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Abstract
In this work, the characterization of the roughness of a set of equipotential
lines �, due to a rough surface held at a nonzero voltage bias, is investigated.
The roughness of the equipotential lines reflects the roughness of the profile,
and causes a rapid variation in the electric field close to the surface. An
ideal situation was considered, where a well known self-affine profile mimics
the surface, while the equipotential lines are numerically evaluated using
Liebmann’s method. The use of an exact scale invariant profile helps to
understand the dependency of the line roughness exponent α(�) on both the
value of the potential (or on the average distance to the profile) and the profile’s
length. Results clearly support previous indications that: (a) for a system of
fixed size, higher values of α characterize less corrugated lines far away from
the profile; (b) for a fixed value of the potential, α decreases with the length of
the profile towards the value of the boundary. This suggests that, for a system
of infinite size, all equipotential lines share the same value of α.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The influence of boundary irregularities on the bulk properties of a medium is an important
issue to the understanding of a large number of situations in many areas of natural sciences.
It is well known that, for solid materials, the boundary effects are restricted to a few layers
of atoms. However, in field and fluid problems, this influence can be dominant in a large
length scale: for example, in electrostatic problems, where the presence of irregularities in a
conducting charged surface propagates into the electric equipotential surfaces close to it; in
diffusion of reactants to and from the surface of a catalyst; in stream lines of a flow in the slow
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velocity Stokes regime, and so on. Depending on the system under consideration, a corrugate
profile affects the motion of charged particles in a varying electric field, and the flow of matter
to and from the catalyst, as well as the velocity field of the flow. Therefore, the investigation of
the geometrical properties of these fields is of relevance not only for the characterization of the
medium itself, but also for obtaining a detailed description of the dynamics of objects in such
region.

A quantitative investigation of how deep the effect of an interface boundary can be
propagated into the medium can be carried out with the help of several concepts and methods
conceived within the framework of fractal geometry. These concepts have proved to be of
importance in many areas of natural sciences, including surface science. Of course, this
investigation is preceded by the evaluation of the field in the region bounded by the irregular
profiles.

In this work we resume previous investigations [1] and consider the influence of a
conducting rough charged surface on the electric field intensity close to the profile. This
problem is motivated basically by the analysis of the motion of particles responsible for image
formation in both field ion and field emission microscopies (FIM and FEM, respectively). The
importance of extra [2] and local magnification [3] as a result of curvature of evaporated species
in the atom-probe is well known. Effects resulting from local field variations can be also of
practical interest in other areas, for example for determining the properties of devices and
emitters [4], variation of the local work function [5, 6] and behaviour of electrodes [7, 8].

In previous works, we have analysed this problem and developed methodologies that were
applied to regions bounded by profiles y1(x), held at a constant potential strength φ0 = 0,
represented by the Koch curve [9], by Weierstrass functions [1, 10] and also by random profiles
obtained from well known deposition algorithms [11]. In all previously investigated cases, the
second boundary has been chosen to be a straight line y2(x) = Y2 placed far away from the
maximal value of the profile, and held at φy2 = φ2 = 100. Eventually φ2 → ∞ when y2 → ∞.
In the present work, the boundary y1(x) is represented by a geometrically generated self-affine
profile. Although this is a relatively simpler situation than those obtained by random profiles,
this investigation takes advantage of the exact scale invariance to clear out two seemingly
conflicting scaling behaviour of the equipotential lines suggested by previous investigations:
(i) the fractal dimension Df = 2 − α, where α is the roughness exponent, decreases together
with φ as the average distance from the equipotential line to y1(x) increases; (ii) for a fixed
potential line, Df increases with the length L of the profile, suggesting that, as L increases, all
lines might be characterized by the same value of Df.

The fractal properties of the equipotential profiles are computed in the region confined by
the two conductors as already described. The solution of Laplace’s equation is numerically
obtained at the region of interest, while the roughness exponent α and the fractal dimension
Df = 2 −α of the equipotential lines are evaluated with the help of the semivariogram method.

2. Methodology

The exact geometrical invariant rough profile used herein (see figure 1) has been adopted by a
large number of authors. It is generated starting, at generation G1, by straight line segments
linking successively the points (x, y) = (0, 0), (1, 1), (2, 0), (3, 1) and (4, 2). A comparison
of figures in two successive generations indicates that all horizontal lengths have been expanded
by a scaling factor sh = 4, while the vertical scaling factor is sv = 2. The initial states of this
exact self-affine construction have been illustrated in several texts on fractal geometry so that,
in figure 1, we just show the final figure at the eighth generation. For the purpose of avoiding
undesirable boundary effects, we use only half of the points in each generation so that, for G8,
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Figure 1. (a) Self-affine profile mimicking a rough boundary. (b) Equipotential lines φ(x) = φi ,
φi = 1, 7, 5n, n = 2, . . . , 20, for the profile shown in (a). φ = 100 at the upper boundary is an
approximation of φ(y → ∞) → ∞.

the profile has 8192 points. The roughness exponent α = log(sv)/ log(sh) for this profile can
be obtained exactly, the correct value α = 0.5 being reproduced also by numerical procedures.

Laplace’s equation

�φ = 0 (1)

has been solved in the domain between the two conductors with the help of Liebmann’s
method [12]. The domain has been converted into a two-dimensional grid and the potential
is iteratively calculated at each grid point for fixed and boundary conditions at y1(x) and y2(x),
while periodic boundary conditions are imposed on the lateral borders.

Once the solution for (1) is available, a set of equipotential lines yφi (x), i = 1, . . . , M
is obtained by performing linear extrapolations from the grid values of φ. The roughness
properties of each profile, yφi (x), follows its own scaling law, expressed by the roughness
exponent α, which is measured with the help of the semivariogram algorithm [13]. It is based
on the evaluation of the semivariance γ (r), defined by

γφi (r) = 1

2n(r)

n(r)∑

i=1

[
yφi (x) − yφi (x + r)

]2
, (2)

where, as already mentioned, yφi (x) indicates the value of y for the potential value φ, at the
value x , and n(r) is the number of point pairs along the profile which are separated by a distance
r . If we consider the roughness of the profile, which essentially measures how the largest
height difference between any two points obeys a scaling law, it is possible to show that γ

asymptotically depends on r as

γφi (r) ∼ r 2αi , (3)

from which the value for αi , corresponding to the equipotential φi , is computed.

3. Results and discussion

To better understand the results for the equipotential profiles, we have divided the discussion
into two parts. First we present the results that arise when we work with a fixed number of
points in the profile. In figure 1(b) we show, for L = 8192 points, a set of equipotential
lines. The 19 lines shown were obtained, for this specific case, by holding φy1(x) = 0 and
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Figure 2. (a) Normalized semivariograms for an equipotential family for the Weierstrass profile.
Lines far away from the profile have steeper slopes in the r → 0 limit, corresponding to
smaller values for Df. Solid circles indicate, downward, equipotentials for φ = 1, 5 and 10n,
n = 1, 2, . . . , 9.

φy2(x) = 100. However, the evaluation of the exponents αi were performed for i = 1, . . . , 100.
Note that, as y2 = 500, the region where Laplace’s equation was solved is highly asymmetrical,
in the sense that the length of the profile is much larger than the maximal allowed value
of y. This can, in principle, be justified by the following observations: by the geometrical
construction, the maximal distance between the extremal sites in the x direction increases by a
factor of 4 in each step of the construction of the profile, while in the y direction it increases
only by a factor of 2. So, the maximal height of the profile increases with the length L as
L1/2. Then, the explicit solution of (1) shows that the shape of the equipotential lines close to
the rough profile rapidly becomes insensitive to the boundary conditions. In such a situation
they only slightly depend on the details of the numerical procedure, for example, on how far
we have set the upper conductor. For instance, if we double the integration range of y and
set φ(y = 1000) = 200, this has little effect on the actual form of the equipotential lines
for φ ≈ 100. Thus, in order to avoid unnecessary increase of CPU time and data storage,
which adds almost no new significant information, we can indeed restrict the integration to the
indicated region.

In figure 2 we illustrate some typical semivariograms in double logarithmic plots for
several equipotential lines with L = 8192. Note that the largest scale roughly corresponds
to 1/2 of the whole profile, so that any point in γ represents an average value taken over
a minimum of two distinct measurements. The log–log shape of all semivariograms γφi (r)

consists, at small distances, of points aligned along a straight line with well defined slope.
However, at large distances, the slope decreases and the γφi (r) have a tendency to saturate,
building up a nearly horizontal plateau. This is related to fact that, since the profile is finite,
its maximal height is also finite. The same effect is observed for all members of the family of
equipotential lines.

As usual, the values of α have been obtained by a least square procedure, for a fixed range
of values of r/L � 0.4. Of course this interval is bounded to the scaling region located prior
to the saturation plateau. The results indicate larger values of α for larger values of φ. This
increase in the value of α, to which is associated a decrease of the Df, reflects the fact that the
equipotential lines become less corrugated at larger distances to y1.

In order to better understand the dependence of Df with respect to the electric potential
and distance, in figure 3(a) we drew Df − 1 as function of φ, while in figure 3(b) Df − 1 is
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Figure 3. (a) Behaviour of Df − 1 as a function of the potential φ for the three profiles. (b)
Dependence of Df − 1 as a function of the average distance 〈d(φ)〉 with respect to φ. Solid circles,
squares and triangles indicate, respectively, profiles with 8192, 4096 and 2048 points.

Figure 4. (a) Dependence of the average distance 〈d(φ)〉 with respect to the potential. Hollow
circles, squares and triangles indicate, respectively, profiles with 8192, 4096 and 2048 points.
(b) Standard deviation for a linear fitting of sets of four successive points. Sets are formed such
that set I corresponds to points 1, 2, 3 and 4, set II to points 2, 3, 4 and 5, and so on.

plotted as a function of 〈d(φi)〉, which is defined as

〈d(φ)〉 = 1

L

L∑

x=0

[
yφi (x) − yφ=0(x)

]
. (4)

As expected, 〈d(φi )〉 increases monotonically with φ, but no simple relation is obtained
between the two quantities. Figure 4(a) suggests that there are two limit regions, for small and
large values of φ, where the dependence is nearly linear but, for mid-range values, this simple
dependence is lost. Indeed, an evaluation of the correlation coefficient and/or the standard
deviation on groups of four consecutive points can corroborates this. For each set of ten points
shown in figure 4(a), we have calculated the angular coefficient for the best straight line fitting
four successive points. Thus, set I corresponds to the fitting of points 1, 2, 3 and 4, set II to
points 2, 3, 4 and 5, and so on. Hence, set VII corresponds to the linear fitting of points 7, 8, 9
and 10. In figure 4(b), the standard deviation for the angular coefficients, for each set of four
points, is shown. The results are poorer for mid-range values, as stated before, and indicate
that, as d and φ −→ ∞, strict linearity is met.
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Despite the general monotonic decay tendency of the set of points in figures 3(a) and (b),
none of them can be accurately approximated by exponential or power laws. This same feature
has been present in the results for the other random profiles [1] with the same exponent α. Since
we are considering here a most regular rough profile, this result suggests an actual non-trivial
dependence between Df and φ or 〈d(φi )〉.

As a second part of our results, we considered the dependence of the roughness properties
of the equipotential lines, as a function of the length of the profile, L. This procedure is of great
importance in understanding how a sequence of results for finite size samples can indicate what
kind of behaviour is expected to be found in the limit of infinite size systems.

Since we wanted to follow the properties of equipotential lines upon increasing the size
L of the system, it is important to establish a mapping between the lines φi (L1) and φi (L2)

that will be brought into comparison. In principle, this task could be simply achieved by
considering the value of φ by the average distance 〈d(φ)〉. However, especially when we are
close to the profile y1(x), there may be some small fluctuations arising from finite size effects of
the periodic boundary conditions or from the value held fixed at y2, which replaces the actual
boundary condition φ(y = ∞) = ∞. In this work, we used the same procedure adopted
before, which amounts to comparing equipotential lines with the same value of 〈d(φ)〉.

To carry on the proposed comparison, we observed that it is not necessary to sequentially
solve Laplace’s equation for systems with increasing values of L. Indeed, we can restrict
ourselves to integration of equation (1) just for the largest Lmax profile which we are able to
handle, within the practical limits of the available computational facilities. Then it is sufficient
to consider the same equipotential lines for patches L of different sizes L0 � L � Lmax and to
evaluate the roughness exponent α for each one of them. On the one hand, the computational
effort is greatly reduced and, besides that, it becomes possible to analyse patches sufficiently
far away from the profile end points. In adopting this approach, not only can the influence of
the boundary conditions on α be avoided, but also we get rid of the problem of performing the
identification of equipotential lines stemming from distinct integration steps.

As the length L increases, the r interval where the scaling behaviour of γ (r) is observed
also increases, so that the values of α depend on the even larger lengths of the fitting interval.
We have taken care to consider rmax = L/4, so that, even for L = Lmax, we can obtain the
value of α based on four distinct measures. For smaller values of L, results for α are actually
based on a ever-growing number of distinct measurements.

4. Conclusions

In this work we have investigated the scaling properties of a family of equipotential lines for the
Laplace problem in a region bounded by an exact scale invariant self-affine profile. The results
we have obtained are in accordance to those of previous investigations, when deterministic or
random profiles with only statistical scale invariance were considered. We have used herein
two distinct ways regarding the results, confirming, in a much clearer way, two apparently
contradictory results: the fractal dimension of equipotential lines of a profile with fixed length
decreases when they get away from the profile, but increases with the increase of the profile.
For an infinite profile, all lines should then share the same value of roughness exponent.

The correct interpretation of these results, however, is that it considers only the scaling
properties of equipotential lines. In the limit of an infinite system, properties like the electric
field and others that are derived from the potential depends on the distance to y1. Indeed, as the
field is associated to the gradient of the potential, its intensity decays with the distance to y1, as
exemplified by the generation of atomic images in a field ion microscope.
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