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Abstract. In this work we investigate representations of the Poincaré group taking as the
representation space the Hilbert space of thermofield dynamics, a real-time formalism developed
in quantum field theory at finite temperature. We concentrate our study on those representations
that give rise to the notion of phase space, with direct application in kinetic theory. As a result,
we show an alternative way to derive a relativistic Boltzmann equation, based on the notion of a
propagator defined in phase space. The quantum counterpart of the approach is discussed through
the notion of the Wigner function.

1. Introduction

Thermal equilibrium properties of a quantum field can be analysed through the celebrated
imaginary-time formalism, first proposed by Matsubara [1]. An algebraic counterpart of
Matsubara’s method is the so-called thermofield dynamics (TFD) [2, 3], which is structurally
based on the notion of vector space. In other words, operators in TFD are defined by a doubling
of the degrees of freedom of the system, the tilde (or dual) conjugation rules. A Bogoliubov
transformation then introduces thermal operators, keeping invariant the algebraic rules of the
non-thermal operators, such that the thermal states are considered as condensed states.

Doubling procedures in thermal field theory have been recognized as a suitable amendment
to treat temperature in a real-time formalism, providing, in addition, correct pertubative
expansions (for a detailed account see [4]). In particular, in TFD, doubling of the degrees of
freedom is carried out on a solid algebraic basis [5, 6], and consequently it has been explored
in different ways, as for instance, to define thermal coherent and squeezing states [7,8], or still
in association with structures of Hopf algebras [9, 10]. In the same context, Lie groups have
been studied as for the case of SU(2), furnishing spin models with interesting perturbative
techniques [11]. Recently, the Galilei and Poincaré groups have been analysed [6,12], opening
the possibility of dealing with kinetic theory from a group theoretical standpoint. This aspect
is of interest in high-energy physics, where attempts to improve the kinetic theory have been
undertaken in order to accommodate gauge symmetry [13, 14].

On the other hand, in Galilean hydrodynamics theory and diffusion processes, a variety
of studies have been undertaken using second-quantization methods but applied to (non-
relativistic) Liouville and transport equations [15–17]. Here, such methods are generalized
to relativistic situations, starting with the TFD-representation theory to study the Poincaré–
Lie algebra. Then, the relativistic kinetic theory is introduced through a Hilbert space. In
this realm of representation, we use the notion of a propagator in the phase space to derive a
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Boltzmann-like equation. The non-relativistic limit of such an approach is achieved and the
equivalent quantum formalism is discussed via the concept of Wigner density.

This paper is organized as follows. In section 2 a résumé of TFD is presented focusing on
algebraic aspects that will be explored in subsequent sections, as the concept of representation
of Lie algebra based in the TFD Hilbert space. In section 3 representation of the Poincaré–Lie
algebra is explored in such a context. As an application, a relativistic Boltzmann equation
is derived in section 4, and the analysis of the non-relativistic limit is carried out. Quantum
aspects of such a formalism are discussed in section 5, and in section 6 final remarks and
conclusions are presented.

2. TFD and Lie algebras

In statistical mechanics, the canonical-Gibbs average of an operator A is given by

〈A〉 = 1

Z
Tr e−βHA (1)

where β = 1/kBT , with kB being the Boltzmann constant, T the temperature, and H the
Hamiltonian. TFD was motived by the fact that equation (1) can be written as [2, 3]

〈A〉 = 〈0(β)|A|0(β)〉 (2)

where the thermal state |0(β)〉 is a Hilbert space vector. An immediate advantage of such a
procedure is that pertubative techniques can be developed in line with the zero-temperature
formalism. Let us then see how this works in the case of bosons.

In order to accomplish the goal of writing equation (1) in the bilinear form given by
equation (2), a doubling in the boson operators is defined in the following sense. Considering
a a bosonic operator, another bosonic operator, say ã, is introduced such that the tilde and
non-tilde variables fullfil the following algebra:

[ak, a
†
k′ ] = [ãk, ã

†
k′ ] = δkk′ (3)

[ak, ãk′ ] = [ak, ã
†
k′ ] = 0. (4)

This mapping of a → ã gives rise to a doubling in the Hilbert space of the original system,
|φ〉 → |φ, φ̃〉 = |φ〉 ⊗ |φ̃〉, characterized by

a|φ〉 → a|φ, φ̃〉 = (a|φ〉) ⊗ |φ̃〉
ã|φ̃〉 → ã|φ, φ̃〉 = |φ〉 ⊗ (ã|φ̃〉) def= |φ〉 ⊗ (〈φ|a†).

In this way, the state |0(β)〉 is defined by

|0(β)〉 = Z−1/2(β)
∑
n

exp(−βnω/2)|n, ñ〉

= (1 − eβω) exp{exp[(−βω/2)a†ã†]}|0, 0̃〉 (5)

satisfying 〈0(β)|0(β)〉 = 1 (at this point we have suppressed the mode index, k, for simplicity).
For the particular case in which in equation (1) A = n = a†a, from equation (5) it results

that

n = 〈0(β)〉|a†a|0(β)〉 = 1

1 − e−βε
.

Therefore, in this context, the physical variables are described by non-tilde operators, whilst
the tilde operators, up to now, play a role of auxiliary variables. A physical meaning for tilde
variables, however, will be given in the next section when we analyse the TFD structure in
connection with symmetry groups.
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With such results, a way to recover the density matrix formalism is to observe that
equation (5) can be written as

|0(β)〉 = ρ1/2|1〉
= Z−1/2(β)

∑
n

exp(−βnω/2)|n, ñ〉 (6)

where ρ1/2 = Z−1/2(β) exp(−βωa†a/2) and |1〉 = ∑
n |n, ñ〉. Following this scheme, the

notion of the square root of the density matrix ρ1/2 (see also [18,19]) is used to define physical
states even for non-equilibrium conditions [20, 21].

The results derived above can be written in a very suggestive and general form via a
Bogolubov transformation introduced by

U(β) = e−iG (7)

where G = −iθ(β)(a†ã† − aã), and θ(β) is defined via

cosh θ(β) = 1

[1 − e−βε]1/2
≡ u(β) (8)

sinh θ(β) = 1

[eβε − 1]1/2
≡ v(β). (9)

Using equation (7), the thermal state |0(β)〉 is given by |0(β)〉 = U(β)|0, 0̃〉. On the other
hand, thermal operators are introduced by

a(β) = U(β)aU †(β) and ã(β) = U(β)ãU †(β). (10)

It is a simple exercise to show that a(β) and ã(β) satisfy the same algebraic relation as those
given in equations (3) and (4), such that a(β)|0(β)〉 = ã(β)|0(β)〉 = 0. That is, the thermal
state |0(β)〉 is a vacuum for a(β) and ã(β) (but not for a and ã). As a result, the thermal
vacuum average of a non-thermal operator is equivalent to the Gibbs canonical average in
statistical physics.

In order to treat infinite degrees of freedom, it is convenient to introduce a thermal doublet
notation. That is, for an arbitrary operator A we define

(Aa) =
(

A(β)

Ã†(β)

)
(Aa+) = (A†(β)Ã(β)). (11)

Then, the algebraic rules for the thermal bosonic operators are written as [aa(β), ab+(β)] = δab

where a, b = 1, 2. The Bogoliubov transformation, equation (7), is therefore written as a 2×2
matrix,

B =
(

u(β) −v(β)

−v(β) u(β)

)
(12)

such that equation (10) reads aa = (B−1)abab(β) and a+a = ab(β)Bba . Writing explicitly, we
have

a = u(β)a(β) + v(β)ã†(β) and ã = u(β)ã(β) + v(β)a†(β). (13)

As an example of a system with infinite modes, consider the free Klein–Gordon field. In
this situation, the way to recover the usual results is through the definition of the following
Lagrangian:

L̂ = 1

2
∂µφ(x)∂

µφ(x) − m2

2
φ2 − 1

2
∂µφ̃(x)∂

µφ̃(x) +
m2

2
φ̃(x)2.
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The two-points Green function is then defined by

G(x − x ′;β)ab = 〈0(β)|T [φ(x)aφ(x ′)b|0(β)〉
= 1

(2π)4

∫
d4k G(k;β)abeik(x−x ′)

where G(k;β)ab = B−1(ko)Go(k)
abB(ko), with

(Go(k)
ab) =

( 1
k2−m2+iε 0

0 −1
k2−m2−iε

)
.

Using the definition of B(ko) given in equation (12), the components of G(k;β)ab read

G(k;β)11 = 1

k2 − m2 + iε
− 2π in(ko)δ(k

2 − m2)

G(k;β)22 = −1

k2 − m2 − iε
− 2π in(ko)δ(k

2 − m2)

G(k;β)12 = G(k;β)21 = −2π i[n(ko) + n(ko)
2]1/2δ(k2 − m2).

At this point we can set forth rules for the construction of a general thermal theory. Let
us denote by LT = {A,B,C, . . . , Ã, B̃, C̃ . . .} the set of dynamical variables in TFD defined
in the Hilbert space H with elements |#〉 = |φ, φ̃〉. The action of generic operators A and Ã

on |#〉 is specified by

A|#〉 ≡ A ⊗ 1(|φ〉 ⊗ 〈φ|) = (A|φ〉) ⊗ 〈φ| (14)

Ã|#〉 = 1 ⊗ A(|φ〉 ⊗ 〈φ|) = |φ〉 ⊗ 〈φ|A† (15)

where here the operator A is defined in the usual Hilbert space, H, with |φ〉 ∈ H. Therefore,
the Hilbert space in TFD, H, is given by

H = H ⊗ H∗. (16)

Equations (14) and (15) induce a mapping ˜ : LT �→ LT , called tilde (or dual) conjugation
rules fulfilling the following properties:

(AB)̃ = ÃB̃

(A + αB)̃ = Ã + α∗B̃
(A†)̃ = (Ã)†

˜̃
A = A

[A, B̃] = 0.

Beyond that, the space H can be used as a representation space for Lie algebras. To
achieve this goal, let g be a Lie algebra specified by gi �gj = Ck

ijgk , where � is the Lie product
and Ck

ij are the structure constants (we are assuming the rule of sum over repeated indices). A
unitary representation of g in H is then given by

[Ai,Aj ] = iCk
ijAk (17)

[Ãi, Ãj ] = −iCk
ij Ãk (18)

[Ai, Ãj ] = 0. (19)

For proposals of physical interpretation, this algebra can be rewritten by the introduction of a
(hat-) mapping, say ˆ : LT �→ LT , defined by Â = A− Ã, resulting from equations (17)–(19)
in

[Ai,Aj ] = Ck
ijAk

[Âi, Aj ] = Ck
ijAk

[Âi, Âj ] = Ck
ij Âk.
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Note that this Lie algebra, to be denoted by gT , as a vector space is given by gT = g ⊕ ĝ,
where g(ĝ) is a sub-vector space of gT given by the non-hat (hat) operators.

Some aspects of gT have been studied in connection with relativistic kinetic theories [6,12].
Here, however, we explore representations of the normal group given by the invariant subgroup
defined by the non-hat operators, that is, we study the normal algebra n(g) = gT /g in the case
of Poincaré symmetries. Then we show how to build up the (classical and quantum) relativistic
kinetic theory in a unified way using the notion of Lie group representation.

3. Representations of the Poincaré group in H

The gT Poincaré–Lie algebra, which will be denoted by pT , is given by [12]

[Mµν, Pσ ] = i(gνσPµ − gσµPν) (20)

[Pµ, Pν] = 0 (21)

[Mµν,Mσρ] = −i(gµρMνσ − gνρMµσ + gµσMρν − gνσMρµ) (22)

[M̂µν, Pσ ] = [Mµν, P̂σ ] = i(gνσPµ − gσµPν) (23)

[P̂µ, Pν] = 0 (24)

[M̂µν,Mσρ] = −i(gµρMνσ − gνρMµσ + gµσMρν − gνσMρµ) (25)

[M̂µν, P̂σ ] = i(gνσ P̂µ − gσµP̂ν) (26)

[P̂µ, P̂ν] = 0 (27)

[M̂µν, M̂σρ] = −i(gµρM̂νσ − gνρM̂µσ + gµσ M̂ρν − gνσ M̂ρµ) (28)

where the metric tensor is such that diag(gµν) = (1,−1,−1,−1), and gµν = 0 for µ �= ν

where µ, ν = 0, 1, 2, 3. As for the general case of gT , as a vector space pT = p ⊕ p̂, where
p(p̂) is a sub-vector space of pT given by the non-hat (hat) operators. Furthermore, using
standard methods of group theory [22], the normal algebra n(p) = pT /p is given by

[M̂µν, M̂σρ] = i(gµσ M̂ρν + gρνM̂σµ + gµρM̂νσ + gσνM̂µρ)

[M̂µν, P̂ρ] = i(gµρP̂ν − gνρP̂µ)

[M̂µν,Mσρ] = i(gµσMρν + gρνMσµ + gµρMνσ + gσνMµρ)

[M̂µν, Pσ ] = [Mµν, P̂σ ] = i(gµσPν − gνσPµ)

all the other commutation relations are null. A similar kind of Lie algebra was studied,
for instance, by Gulmanelli [23], but was fully based on the adjoint representation of classical
mechanics. This is not the case here where we are interested in general unitary representations.

Three invariants of n(p) are immediately identified as

I1 = PµPµ (29)

I2 = P̂ µP̂µ (30)

I3 = PµP̂µ. (31)

Since that the non-hat operators form an invariant Abelian algebra, we can take such operators
and the invariants I1, I2, I3 to build a Hilbert space frame. In order to do so, we first note that

e−αµP̂
µ

Pσ eανP̂
ν = Pσ (32)

e−αµP̂
µ

MσρeανP̂
ν = Mσρ + ασPρ − αρPσ (33)

e−εµνM̂
µν

Pσ eεµνM̂
µν = Pσ + i(εσνP

ν − ενσP
ν). (34)
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Therefore, we can view Pσ and Mσρ as natural candidates for describing linear and angular
momentum, respectively. On the other hand, P̂ µ and M̂µν can be taken as the generators of
translations and rotations, respectively. That this interpretation is consistent can be verified,
for instance, from equation (34) which establishes that under rotations the linear momentum
is transformed as a 4-vector. This interpretative aspect is a direct consequence of the fact that
the algebra of the non-hat operators is an invariant subalgebra of n(p). Now we assume the
existence of a Hilbert space H(n(p)) on which the elements of n(p) are defined and introduce
a non-hat operator, say Qµ, through the condition

e−αµP̂
µ

Qσ eανP̂
ν = Qσ + iασ

where ασ is a constant. So doing, the operator Qµ describes positions. Therefore, a (phase-
space) frame for the Hilbert space H(n(p)) can be introduced since [P,Q] = 0. Let us thus
define |q, p〉 ∈ H(n(p)) such that P |q, p〉 = p|q, p〉, Q|q, p〉 = q|q, p〉, with q and p

being real 4-vectors, and 〈q, p|φ〉 = φ(q, p) being an L2 (Lebesgue)-type function, that is∫ |φ(q, p)|2 dq dp < ∞. This last condition is used to impose the normalization condition.
In this way, we obtain a unitary representation for n(p) writing

Mµν = PµQν − PνQµ (35)

M̂µν = PµQ̂ν − PνQ̂µ + QνP̂µ − QµP̂ν (36)

where

P̂µ = −i
∂

∂qµ
Q̂µ = i

∂

∂pµ

Pµ = 1 · pµ Qµ = 1 · qµ. (37)

A general association between a hat and a non-hat operator, consistent with equations (35)–
(37), is thus introduced. Considering an arbitrary function of the phase space, sayA(q, p), then
we have two mappings, (i) c: A(q, p) → A = 1 · A(q, p), giving rise to c-number operators,
and (ii) ˆ : A(q, p) → Â, such that Â = (p̂A(q, p))q̂ +α(q̂A(q, p))p̂+βq̂(p̂A(q, p)), where
α and β are constants. In the case in which α = 1 and β = 0 the association is such that
A → Â = i{A(q, p), ·}, where {·, ·} is the Poisson bracket. In this situation, we have

(γA + B)ˆ = γ (Â + B̂) (AB)ˆ = AB̂ + B̂A (γ )ˆ = 0 (38)

where γ is a constant. This result is useful to derive another set of Casimir invariants of n(p).
Defining wu = 1

2εµνσρM
νσP ρ , the Pauli–Lubanski vector, we find the following invariants:

W = wµwu and Ŵ = 2wµŵu. Hence, we can write equations (35) and (36) respectively as:
Mµν → Jµν = Mµν + Sµν and M̂µν → Ĵµν = M̂µν + Ŝµν , where the variables Sµν and Ŝµν
are related to the spinorial index of the representation, which will be taken here as zero (scalar
representations).

We assume that the average of a one-body diagonal operator is given by

〈Ā〉 = 〈φ|Ā|φ〉
=

∫
dq dp dq ′ dp′〈φ|q, p〉〈q, p|Ā|q ′, p′〉〈q ′, p′|φ〉

=
∫

dq dp dq ′ dp′φ∗(q, p)Ā(q, p, q ′, p′)δ4(q − q ′)δ4(p − p′)φ(q ′, p′)

=
∫

dq dp φ∗(q, p)Ā(q, p)φ(q, p)

where the notation Ā stands for either a c-number operator, A, or a hat operator, Â. If Ā = A,
then the average ofA reduces to 〈A〉 = ∫

dq dp f (q, p)A(q, p), where f (q, p) = |φ(q, p)|2.
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Let us now write down an equation of motion for φ(q, p). According to the Schur’s
lemma [22], the invariant I3, given in equation (31), has a fixed value in this phase-space
representation. Then, considering I3 = 0, from equation (37) we write

pµ ∂

∂qµ
φ(q, p) = 0 (39)

which is a collisionless transport equation, also furnished by the positive-defined real quantity
f (q, p). Then we can interpret φ(q, p) as a probability amplitude in phase space and f (q, p)

as a (classical) probability density.
In order to complete the physical interpretation of this formalism, as well as for practical

considerations, let us define the tensor

T̄ µν(q) = 1

2(2π)3

∫
d3p

po
φ∗(q, p)P̄ µP̄ νφ(q, p).

Taking, in particular, P̄ ≡ P , we arrive at the usual definition of the energy–momentum
tensor T̄ µν → T µν(q) = 1

2(2π)3

∫ d3p

po p
µpνf (q, p), where T 00(q) is the average value of the

energy per particle, T 0i (q) is the average value of the energy flow, T i0(q) is the macroscopic
momentum flow and T ij (q) is the pressure tensor. This result shows the compatibility of our
approach with the usual kinetic theory [24].

4. Boltzmann equation and nonrelativistic limit

In order to derive a collision term in the rhs of equation (39), we can use the notion of a
propagator in the Hilbert phase space H(n(p)). Consider the (pointwise) collision between
two particles (1) and (2) with initial (i) and final (f) momenta specified, respectively, bypµ

i1,pµ

i2,
p
µ

f 1, andpµ

f 2. Now define a transition amplitude at a point q, say the propagatorW(q, pf 1,pf 2,
pi1pi2) of the system, from a initial state |q, pi1; q, pi2〉 to a final state |q, pf 1; q, pf 2〉, that is
W(q, pf 1, pf 2|pi1, pi2) = 〈q, pf 1; q, pf 2|q, pi1; q, pi2〉. Then, the transition amplitude for
any point q of space–time is

W(pf 1, pf 2|pi1, pi2) =
∫

d4q〈q, pf 1; q, pf 2|q, pi1; q, pi2〉

such that we can write 〈q, pi1; q, pi2| = ∫
d4pf 1 d4pf 2 W(pi1, pi2|pf 1, pf 2)〈q, pf 1; q, pf 2|,

and so we have

〈q, pi1; q, pi2|φ12〉 =
∫

d4pf 1 d4pf 2 W(pi1, pi2|pf 1, pf 2)〈q, pf 1; q, pf 2|φ12〉.
Using the indistinguishability of the particles, an intrinsic ingredient in our formalism

since we are considering amplitudes, and the Hartree approximation 〈q, pf 1; q, pf 2|φ12〉 =
φ(q, pf 1)φ(q, pf 2), we can compute the change in the probability amplitude, say 7+(q, pi1),
due to particles leaving the collision at q with momentum pi1, that is

7+(q, pi1) = 1
2

∫
d4pi2 d4pf 1 d4pf 2 W(pf 1, pf 2|pi1, pi2)φ(q, pf 1)φ(q, pf 2).

The same reasoning can be used to compute the effect of particles leaving the collision at q
with momentum other than pi1, that is

7−(q, pi1) = 1
2

∫
d4pi2 d4pf 1 d4pf 2 W(pi1, pi2|pf 1, pf 2)φ(q, pf 1)φ(q, pf 2).

Therefore, we obtain the following transport equation:

pµ∂µφ(q, p) = C(q, p) (40)
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where

C(q, p) = 7+(q, p) − 7−(q, p)

= 1
2

∫
d4pi2 d4pf 1 d4pf 2[W(pf 1, pf 2|p, pi2)φ(q, pf 1)φ(q, pf 2)

−W(p, pi2|pf 1, pf 2)φ(q, pf 1)φ(q, pf 2)].

In consequence, we have derived a relativistic Boltzmann equation but rather for the
probability amplitudes in phase space. An alternative method to the above is to derive
the Boltzmann equation for the density, f (q, p). This can be accomplished via the
following substitutions in equation (40): φ(q, p) → f (q, p) and W(pf 1, pf 2|p, pi2) →
|W(pf 1, pf 2|p, pi2)|2, such that now 7+(q, pi1) (7−(q, pi1)) is the increase (decrease) in the
probability density due to particles leaving a collision at q with momentum (other than) pi1.
Nevertheless, equation (40), written in terms of amplitude, plays a role when interference of
states is manifested. This aspect will be explored in a future work.

It should be emphasized that the formalism developed here is a generalization of the
classical non-relativistic TFD which has been identified in [25]. In order to see this, we can
analyse the non-relativistic limit of the n(p). Considering equations (35) and (36), we have
that the components of the Lorentz boost generators can be written as

L̂0m = K̂m

c
= i

(
H

c2

∂

∂pm

− pm

∂

∂H
+ t

∂

∂qm
− qm

c2

∂

∂t

)
.

Therefore, proceeding the contraction c → ∞, we have K̂m = i(m ∂
∂pm

+ t ∂
∂qm

), where K̂m is
the generator of the usual Galilean boost transformation. On the other hand, for the energy we
have, limc→∞ H

c2 = limc→∞ 1
c2

√
m2c2 + pjpj ∼= m, j = 1, 2, 3. The remaining components

of the total angular momentum operator also reduce to the Galilean counterpart. In addition,
with the above representation for the total energy operator, in the non-relativistic limit the
time-translation generator P̂o becomes Ĥ = i∂t . Such operators are simply the ones used
in [25]. Also observe that as in [25], we can introduce a Fock space representation via
H(n(p)) ⊗ H(n(p)) ⊗ · · · ⊗ H(n(p)), such that the amplitude φ(q, p) can be taken as field
operators in phase space.

5. Quantum formalism

At this point, we would like to deal with the issue of quantization of such a classical formalism.
As a first attempt, we can contemplate using a relativistic generalization of van Hove’s
quantization scheme [26], that is, let us define

Â = A(q, p) − 1

2

(
qµ

∂A(q, p)

∂qµ
+ pµ

∂A(q, p)

∂pµ

)
+ i

(
∂A(q, p)

∂qµ

∂

∂pµ

− ∂A(q, p)

∂pµ

∂

∂qµ

)
.

(41)

In this case, the association of the hat and non-hat operators is given by

(αA + B)ˆ = α(Â + B̂) (AB)ˆ = AB̂ + B̂A − AB (α)ˆ = α. (42)

Introducing, from equation (41), the set of operators

Q = 1 · q P = 1 · p Q̂ = q/2 + i∂/∂p P̂ = p/2 − i∂/∂q (43)

we define

Mµν = PµQν − P νQµ (44)

M̂µν = PµQ̂ν − P νQ̂µ + QνP̂ µ − QµP̂ ν + P νQµ − PµQν. (45)
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In addition, as we can verify by direct calculation, these operators provide another
representation for the algebra n(p). This fact indicates a quantum theory. There is, however,
a connection between the operators given in equation (37) and the correspondent ones defined
by equation (43). Indeed,


Q

P

Q̂

P̂


 U→



Q

P

Q̂

P̂


 =




1 0 0 0
0 1 0 0
1
2 0 i 0
0 1

2 0 i






Q

P

Q̂

P̂


 . (46)

This result suggests that we can try to build a quantum formalism by a proper physical
reinterpretation of the representations for n(p). In this way, note first that the meaning of
φ(q, p) = 〈qp|φ〉 as a classical amplitude in phase was possible due to our interpretation
of Q and P , which commute with each other, as the position and momentum observables,
respectively. In the sense of a quantum theory, looking for non-commutant observables, we
have, however, other possibilities for the momentum and position operators. For instance, in
equation (37), Q and P̂ transform as position and momentum, but now these operators do not
commute with each other, that is [Qµ, P̂ν, ] = igµν . Despite the interpretation and because of
the transformation properties, the operators Q and P can always be taken to define a phase-
space basis of the Hilbert space. As a consequence, we can conjecture that equation (39) can
be interpreted as a kind of phase-space Liouville–von Neuman equation for the scalar field.
The physical consistency of this interpretation can be verified if we establish a connection
of φ(q, p) with a density matrix and a Wigner density for the Klein–Gordon field. Let us
then proceed in this direction, multiplying equation (39) by exp(ip · s) and integrating in p.
Then equation (39) reads ∂q∂sψ(q, s) = 0, where ψ(q, s) = ∫

d4p φ(q, p) exp(ip · s). Now
defining x ′ = 1√

2
(q + s) and x = 1√

2
(q− s), such that ψ(q, s) = ψ(x ′ +x, x ′ −x) ≡ ψ(x, x ′),

we obtain

(∂x ′∂x ′ − ∂x∂x)ψ(x, x ′) = 0. (47)

Writing ψ(x, x ′) = 〈x|ψ〉 ⊗ 〈ψ |x ′〉, from equation (47) we have a Liouville–von Neumann
equation for the Klein–Gordon field, that is (�⊗1−1⊗�)|ψ〉⊗〈ψ | = 0. Indeed, multiplying
the rhs (lhs) of this equation by |ψ〉 (by 〈ψ |), and using the fact that 〈ψ | � |ψ〉 = m2, we
derive the Klein–Gordon equation (�−m2)|ψ〉 = 0(〈ψ |(�−m2) = 0).

The connection of φ(q, p) with a Wigner density, fW(x, p), is therefore obtained via
ψ(q, s) = ψ∗(x + x ′)ψ(x − x ′); that is, since by definition, fW(x, p) = ∫

d4x ′ ψ∗(x +
x ′)ψ(x − x ′) exp(−ip · x ′), then

fW(x, p) =
∫

d4x ′ d4p′ φ(x + x ′, p′) exp

(
i

(
1√
2
p′ + p

)
x ′

)
exp i

(
1√
2
p′x

)
. (48)

Therefore, the method developed here provides a scheme to derive the Wigner density directly
from group theory. It is worthwhile noting that following the TFD construction presented in
section 2 (and also in Bohm and Hiley [18] and Holland [19]), φ(q, p) in equation (39) can
in turn be interpreted as a kind of square root of the Wigner function. In our context this
means that we consider |ψ〉 ⊗ 〈ψ | as a vector in the TFD Hilbert space, such that according
to equation (6), |ψ〉 ⊗ 〈ψ | → |ψ〉 ⊗ |ψ̃〉 = |ψ, ψ̃〉 = ρ1/2|1〉.

6. Concluding remarks

Summarizing, in this work we have analysed representations of the Poincaré group taking
as the representation space the Hilbert space introduced in thermofield dynamics. From
algebraic ingredients, we could recognize representations giving rise to classical kinetic theory
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in relativistic phase space, but based on the wavefunction notion. This was used to show how
it is possible to derive a Boltzmann equation but using the notion of a propagator. Therefore,
to relativistic situations we have generalized the Galilean classical approaches based on phase-
space wavefunctions and second-quantization methods.

In addition, we have shown that, for classical systems, a class of operators in n(p) must
be considered only as generators of transformation symmetries (as is the case of the operator
P̂ in equation (37)), while in a quantum approach in phase space, such a class is supposed to
be interpreted but in association to observables. Moreover, equation (39) is a van Hove flow,
since the invariant pµ∂µ is written in terms of a linear combination the operators P and P̂

given in equation (43), that is pµ∂µ = P 2/2−P P̂ . The association of φ(q, p) with the Wigner
function is given in equation (48).
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