... Ky,q), q being a(D-d)-dimensional vector in momentum
space. Then the generating functional of correlation functions has the form

L
Z:JD(pT'D(p exp(—f ddrde"dzH(qo,V(p)), (3
0

whereL =(L,, ...,Ly), and we are allowed to introduce a generalized Matsubara prescription,
performing the following multiple replacementsompactification of al-dimensional subspage
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dk 1 2
il —2 k— T 212, 4)
2m |n——oo Li

A simpler situation is the system confined simultaneously between two parallel planes a distance
L, apart from one another normal to theaxis and two other parallel planes, normal to xh@xis
separated by a distantg (a “wire” of rectangular section

We start from the well-known expression for the one-loop contribution to the zero-
temperature effective potentlﬁal,

(-1 )S+l < d°k 1
Ui(eg) = E 12765 J 2mP (@+ mD)°" (5)

wherem is the physical mass ang is the normalized vacuum expectation value of the fiéhe
classical fielg. In the following, to deal with dimensionless quantities in the regularization pro-
cedures, we introduce parameters

m 1 A . P

=—, b_:—, =, =5, 6
C 271_,“ i LiM g 4772:“4 D ¢0 /~LD 2 ( )

where u is a mass scale. In terms of these parameters and performing the replacetyethis
one-loop contribution to the effective potential can be written in the form

1)5 dD dqr

S sy T f T Tum S vt
@

whereq’=q/2mu is dimensionless. Using a well-known dimensional regularization forfrtola
perform the integration over th@® —d) noncompactified momentum variables, we obtain

Ui(o, by, ... bg) = MD de

- 2 D-d
Ul(¢01bla e 1bd) = /‘LDbl T bdz f(Dadvs)[lzgd)g]sAg (S_ T 1 blv e vbd) ’ (8)
=1
where
B (_ 1)s+1 ( D - d)
= (D02 -
f(D,d,s) 29 I'l's > (9
and

+0oo

AS(viby, ... by = 2 (b2n2+ -+ +b3n3+c?) "

LNg=—*

o+ 22 E (b2nZ +c?)™

|1nI

+22 2 E (b7n? + b’ +c) 7+ -
i<j=1 ni,njzl
+2¢ > (bin+ - +bIng+ ) (10)

n1|. . .,nd=1



012304-4 Abreu et al. J. Math. Phys. 46, 012304 (2005)

Next we can proceed generalizing to several dimensions the mode-sum regularization pre-
scription described in Ref. 8. This generalization has been done in Ref. 1 and we briefly describe
here its principal steps. From the identity

1 1 *
—= dt tte™t, 11
A’ F(V)fo © v

and using the following representation for Bessel functions of the third knd,
2(alb)"2K (2+ab) = f dx x~tem@x=bx (12
0

we obtain after some rather long but straightforward manipulafions,

or=(di2)+1,_2v~(d/2)

A82(v; by, ... by = [2r(d/2)‘1r< v— g) (zwc)d—ZV

by -+~ byl'()
d = v—(d/2)
n 27rCny

+222(_') K, (_'>+

i=1 n=1 \ 27Chy @2 by

s 1 n2 n2 v—(d/2) n2 n2

+2d E (_1 _;++_(2]> Kv—(d/Z) 2aC _;.|.....|._':2j .

ny,...Ng=1 2mC b1 bd b1 bd

(13
Taking v=s—(D-d)/2 in Eqg.(13) and inserting it in Eq(8), we obtain the one-loop correction to

the effective potential irD dimensions with a compactifiedtdimensional subspace in the form
(recovering the dimensionful parameters

- D
Us(@oLy, ... Lg) = 2 [129¢31°h(D,9) {25‘(D’2)‘2F(s- §>mD‘25
=1
d = m \(©/2)-s
+> > (E) K(prz)-s(mLn;)
i=1 n=1 \LiM;

d )
(D/2)-s
m > 5 25
+2 E E (—/—> K(D,Z)_S(vaizniz + sznjz) + .-
V’

i<j=1 ni,nj:]_ L|2n|2 + sznjz
- m (br2-s 22 27
_ (22, ., 22
F2 2 ( /ﬁ) Kr-s(MVLIng + - +Lgng) |,
Ny,.. .,nd:1 AY Llnl + e+ Ldnd
(14)
with
1 _ 1 s+l

h(D,s) = D (15

2D/2+S—l7TD/2 SF(S) .

Criticality is attained when the inverse squared correlation lergtl, ,, ... L4, ¢o), vanishes
in the largeN gap equation,
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24\ dPdq
EZ(L]J e !Ldl(pO) = _rn%-'_ 12)\(PC2)+ D d
17 Lan,,.. nd_—oo (2m)
X , 16
o [ 2Ty 2 2’7Tnd 2 (16
SISy A L, + &ALy, ... La po)
1

where ¢, is the normalized vacuum expectation value of the figldferent from zero in the
ordered phageln the disordered phaseg vanishes and the inverse correlation length equals the
physical mass, given below by E(L8). Recalling the condition,

(92
_U(D |—1, 2)
0"<Po

=m?, (17)
=0

whereU is the sum of the tree-level and one-loop contributions to the effective potémtimém-
bering that at the larght limit it is enough to take the one-loop contribution to the Mmasse
obtain

d = (D12
MP(Ly, ... Lg) =MB(Ly, ... Lo) + —355 (2 )07 |:Z E_ ( ) Kprz)-1(mLinm)

Lin;
(D/2)-1
R
"2 E 2 ( W ) Kior-a(myLEne + Ljng) + -
i<j=tnm=1 \ VLN +Lin
* m (D/2)-1 .
_ 22+ o 1122
+201 > ( = ) Korz-2(myLing + Land |
nl .. .,nd=1 AY Llnl -+ Ldnd
(18

Notice that, in writing Eq(18), we have suppressed the parcéP2-1[1-(D/2)JmP2 from its
square brackets, the parcel that emerges from the first term in the square bracketld.Ekhis
expression, which does not depend explicitly lgndiverges forD even due to the poles of the
gamma function; in this case, this parcel is subtracted to get a renormalized mass equatidn. For
odd,I'[1-(D/2)] is finite but we also subtract this terfmorresponding to a finite renormalizatjon

for sake of uniformity; besides, fdd= 3, the factormP=2? does not contribute in the criticality.

The vanishing of Eq(18) defines criticality for our compactified system. We claim that,
takingd=1, d=2, andd=3 with D=3, we are able to describe, respectively, the critical behavior
of samples of materials in the form of films, wires, and grains. Notice that the parametethe
right-hand side of Eq(18) is the boundary-modified mass(L, ... ,Lq), which means that Eq.

(18) is a self-consistency equation, a very complicated modified Schwinger—Dyson equation for
the mass, not soluble by algebraic means. Nevertheless, as we will see in the next sections, a
solution is possible at criticality, which allows us to obtain a closed formula for the boundary-
dependent critical temperature.

lll. CRITICAL BEHAVIOR FOR FILMS

We now consider the simplest particular case of the compactification of only one spatial
dimension, with the system confined between two parallel planes a distaapart from one
another. This case, which has already been considered in Ref. 5 concerning with the two-
component model, is reanalyzed here to set the required renormalization procedure in the proper
largeN grounds and, also, for the sake of completeness. Thus, froriBytakingd=1, we get
in the disordered phase
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24\ “ m \(P/2-1
(27T)D/221 (E) Kprz)-1(nLm), (19
n=

mP(L) = mp(L) +

whereL (=L,) is the separation between the planes, the film thickness. If we limit ourselves to the
neighborhood of criticalitynm?~0) and considet. finite and sufficiently small, we may use an
asymptotic formula for small values of the argument of Bessel functions,

2l
Ki(2) = %F(Ivl)@) (z=0), (20

and Eq.(19) reduces, foD >3, to

(9N D
mP(L) ~ mg(L) + WF(E - 1) {(D-2), (22)

where(D-2) is the Riemanrzetafunction, defined for R -2} > 1 by the series

1
{(D-2)=2 po=t (22)
n=1

It is worth mentioning that folD=4, takingm?(L)=0 and making the appropriate changés
— B,A—\/41"), Eq. (21) is formally identicalto the high-temperatur@ow values ofg) critical
equation obtained in Ref. 9, thus providing a check of our calculations.

For D=3, Eg.(21) can be made physically meaningful by a regularization procedure as
follows. We consider the analytic continuation of thetafunction, leading to a meromorphic
function having only one simple pole at 1, which satisfies the reflection formula

__ 1 1-2)
{(2)= F(z/2)F< > )ﬂl {(1-2). (23

Next, remembering the formula

| 1]
L@l{é(z) - ZTJ =7 (24)

where y=0.5772 is the Euler—-Mascheroni constant, we defineLtiependent bare mass fbr
~3, in such a way that the pole Bt=3 in Eq.(21) is suppressed, that is we take

1 &
(D-3)wL’

m(L) =~ M (25)

whereM is independent oD. To fix the finite term, we make the simplest choice satisfying

M =mi(T) = a(T-Ty), (26)

To being the bulk critical temperature. In this case, using(E6) in Eqg. (21) and taking the limit
asD— 3, theL-dependent renormalized mass term in the vicinity of criticality becomes

mA(L) = (T = T(L), (27)

where the modifiedl.-dependent, transition temperature is given by

N
T(L)=Ty-C—, (28)
al

L being the thickness of the film, with the const&tgiven by
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6
c,= 2 ~1.1024. (29)
T

From this equation, we see that forsmaller than

Ly = Cy (30
min — “~1 TO,

T.(L) becomes negative, meaning that the transition does not dceur.

IV. CRITICAL BEHAVIOR FOR WIRES

We now focus on the situation where two spatial dimensions are compactified. FradB8Eq.
taking d=2, we get(in the disordered phage

24\ * (D/2)-1
mA(Ly,Lp) =mg(Ly,Ly) + )D,Z{E<n%) K (or2)-1(nLym)

(2 n=1

= m (021
+ <—> Kprz)-1(nLym)
nL,

i m (DI2)-1
+2 —_—_— K (m\Ln L2n2) (32
e (V/—Lln1+L§n§) (D/2)- 1M T Lol
If we limit ourselves to the neighborhood of criticality?~ 0, and taking bot., andL, finite and
sufficiently small, we may use E@0) to rewrite Eq.(31) as

DN D 1 1 D-2
m?(Ly,Ly) = mo('—l,l-z) + o D/2 (E - 1){(LT_2 + LT_Z)f(D -2+ 2E2<T;L1,|—2)],
1

2
(32

whereE,[(D-2)/2;L4,L,] is the generalize@multidimensional Epsteinzetafunction defined by

E2<D 2 |—1'L2) E [Llnl 2“2] (G212, (33
2 ny,no=1
for Re[D} > 3.

As mentioned before, the Riemametafunction {(D-2) has an analytical extension to the
whole complexD-plane, having a unique simple polef residue 1 at D=3. One can also
construct analytical continuation@nd recurrence relationgor the multidimensional Epstein
functions which permit to write them in terms of Kelvin and Riemaetafunctions. To start one
considers the analytical continuation of the Epstein—Huratafunction given b)’?

- 1 Vrr 1 - )
El (N?+p?)"=- P 2t 20271 () [T<v— 5) + 421 (mpn)” YA 1 p(2mpn) | (34)
n= n=

Using this relation to perform one of the sumg#8) leads immediately to the question of which
sum is first evaluated. As it is done in Ref. 10, whatever the sum one chooses to perform first, the
manifestlL, < L, symmetry of Eq(33) is lost; to overcome such an obstacle, in order to preserve
this symmetry, we adopt here a symmetrized summation generalizing the prescription introduced
in Ref. 1 for the case of many variables.

To derive an analytical continuation and symmetrized recurrence relations for the multidimen-
sional Epstein functions, we start by taking these functions defined as the symmetrized summa-
tions
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Ed(V; Lll v lLd) E E E [O.an -t O’gng]_ya (35)
d o =1 ng=1
whereg; =a(L;), with o running in the set of all permutations of the parametgrs.. L4 and the
summations oveny, ... ,ng being taken in the given order. Applyir{84) to perform the sum over
ng, one gets

) _ \"77‘ 1 —~
Eq(viLy, ... Ly = ng Eq_q(v; . )+ 2 d0) ( );‘1 y = l(v Sk )
2V 1
+ dF(V)Wd<V—§,L1, !Ld>v (36)

where the hat over the parametgrin the functionsEy_; means that it is excluded from the set
{L, ... Lg4} (the others being thd-1 parameters oE,_;), and

i )nKn(zzni (+E|2-;|2+)),
)

Pt (L\/( L2n2+--- !

[

d 1
Wy(7iLy, ... Lg) = 2—
|:1L

(37

with (---+L2n’+---) representing the sum_;L’n’~L’n?. In particular, noticing thaky(v;L;)
=L;?"¢(2v), one finds

F(D 3)
E(—D_Z-L2L2>——1< . 1)5(0 2)+w 2 ( TE— )g(D—s)
AT )T\ 4F<D—2> LL3™ LY,

2
Var D-3

+F<D__2>W2< 2 ;Ll,Lz), (39

2

which is a meromorphic function ob, symmetric in the parametels;, and L, as Eq.(33)
suggests.
Using the above expression, E§2) can be rewritten as

1 1 D-2
mP(Ly, L) =~ mp(Ly,L 2)+ {(L L2D_2>F< > ){(D—Z)

+T< t 1 )F(D_3>§(D—3)+2"_W(D—_3'L L) (39)
LR, 2 VI Ty e |

This equation presents no problems fer B <4 but, forD=3, the first and second terms between
the square brackets of E¢R9) are divergent due to th&function andI'-function, respectively.
We can deal with divergences remembering the property in(Zf.and using the expansion of
I'[(D-3)/2] aroundD=3,

D-3) 2
r( 5 ) ST, (40)

I'’(z) standing for the derivative of thie-function with respect ta. Forz=1 it coincides with the
Euler digamma-functioni(1), which has the particular valug(1) =—v. We notice however, that
differently from the case treated in the preceding section, where a renormalization procedure was
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needed, here the two divergent terms generated by the use of forfdjasmd(40) cancel exactly
between them. No renormalization is needed. Thus,fer3, taking the bare mass given by
ﬁ(Ll,Lz):a(T—To), we obtain the renormalized boundary-dependent mass term in the form

M?(Ly,Ly) = (T = Te(Ly, L), (41

with the boundary-dependent critical temperature given by

ONy[ 1 1 (DN
Te(Ly,Ly) =To- _<_ + _) - —W,(0;L4,Ly), (42
2ma\L; L, TA
where
o)1 L 1 L
Wz(o;l_l, Lz) = E {_Ko(z’ﬂ'_znln2> + _Ko(z’ﬂ'_lnlnz)} . (43)
ny,np=1 Ll I-l L2 I—2

The quantityW,(0;L4,L,), appearing in Eq(42), involves complicated double sums, very
difficult to handle forl; # L,; in particular, it is not possible to take limits suchlas- . For this
reason we will restrict ourselves to the cdseL,. For a wire with the square transversal section,
we havelL,=L,=L=VA and Eq.(42) reduces to

A
To(A) =To- Co—=, (44)
aVA
whereC, is a constant given by
9y 12
Co= X +=5 S Ky(2mnyny) ~ 1.6571. (45)

T T npn,=1

We see that the critical temperature of the square wire depends on the bulk critical temperature
and the Ginzburg-Landau parameters&ind A (which are characteristics of the material consti-
tuting the wirg, and also on the area of its cross section. Sificelecreases linearly with the
inverse of the side of the square, this suggests that there is a minimal area for T#Agh,
=0,

2
Amin:(C A ) ; (46)

2
C(TO

for square wires of the transversal section areas smaller than this value, in the context of our model
the transition should be suppressed. On topological grounds, we expe@dhetfrom appropri-

ate coefficientsour result should be independent of the transverse section shape of the wire, at
least for transversal sectional regular polygons.

V. CRITICAL BEHAVIOR FOR GRAINS

We now turn our attention to the case where all three spatial dimensions are compactified,
corresponding to the system confined in a box of sidgd,,L;. Takingd=3 in Eqg. (18) and
using Eq.(20), we obtain(for sufficiently smallL,,L,,L5 and in the neighborhood of classicality,
m?=0)
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6 D-2 D-2 D-2
m2('—1:|—2v|—3)“F‘%(LlleyLs)*'ﬂ_T)\/z ( )[E {(- ) 22 EZ( ;Li,Lj>

| i<j=1 2
D-2
+ 4E, > Ly, Lo Ls) |, (47)

whereE;(v;Lq,L,,L3) = Enln g l[L2 2n2 3n3] and the function&, are given by Eq(398).
The analytical structure of the functioBy[(D-2)/2;L,,L,,L3] can be obtained from the
general symmetrized recurrence relation given by E8@). and (37); explicitly, one has

— (D—3)
Val'l —— | 3
2 > (1 +e&5) 1

6F(D—z) i 2L
2

D-2 12 D-2
Es T;Llul—Z:LS :_62 Eol — Lk )+

D-2 2\ D-3
I (D _ 2) W3 2 ;L11L21L3 ’ (48)
2

whereg;j is the totally antisymmetric symbol and the functidf is a particular case of E¢37).
Using Eqs.(38) and(48), the boundary dependent mass can be written as

3 2

e T

S \LPL L'? 3, 2 3 .54

6N | 1. (D=2 1
MA(Ly, Lo, L) = Mp(Ly, Lo Lg) + 7TD/2|:_F< )E = 5{((D-2)+ _f(D 3)

a D-4 (1+s,k)1< 1 1 )
+—{(D-4T ) ! +
6§( )< 2 IJE“ 2 L\ L

3
2 l1+g,)1 (D-4 8y (D-3
27 | S'Jk)—wz( ;LJ,L> ! w3( ;Ll,LZ,L3> .

3.5 2 L 2 3 2

(49)

The first two terms in the square brackets of Ef) diverge asD — 3 due to the poles of thE
and {-functions. However, as it happens in the case of wires, using (2dsand (40) it can be
shown that these divergences cancel exactly one another. After some simplificatidhs,3pthe
boundary dependent mag9) becomes

3
6N | y 4 (L+ep) L
m?(Ly, Lo, Lg) = Mg(Ly, Ly, Lg) + = W,(0;L,L) + —
(Lylaly = mo( ulala) WL};L 3|§1 5(05L,L)) |12k1 5 LLk

2\77' 2 (1+8I]k)1
3 ikt 2

8
Wz( 2;Lj1|—k) + §W3(0;|-1,|-2,|-3)] : (50)

As before, since no divergences need to be suppressed, we can take the bare mass given by
me(Ly,Ly,Le)=a(T-Tg) and rewrite the renormalized mass as¥(Ly,L,,Lg)~a(T
-T.(L4,Ly,L3)). The expression of(L4,L,,L3) can be easily obtained from E¢pO0), but it is a
very complicated formula, involving multiple sums, which makes almost impossible a general



012304-11  Critical behavior of the compactified A ¢* theory J. Math. Phys. 46, 012304 (2005)

analytical study for arbitrary parameteks,L,,Ls; thus, we restrict ourselves to the situation
wherelL,=L,=L3=L, corresponding to a cubic box of volunw=L3. In this case, the boundary
dependent critical temperature reduces to

T(V)=To~-C3 (51)

A
av1/3 !

where the constar@; is given by[using thatk_,,(z) =\ 7/2z€7]

9 12 e—anlnz 48 48
L + 2 2 Ko(2mNyny) + — 2 Ko(2mmy VN2 + nd) ~ 2.7657.

Cg =1+—+—
T Tnn=1 M T nyny=1 T nynpng=1
(52
One sees that the minimal volume of the cubic grain sustaining the transition is
A 3
Vmin = <C3 ) (53)
CYTO

VI. CONCLUSIONS

In this paper we have discussed the spontaneous symmetry breaking @f¢thg theory
compactified ind=D Euclidean dimensions, extending some results of Ref. 1. We have param-
etrized the bare mass term in the fomf;(T—TO), thus placing the analysis within the Ginzburg—
Landau framework. We focused on the situations viith3 andd=1,2, 3,correspondindin the
context of condensed matter systenwsfilms, wires, and grains, respectively, undergoing phase
transitions which may be described byean-field Ginzburg—Landau models. This generalizes to
more compactified dimensions of previous investigations on the superconducting transition in
films, both without and in the presence of a magnetic fitdn all cases studied here, in the
absence of gauge fluctuations, we found that the boundary-dependent critical temperature de-
creases linearly with the inverse of the linear dimensiom (L) =Ty—Cy4\/aL, wherea and\ are
the Ginzgurg—Landau parameterg,is the bulk transition temperature, a@g is a constant equal
to 1.1024, 1.6571, and 2.6757 fd=1 (film), d=2 (square wirg, andd=3 (cubic grain, respec-
tively. Such behavior suggests the existence of a minimal size of the system below which the
transition is suppressed. It is worth mentioning that having the transition temperature scaling with
the inverse of the relevant length for all the cases analyzedilms, wires, and grainsis in
accordance with what one learns from finite-size scaling arguments.

These findings seems to beqnalitativeagreement with results for the existence of a minimal
thickness for disappearance of superconductivity in fithne Experimental investigations in
nanowires searching to establish whether there is a limit to how thin a superconducting wire can
be, while retaining its superconducting character, have also drawn the attention of researchers; for
example, in Ref. 17 the behavior of nanowires has been studied. Similar questions have also been
raised concerning the behavior of superconducting nanog]r%’rﬁsxlevertheless, an important
point to be emphasized is that our results are obtained in a field-theoretical framework and do not
depend on microscopic details of the material involved nor account for the influence of manufac-
turing aspects of the sample; in other words, our results emerge solely as a topological effect of the
compactification of the Ginzburg—Landau model in a subspace. Detailed microscopic analysis is
required if one attempts to account quantitatively for experimental observations which might
deviate from our mean field results.
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