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We investigate the critical behavior of theN-component Euclideanlf4 model, in
the largeN limit, in three situations: confined between two parallel planes a dis-
tanceL apart from one another; confined to an infinitely long cylinder having a
square transversal section of areaL2; and to a cubic box of volumeL3. Taking the
mass term in the formm0

2=asT−T0d, we retrieve Ginzburg–Landau models which
are supposed to describe samples of a material undergoing a phase transition,
respectively, in the form of a film, a wire and of a grain, whose bulk transition
temperaturesT0d is known. We obtain equations for the critical temperature as
functions of L and of T0, and determine the limiting sizes sustaining the
transition. ©2005 American Institute of Physics.[DOI: 10.1063/1.1828589]

I. INTRODUCTION

Models with fields confined in spatial dimensions play important roles both in field theory and
in quantum mechanics. Relevant examples are the Casimir effect and superconducting films,
where confinement is carried on by appropriate boundary conditions. For Euclidean field theories,
imaginary time and the spatial coordinates are treated exactly on the same footing, so that an
extended Matsubara formalism can be applied for dealing with the breaking of invariance along
any one of the spatial directions.

Relying on this fact, in the present work we discuss the critical behavior of the Euclideanlw4

model compactified in one, two, and three spatial dimensions. We implement the spontaneous
symmetry breaking by taking the bare mass coefficient in the Lagrangian parametrized asm0

2

=asT−T0d, with a.0 and the parameterT varying in an interval containingT0. With this choice,
considering the system confined between two parallel planes a distanceL apart from one another,
in an infinitely long square cylinder with transversal section areaA=L2, and in a cube of volume
V=L3, in dimensionD=3, we obtain Ginzburg–Landau models describing phase transitions in
samples of a material in the form of a film, a wire and a grain, respectively,T0 standing for the
bulk transition temperature. Such descriptions apply to physical circumstances where no gauge
fluctuations need to be considered.

We start recapitulating the general procedure developed in Ref. 1 to treat the massiveslw4dD

theory in Euclidean space, compactified in ad-dimensional subspace, withdøD. This permits to
extend to an arbitrary subspace some results in the literature for finite temperature field theory2

and for the behavior of field theories in the presence of spatial boundaries.3,4 We shall consider the
vectorN-componentslw4dD Euclidean theory at leading order in 1/N, thus allowing for nonper-
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turbative results, the system being submitted to the constraint of compactification of a
d-dimensional subspace. After describing the general formalism, we readdress the renormalization
procedure we use treating the simpler situation ofd=1, which corresponds to the system confined
between parallel planes(a film), analyzed in Ref. 5 for the case of two components,N=2. We then
focus on two other particularly interesting cases ofd=2 andd=3, in the three-dimensional Eu-
clidean space, corresponding, respectively, to the system confined to an infinitely long cylinder
with square transversal section(a wire) and to a finite cubic box(a grain). Extending the inves-
tigation to these new cases demands further developments in the subject of multidimensional
Epstein functions.

For these situations, in the framework of the Ginzburg–Landau model we derive equations for
the critical temperature as a function of the confining dimensions. For a film, we show that the
critical temperature decreases linearly with the inverse of the film thickness while, for a square
wire and for a cubic grain, we obtain that the critical temperatures decrease linearly with the
inverse of the side of the square and with the inverse of the edge of the cube, respectively, but with
larger coefficients. In all cases, we are able to calculate the minimal system size(thickness,
transversal section area, or volume) below which the phase transition does not take place.

II. THE COMPACTFIED MODEL

In this section we review the analytical methods of compactification of theN-component
Euclideanlw4 model developed in Ref. 1 We consider the model described by the Hamiltonian
density,

H =
1

2
]mwa]

mwa +
1

2
m̄0

2wawa +
l

N
swawad2, s1d

in EuclideanD-dimensional space, confined to ad-dimensional spatial rectangular box of sidesLj,
j =1,2, . . . ,d. In the above equationl is the renormalizedcoupling constant,m̄0

2 is a boundary-
modified mass parameter depending onhLij i =1,2, . . . ,d, in such a way that

lim
hLij→`

m̄0
2sL1, . . . ,Ldd = m0

2sTd ; asT − T0d, s2d

m0
2sTd being the constant mass parameter present in the usual free-space Ginzburg–Landau model.

In Eq. (2), T0 represents the bulk transition temperature. Summation over repeated “color” indices
a is assumed. To simplify the notation in the following we drop out the color indices, summation
over them being understood in field products. We will work in the approximation of neglecting
boundary corrections to the coupling constant. A precise definition of the boundary-modified mass
parameter will be given later for the situation ofD=3 with d=1, d=2, andd=3, corresponding,
respectively, to a film of thicknessL1, to a wire of rectangular sectionL13L2 and to a grain of
volumeL13L23L3.

We use Cartesian coordinatesr =sx1, . . . ,xd,zd, wherez is a sD−dd-dimensional vector, with
corresponding momentumk =sk1, . . . ,kd,qd, q being asD−dd-dimensional vector in momentum
space. Then the generating functional of correlation functions has the form

Z =E Dw† Dw expS−E
0

L

ddr E dD−dz Hsw, ¹ wdD , s3d

where L =sL1, . . . ,Ldd, and we are allowed to introduce a generalized Matsubara prescription,
performing the following multiple replacements(compactification of ad-dimensional subspace):
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E dki

2p
→ 1

Li
o

ni=−`

+`

, ki →
2nip

Li
, i = 1,2, . . . ,d. s4d

A simpler situation is the system confined simultaneously between two parallel planes a distance
L1 apart from one another normal to thex1 axis and two other parallel planes, normal to thex2 axis
separated by a distanceL2 (a “wire” of rectangular section).

We start from the well-known expression for the one-loop contribution to the zero-
temperature effective potential,6

U1sw0d = o
s=1

`
s− 1ds+1

2s
f12lw0

2gsE dDk

s2pdD

1

sk2 + m2ds , s5d

wherem is the physical mass andw0 is the normalized vacuum expectation value of the field(the
classical field). In the following, to deal with dimensionless quantities in the regularization pro-
cedures, we introduce parameters

c =
m

2pm
, bi =

1

Lim
, g =

l

4p2m4−D , f0
2 =

w0
2

mD−2 , s6d

wherem is a mass scale. In terms of these parameters and performing the replacements(4), the
one-loop contribution to the effective potential can be written in the form

U1sf0,b1, . . . ,bdd = mDb1 ¯ bdo
s=1

`
s− 1ds

2s
f12gf0

2gs o
n1,. . .,nd=−`

+` E dD−dq8

sb1
2n1

2 + ¯ + bd
2nd

2 + c2 + q82ds ,

s7d

whereq8=q /2pm is dimensionless. Using a well-known dimensional regularization formula7 to
perform the integration over thesD−dd noncompactified momentum variables, we obtain

U1sf0,b1, . . . ,bdd = mDb1 ¯ bdo
s=1

`

fsD,d,sdf12gf0
2gsAd

c2Ss−
D − d

2
;b1, . . . ,bdD , s8d

where

fsD,d,sd = psD−dd/2s− 1ds+1

2sGssd
GSs−

D − d

2
D s9d

and

Ad
c2

sn;b1, . . . ,bdd = o
n1,. . .,nd=−`

+`

sb1
2n1

2 + ¯ + bd
2nd

2 + c2d−n

=
1

c2n + 2o
i=1

d

o
ni=1

`

sbi
2ni

2 + c2d−n

+ 22 o
i, j=1

d

o
ni,nj=1

`

sbi
2ni

2 + bj
2nj

2 + c2d−n + ¯

+ 2d o
n1,. . .,nd=1

`

sb1
2n1

2 + ¯ + bd
2nd

2 + c2d−n. s10d
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Next we can proceed generalizing to several dimensions the mode-sum regularization pre-
scription described in Ref. 8. This generalization has been done in Ref. 1 and we briefly describe
here its principal steps. From the identity

1

Dn =
1

GsndE0

`

dt tn−1e−Dt, s11d

and using the following representation for Bessel functions of the third kind,Kn,

2sa/bdn/2Kns2Îabd =E
0

`

dx xn−1e−sa/xd−bx, s12d

we obtain after some rather long but straightforward manipulations,1

Ad
c2

sn;b1, . . . ,bdd =
2n−sd/2d+1p2n−sd/2d

b1 ¯ bdGsnd F2n−sd/2d−1GSn −
d

2
Ds2pcdd−2n

+ 2o
i=1

d

o
ni=1

` S ni

2pcbi
Dn−sd/2d

Kn−sd/2dS2pcni

bi
D + ¯

+ 2d o
n1,. . .,nd=1

` S 1

2pc
În1

2

b1
2 + ¯ +

nd
2

bd
2Dn−sd/2d

Kn−sd/2dS2pcÎn1
2

b1
2 + ¯ +

nd
2

bd
2DG .

s13d

Takingn=s−sD−dd /2 in Eq.(13) and inserting it in Eq.(8), we obtain the one-loop correction to
the effective potential inD dimensions with a compactifiedd-dimensional subspace in the form
(recovering the dimensionful parameters)

U1sw0,L1, . . . ,Ldd = o
s=1

`

f12gf0
2gshsD,sdF2s−sD/2d−2GSs−

D

2
DmD−2s

+ o
i=1

d

o
ni=1

` S m

Lini
DsD/2d−s

KsD/2d−ssmLinid

+ 2 o
i, j=1

d

o
ni,nj=1

` S m

ÎLi
2ni

2 + Lj
2nj

2DsD/2d−s

KsD/2d−ssmÎLi
2ni

2 + Lj
2nj

2d + ¯

+ 2d−1 o
n1,. . .,nd=1

` S m

ÎL1
2n1

2 + ¯ + Ld
2nd

2DsD/2d−s

KsD/2d−ssmÎL1
2n1

2 + ¯ + Ld
2nd

2dG ,

s14d

with

hsD,sd =
1

2D/2+s−1pD/2

s− 1ds+1

sGssd
. s15d

Criticality is attained when the inverse squared correlation length,j−2sL1, . . . ,Ld,w0d, vanishes
in the large-N gap equation,
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 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

200.130.19.138 On: Wed, 27 Nov 2013 15:13:18



j−2sL1, . . . ,Ld,w0d = m̄0
2 + 12lw0

2 +
24l

L1 ¯ Ld
o

n1,. . .,nd=−`

` E dD−dq

s2pdD−d

3
1

q2 + S2pn1

L1
D2

+ ¯ + S2pnd

Ld
D2

+ j−2sL1, . . . ,Ld,w0d
, s16d

where w0 is the normalized vacuum expectation value of the field(different from zero in the
ordered phase). In the disordered phase,w0 vanishes and the inverse correlation length equals the
physical mass, given below by Eq.(18). Recalling the condition,

U ]2

]w0
2UsD,L1,L2dU

w0=0

= m2, s17d

whereU is the sum of the tree-level and one-loop contributions to the effective potential(remem-
bering that at the large-N limit it is enough to take the one-loop contribution to the mass), we
obtain

m2sL1, . . . ,Ldd = m̄0
2sL1, . . . ,Ldd +

24l

s2pdD/2Fo
i=1

d

o
ni=1

` S m

Lini
DsD/2d−1

KsD/2d−1smLinid

+ 2 o
i, j=1

d

o
ni,nj=1

` S m

ÎLi
2ni

2 + Lj
2nj

2DsD/2d−1

KsD/2d−1smÎLi
2ni

2 + Lj
2nj

2d + ¯

+ 2d−1 o
n1,. . .,nd=1

` S m

ÎL1
2n1

2 + ¯ + Ld
2nd

2DsD/2d−1

KsD/2d−1smÎL1
2n1

2 + ¯ + Ld
2nd

2dG .

s18d

Notice that, in writing Eq.(18), we have suppressed the parcel 2−sD/2d−1Gf1−sD /2dgmD−2 from its
square brackets, the parcel that emerges from the first term in the square bracket of Eq.(14). This
expression, which does not depend explicitly onLi, diverges forD even due to the poles of the
gamma function; in this case, this parcel is subtracted to get a renormalized mass equation. ForD
odd,Gf1−sD /2dg is finite but we also subtract this term(corresponding to a finite renormalization)
for sake of uniformity; besides, forDù3, the factormD−2 does not contribute in the criticality.

The vanishing of Eq.(18) defines criticality for our compactified system. We claim that,
taking d=1, d=2, andd=3 with D=3, we are able to describe, respectively, the critical behavior
of samples of materials in the form of films, wires, and grains. Notice that the parameterm on the
right-hand side of Eq.(18) is the boundary-modified massmsL1, . . . ,Ldd, which means that Eq.
(18) is a self-consistency equation, a very complicated modified Schwinger–Dyson equation for
the mass, not soluble by algebraic means. Nevertheless, as we will see in the next sections, a
solution is possible at criticality, which allows us to obtain a closed formula for the boundary-
dependent critical temperature.

III. CRITICAL BEHAVIOR FOR FILMS

We now consider the simplest particular case of the compactification of only one spatial
dimension, with the system confined between two parallel planes a distanceL apart from one
another. This case, which has already been considered in Ref. 5 concerning with the two-
component model, is reanalyzed here to set the required renormalization procedure in the proper
large-N grounds and, also, for the sake of completeness. Thus, from Eq.(18), takingd=1, we get
in the disordered phase

012304-5 Critical behavior of the compactified lf4 theory J. Math. Phys. 46, 012304 (2005)
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m2sLd = m̄0
2sLd +

24l

s2pdD/2o
n=1

` S m

nL
DsD/2d−1

KsD/2d−1snLmd, s19d

whereL s=L1d is the separation between the planes, the film thickness. If we limit ourselves to the
neighborhood of criticalitysm2<0d and considerL finite and sufficiently small, we may use an
asymptotic formula for small values of the argument of Bessel functions,

Knszd <
1

2
GsunudS z

2
D−unu

sz< 0d, s20d

and Eq.(19) reduces, forD.3, to

m2sLd < m̄0
2sLd +

6l

pD/2LD−2GSD

2
− 1DzsD − 2d, s21d

wherezsD−2d is the Riemannzeta-function, defined for RehD−2j.1 by the series

zsD − 2d = o
n=1

`
1

nD−2 . s22d

It is worth mentioning that forD=4, taking m2sLd=0 and making the appropriate changessL
→b ,l→l /4 ! d, Eq. (21) is formally identicalto the high-temperature(low values ofb) critical
equation obtained in Ref. 9, thus providing a check of our calculations.

For D=3, Eq. (21) can be made physically meaningful by a regularization procedure as
follows. We consider the analytic continuation of thezeta-function, leading to a meromorphic
function having only one simple pole atz=1, which satisfies the reflection formula

zszd =
1

Gsz/2d
GS1 − z

2
Dpz−1/2zs1 − zd. s23d

Next, remembering the formula

lim
z→1

Fzszd −
1

z− 1
G = g, s24d

whereg<0.5772 is the Euler–Mascheroni constant, we define theL-dependent bare mass forD
<3, in such a way that the pole atD=3 in Eq. (21) is suppressed, that is we take

m̄0
2sLd < M −

1

sD − 3d
6l

pL
, s25d

whereM is independent ofD. To fix the finite term, we make the simplest choice satisfying(2),

M = m0
2sTd = asT − T0d, s26d

T0 being the bulk critical temperature. In this case, using Eq.(25) in Eq. (21) and taking the limit
asD→3, theL-dependent renormalized mass term in the vicinity of criticality becomes

m2sLd < asT − TcsLdd, s27d

where the modified,L-dependent, transition temperature is given by

TcsLd = T0 − C1
l

aL
, s28d

L being the thickness of the film, with the constantC1 given by
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C1 =
6g

p
< 1.1024. s29d

From this equation, we see that forL smaller than

Lmin = C1
l

aT0
, s30d

TcsLd becomes negative, meaning that the transition does not occur.5

IV. CRITICAL BEHAVIOR FOR WIRES

We now focus on the situation where two spatial dimensions are compactified. From Eq.(18),
taking d=2, we get(in the disordered phase)

m2sL1,L2d = m̄0
2sL1,L2d +

24l

s2pdD/2Fo
n=1

` S m

nL1
DsD/2d−1

KsD/2d−1snL1md

+ o
n=1

` S m

nL2
DsD/2d−1

KsD/2d−1snL2md

+ 2 o
n1,n2=1

` S m

ÎL1
2n1

2 + L2
2n2

2DsD/2d−1

KsD/2d−1smÎL1
2n1

2 + L2
2n2

2dG . s31d

If we limit ourselves to the neighborhood of criticality,m2<0, and taking bothL1 andL2 finite and
sufficiently small, we may use Eq.(20) to rewrite Eq.(31) as

m2sL1,L2d < m̄0
2sL1,L2d +

6l

pD/2GSD

2
− 1DFS 1

L1
D−2 +

1

L2
D−2DzsD − 2d + 2E2SD − 2

2
;L1,L2DG ,

s32d

whereE2fsD−2d /2 ;L1,L2g is the generalized(multidimensional) Epsteinzeta-function defined by

E2SD − 2

2
;L1,L2D = o

n1,n2=1

`

fL1
2n1

2 + L2
2n2

2g−fsD−2d/2g, s33d

for RehDj.3.
As mentioned before, the Riemannzeta-function zsD−2d has an analytical extension to the

whole complexD-plane, having a unique simple pole(of residue 1) at D=3. One can also
construct analytical continuations(and recurrence relations) for the multidimensional Epstein
functions which permit to write them in terms of Kelvin and Riemannzeta-functions. To start one
considers the analytical continuation of the Epstein–Hurwitzzeta-function given by8

o
n=1

`

sn2 + p2d−n = −
1

2
p−2n +

Îp

2p2n−1GsndFGSn −
1

2
D + 4o

n=1

`

sppndn−1/2Kn−1/2s2ppndG . s34d

Using this relation to perform one of the sums in(33) leads immediately to the question of which
sum is first evaluated. As it is done in Ref. 10, whatever the sum one chooses to perform first, the
manifestL1↔L2 symmetry of Eq.(33) is lost; to overcome such an obstacle, in order to preserve
this symmetry, we adopt here a symmetrized summation generalizing the prescription introduced
in Ref. 1 for the case of many variables.

To derive an analytical continuation and symmetrized recurrence relations for the multidimen-
sional Epstein functions, we start by taking these functions defined as the symmetrized summa-
tions

012304-7 Critical behavior of the compactified lf4 theory J. Math. Phys. 46, 012304 (2005)
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Edsn;L1, . . . ,Ldd =
1

d! os
o
n1=1

`

¯ o
nd=1

`

fs1
2n1

2 + ¯ + sd
2nd

2g−n, s35d

wheresi =ssLid, with s running in the set of all permutations of the parametersL1, . . . ,Ld, and the
summations overn1, . . . ,nd being taken in the given order. Applying(34) to perform the sum over
nd, one gets

Edsn;L1, . . . ,Ldd = −
1

2d
o
i=1

d

Ed−1sn; . . . ,Lî, . . . d +
Îp

2 dGsnd
GSn −

1

2
Do

i=1

d
1

Li
Ed−1Sn −

1

2
; . . . ,Lî, . . .D

+
2Îp

dGsnd
WdSn −

1

2
,L1, . . . ,LdD , s36d

where the hat over the parameterLi in the functionsEd−1 means that it is excluded from the set
hL1, . . . ,Ldj (the others being thed−1 parameters ofEd−1), and

Wdsh;L1, . . . ,Ldd = o
i=1

d
1

Li
o

n1,. . .,nd=1

` S pni

Li
Îs¯ + Li

2ni
2̂ + ¯ d

Dh

KhS2pni

Li

Îs¯ + Li
2ni

2̂ + ¯ dD ,

s37d

with s¯+Li
2ni

2̂+¯ d representing the sumo j=1
d Lj

2nj
2−Li

2ni
2. In particular, noticing thatE1sn ;Ljd

=Lj
−2nzs2nd, one finds

E2SD − 2

2
;L1

2,L2
2D = −

1

4
S 1

L1
D−2 +

1

L2
D−2DzsD − 2d +

ÎpGSD − 3

2
D

4GSD − 2

2
D S 1

L1L2
D−3 +

1

L1
D−3L2

DzsD − 3d

+
Îp

GSD − 2

2
DW2SD − 3

2
;L1,L2D , s38d

which is a meromorphic function ofD, symmetric in the parametersL1 and L2 as Eq. (33)
suggests.

Using the above expression, Eq.(32) can be rewritten as

m2sL1,L2d < m̄0
2sL1,L2d +

3l

pD/2FS 1

L1
D−2 +

1

L2
D−2DGSD − 2

2
DzsD − 2d

+ ÎpS 1

L1L2
D−3 +

1

L1
D−3L2

DGSD − 3

2
DzsD − 3d + 2ÎpW2SD − 3

2
;L1,L2DG . s39d

This equation presents no problems for 3,D,4 but, forD=3, the first and second terms between
the square brackets of Eq.(39) are divergent due to thez-function andG-function, respectively.
We can deal with divergences remembering the property in Eq.(24) and using the expansion of
GfsD−3d /2g aroundD=3,

GSD − 3

2
D <

2

D − 3
+ G8s1d, s40d

G8szd standing for the derivative of theG-function with respect toz. For z=1 it coincides with the
Euler digamma-functioncs1d, which has the particular valuecs1d=−g. We notice however, that
differently from the case treated in the preceding section, where a renormalization procedure was
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needed, here the two divergent terms generated by the use of formulas(24) and(40) cancel exactly
between them. No renormalization is needed. Thus, forD=3, taking the bare mass given by
m̄0

2sL1,L2d=asT−T0d, we obtain the renormalized boundary-dependent mass term in the form

m2sL1,L2d < asT − TcsL1,L2dd, s41d

with the boundary-dependent critical temperature given by

TcsL1,L2d = T0 −
9lg

2pa
S 1

L1
+

1

L2
D −

6l

pa
W2s0;L1,L2d, s42d

where

W2s0;L1,L2d = o
n1,n2=1

` H 1

L1
K0S2p

L2

L1
n1n2D +

1

L2
K0S2p

L1

L2
n1n2DJ . s43d

The quantityW2s0;L1,L2d, appearing in Eq.(42), involves complicated double sums, very
difficult to handle forL1ÞL2; in particular, it is not possible to take limits such asLi →`. For this
reason we will restrict ourselves to the caseL1=L2. For a wire with the square transversal section,
we haveL1=L2=L=ÎA and Eq.(42) reduces to

TcsAd = T0 − C2
l

aÎA
, s44d

whereC2 is a constant given by

C2 =
9g

p
+

12

p
o

n1,n2=1

`

K0s2pn1n2d < 1.6571. s45d

We see that the critical temperature of the square wire depends on the bulk critical temperature
and the Ginzburg–Landau parametersa and l (which are characteristics of the material consti-
tuting the wire), and also on the area of its cross section. SinceTc decreases linearly with the
inverse of the side of the square, this suggests that there is a minimal area for whichTcsAmind
=0,

Amin = SC2
l

aT0
D2

; s46d

for square wires of the transversal section areas smaller than this value, in the context of our model
the transition should be suppressed. On topological grounds, we expect that(apart from appropri-
ate coefficients) our result should be independent of the transverse section shape of the wire, at
least for transversal sectional regular polygons.

V. CRITICAL BEHAVIOR FOR GRAINS

We now turn our attention to the case where all three spatial dimensions are compactified,
corresponding to the system confined in a box of sidesL1,L2,L3. Taking d=3 in Eq. (18) and
using Eq.(20), we obtain(for sufficiently smallL1,L2,L3 and in the neighborhood of classicality,
m2<0)
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m2sL1,L2,L3d < m̄0
2sL1,L2,L3d +

6l

pD/2GSD − 2

2
DFo

i=1

3
zsD − 2d

Li
D−2 + 2 o

i, j=1

3

E2SD − 2

2
;Li,LjD

+ 4E3SD − 2

2
;L1,L2,L3DG , s47d

whereE3sn ;L1,L2,L3d=on1,n2,n3=1
` fL1

2n1
2+L2

2n2
2+L3

2n3
2g−n and the functionsE2 are given by Eq.(38).

The analytical structure of the functionE3fsD−2d /2 ;L1,L2,L3g can be obtained from the
general symmetrized recurrence relation given by Eqs.(36) and (37); explicitly, one has

E3SD − 2

2
;L1,L2,L3D = −

1

6 o
i, j=1

3

E2SD − 2

2
;Li,LjD +

ÎpGSD − 3

2
D

6GSD − 2

2
D o

i,j ,k=1

3
s1 + «i jkd

2

1

Li

3E2SD − 2

2
;Lj,LkD +

2Îp

3GSD − 2

2
DW3SD − 3

2
;L1,L2,L3D , s48d

where«i jk is the totally antisymmetric symbol and the functionW3 is a particular case of Eq.(37).
Using Eqs.(38) and (48), the boundary dependent mass can be written as

m2sL1,L2,L3d < m̄0
2sL1,L2,L3d +

6l

pD/2F1

3
GSD − 2

2
Do

i=1

3
1

Li
D−2zsD − 2d +

Îp

6
zsD − 3d

3 o
i, j=1

3 S 1

Li
D−3Lj

+
1

Lj
D−3Li

DGSD − 3

2
D +

4Îp

3 o
i, j=1

3

W2SD − 3

2
;Li,LjD

+
p

6
zsD − 4dGSD − 4

2
D o

i,j ,k=1

3
s1 + «i jkd

2

1

Li
S 1

Lj
D−4Lk

+
1

Lk
D−4Lj

D
+

2p

3 o
i,j ,k=1

3
s1 + «i jkd

2

1

Li
W2SD − 4

2
;Lj,LkD +

8Îp

3
W3SD − 3

2
;L1,L2,L3DG .

s49d

The first two terms in the square brackets of Eq.(49) diverge asD→3 due to the poles of theG
andz-functions. However, as it happens in the case of wires, using Eqs.(24) and (40) it can be
shown that these divergences cancel exactly one another. After some simplifications, forD=3, the
boundary dependent mass(49) becomes

m2sL1,L2,L3d < m̄0
2sL1,L2,L3d +

6l

p
Fg

2o
i=1

3
1

Li
+

4

3 o
i, j=1

3

W2s0;Li,Ljd +
p

18 o
i,j ,k=1

3
s1 + «i jkd

2

Li

LjLk

+
2Îp

3 o
i,j ,k=1

3
s1 + «i jkd

2

1

Li
W2S−

1

2
;Lj,LkD +

8

3
W3s0;L1,L2,L3dG . s50d

As before, since no divergences need to be suppressed, we can take the bare mass given by
m̄0

2sL1,L2,L3d=asT−T0d and rewrite the renormalized mass asm2sL1,L2,L3d<asT
−TcsL1,L2,L3dd. The expression ofTcsL1,L2,L3d can be easily obtained from Eq.(50), but it is a
very complicated formula, involving multiple sums, which makes almost impossible a general
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analytical study for arbitrary parametersL1,L2,L3; thus, we restrict ourselves to the situation
whereL1=L2=L3=L, corresponding to a cubic box of volumeV=L3. In this case, the boundary
dependent critical temperature reduces to

TcsVd = T0 − C3
l

aV1/3, s51d

where the constantC3 is given by[using thatK−1/2szd=Îp /2ze−z]

C3 = 1 +
9g

p
+

12

p
o

n1,n2=1

`
e−2pn1n2

n1
+

48

p
o

n1,n2=1

`

K0s2pn1n2d +
48

p
o

n1,n2,n3=1

`

K0s2pn1
În2

2 + n3
2d < 2.7657.

s52d

One sees that the minimal volume of the cubic grain sustaining the transition is

Vmin = SC3
l

aT0
D3

. s53d

VI. CONCLUSIONS

In this paper we have discussed the spontaneous symmetry breaking of theslf4dD theory
compactified indøD Euclidean dimensions, extending some results of Ref. 1. We have param-
etrized the bare mass term in the formm0

2sT−T0d, thus placing the analysis within the Ginzburg–
Landau framework. We focused on the situations withD=3 andd=1,2,3,corresponding(in the
context of condensed matter systems) to films, wires, and grains, respectively, undergoing phase
transitions which may be described by(mean-field) Ginzburg–Landau models. This generalizes to
more compactified dimensions of previous investigations on the superconducting transition in
films, both without5 and in the presence of a magnetic field.11 In all cases studied here, in the
absence of gauge fluctuations, we found that the boundary-dependent critical temperature de-
creases linearly with the inverse of the linear dimensionL: TcsLd=T0−Cdl /aL, wherea andl are
the Ginzgurg–Landau parameters,T0 is the bulk transition temperature, andCd is a constant equal
to 1.1024, 1.6571, and 2.6757 ford=1 (film), d=2 (square wire), andd=3 (cubic grain), respec-
tively. Such behavior suggests the existence of a minimal size of the system below which the
transition is suppressed. It is worth mentioning that having the transition temperature scaling with
the inverse of the relevant lengthL for all the cases analyzed(films, wires, and grains) is in
accordance with what one learns from finite-size scaling arguments.12

These findings seems to be inqualitativeagreement with results for the existence of a minimal
thickness for disappearance of superconductivity in films.13–16 Experimental investigations in
nanowires searching to establish whether there is a limit to how thin a superconducting wire can
be, while retaining its superconducting character, have also drawn the attention of researchers; for
example, in Ref. 17 the behavior of nanowires has been studied. Similar questions have also been
raised concerning the behavior of superconducting nanograins.18,19 Nevertheless, an important
point to be emphasized is that our results are obtained in a field-theoretical framework and do not
depend on microscopic details of the material involved nor account for the influence of manufac-
turing aspects of the sample; in other words, our results emerge solely as a topological effect of the
compactification of the Ginzburg–Landau model in a subspace. Detailed microscopic analysis is
required if one attempts to account quantitatively for experimental observations which might
deviate from our mean field results.
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