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Abstract

A procedure to use configuration-interaction (CI) target wave-functions in the electron–molecule collision theory is applied to
study the elastic e�–N2 scattering in the (5–20) eV incident energy range. Correlated static and exchange contributions to the inter-
action potential are presented. Two different atomic basis sets are used. Differential cross sections (DCS) obtained by using Hartree–
Fock or CI wave-functions are presented and compared. In the CI case, single and double, and single, double and triple excitations
are considered. The effect of electron correlation is analyzed in all the cases. The continuum wave-functions were obtained via the
Schwinger variational iterative method. The influence on the DCS of both the size of the atomic basis set and the inclusion of higher-
order excitations in the CI calculation is discussed.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Over the last few years, there has been a significant
progress in the development of both theoretical and
experimental methods to study electron–molecule colli-
sion processes [1–6]. On the theoretical side these
methods are in general founded on very firm theoret-
ical bases and require an accurate representation of
the full electron–target interaction potential. In the
framework of single-channel calculations, the potential
is primarily divided into four contributions: static (S),
exchange (E), polarization (P) and absorption (A) [7–
9]. Nevertheless, when such methods are used to study
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elastic differential cross sections (DCS) they present, in
some cases, quantitative and/or qualitative discrepan-
cies when compared to the measured data [10]. A rea-
son for these discrepancies can be the well-known
electronic correlation effects in the target, which are
not taken into account since the electron–molecule
interaction potential is in general derived from the
Hartree–Fock (HF) wave-function of the target
[11,12].

It is known from modern atomic and molecular elec-
tronic structure theory that the HF approximation,
while remarkably successful in many cases, has some
limitations and problems [13–15]. In particular, in more
recent molecular calculations the HF approximation is
frequently used as a starting point for more accurate
approximations such as the configuration interaction
(CI) method, the multireference CI (MRCI) procedure
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and the many-body perturbation theory (MBPT), that
include correlation effects [16,17].

A CI calculation, in principle, provides an exact solu-
tion of the many-electron problem. The ideal CI calcula-
tion would be the ‘‘full CI’’ (FCI), in which the full
many-electron function space of the appropriate spin
and symmetry generated by the adopted basis set is used
in the wave-function expansion. The FCI, however, is
rarely feasible because the number of configuration state
functions (CSF) goes up factorially with the basis set
size [18]. As far as one goes to larger basis sets this
can quickly require the accounting of thousands or even
millions of determinantal functions, thus making unfea-
sible, in principle, a direct derivation of the interaction
potential for electron–molecule collision. Therefore in
most applications it is necessary in some way to truncate
the CI expansion space. In practice, such calculations
are usually limited to single and double (SDCI), single,
double and triple (SDTCI) or single, double, triple
and quadruple (SDTQCI) excitations. To the authors�
knowledge only a few works have been published that
include target correlation in low-energy electron–
molecule scattering [10,19–22] or molecular photoioni-
zation [23,24].

Recently we have developed a theoretical procedure
[25] to treat elastic electron–molecule collisions using
the CI method to determine the target wave-function.
By this procedure both the static and the exchange
potentials are all given by analytical expressions written
as a sum of m2 terms where m is the number of atomic
spin–orbitals used in the linear combination of atomic
orbitals, LCAO [26] basis set. As a consequence, in the
determination of the interaction potential for electron–
molecule collision we can use CI expansions with arbi-
trary number of CSF. Besides, our procedure differs
from that of the previous ones [10,19,20,23] since we
use an interaction potential that is obtained directly
from the total Hamiltonian of the electron–target sys-
tem. In a previous work we have applied this procedure
[25] to calculate DCS for elastic e�–H2 and e�–CH4

scattering in the (0.5–20) eV incident energy range and
compared our results to those obtained using HF target
wave-function and to the available experimental data.
Elastic e�–H2 and e�–CH4 scattering have probably
been the most studied, both theoretically and experi-
mentally, electron–molecule collision processes
[11,12,27–29]. However, the number of electrons in
both systems is not great. Furthermore, a general valid-
ity of our method for studying e�–molecule scattering
processes is still to be confirmed via more extensive
investigations. We therefore think it is important and
interesting to use our methodology in more detail
and test it for other physical systems, like N2, CO and
H2O. Here we will consider the elastic e�–N2 process,
with the target wave-function being obtained from dif-
ferent LCAO basis sets [30] and CI expansions. Our
objective with these calculations is to analyze the influ-
ence of the LCAO basis set and the different CI expan-
sions on the determination, by our procedure, of DCS in
the SE level.

From a theoretical viewpoint the nitrogen molecule
has become almost a standard test case for low energy
electron collision calculations. Molecular nitrogen is suf-
ficiently spherical and has an electronic structure which
is sufficiently complicated to make it typical of small
molecules with closed shells, while still remaining a com-
putationally tractable target for electron scattering cal-
culations [31,32]. In many aspects nitrogen is a better
test case for scattering processes than the next simplest
commonly occurring molecule, hydrogen. The presence
of a well-known resonance in the elastic e�–N2 scatter-
ing at low energies (2–3 eV) and nitrogen�s 14 electrons
make it more suitable for analysis such as the impor-
tance of the electronic correlation. Also, it is expected
that the similarity on the electronic configurations of
N2 and CO can lead to similar DCS for electron scatter-
ing by both systems. On the other hand, the presence of
a moderate dipole moment in CO is responsible for dif-
ferent forward-scattering behaviors of these two mole-
cules; we plan to investigate, with our CI procedure,
the influence of the target electronic correlation on the
e�–N2 scattering in the resonance region and on the
elastic e�–CO scattering in different papers.

The organization of the paper is as follows. In
Section 2 we present some theoretical details. The Schw-
inger variational iterative method (SVIM) [23] is briefly
discussed in Section 3 and we summarize the procedure
to use CI wave-function in the scattering theory. In
Section 4 some computational details of our calculation
are presented. In Section 5 we present our calculated re-
sults for the DCS of elastic e�–N2 scattering using HF
and different CI target wave-functions, with the contin-
uum electron wave-function being calculated in the sta-
tic-exchange (SE) approximation. Here our interest is
primarily to show how the static and exchange contribu-
tions calculated with the inclusion of target electron-
correlation (i.e. static correlation) modify the DCS
obtained with HF approach. Finally, in Section 6 we
present our concluding remarks.
2. Theoretical details

The electron–molecule collision is described by the
Lippmann–Schwinger equation

jHi ¼ jhi þ G�
0 U jHi; ð1Þ

where |Hi is the state function of the interacting electron–
molecule system, |hi is the corresponding state function
without interaction, G�

0 ¼ lim�!0ðr2 þ k20 � i�Þ�1 is the
free-particle Green�s operator and U = 2V is the reduced
potential operator. The superscript + (�) denotes the
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outgoing (incoming) traveling-wave boundary condition
of the scattering function.

In the present communication, we will consider the
single-channel theory. We have in the coordinate repre-
sentation the wave-function

Hð~r1;~r2; . . . ;~rN ; ~rÞ ¼ Â U0ð~r1;~r2; . . . ;~rN Þnð~rÞð Þ ð2Þ
with U0ð~r1;~r2; . . . ;~rNÞ a many-electron wave-function,
nð~rÞ the state function of the scattering electron and Â
an antisymmetrizer operator. The wave-function
Hð~r1;~r2; . . . ;~rN ; ~rÞ satisfies the Schrödinger equation
ðĤT � EÞHð~r1;~r2; . . . ;~rN ; ~rÞ ¼ 0, i.e.,

Ĥ � 1

2
r2

�
þ
X
A

V ðj~r �~rAjÞ þ
X
j

V ðj~r �~rjjÞ � E

!

�Hð~r1;~r2; . . . ;~rN ; ~rÞ ¼ 0; ð3Þ

where V ðj~r �~rAjÞ is the interaction potential between the
scattering electron and the nucleus at ~rA, V ðj~r �~rjjÞ is
the interaction potential between the jth electron and
the scattering electron, � 1

2
r2 refers to the kinetic oper-

ator of the scattering electron and Ĥ is the N–electron
molecular Hamiltonian given (in atomic units) by

Ĥ ¼
XN
i

ĥðiÞ þ
XN
j<‘

1

rj‘
. ð4Þ

In Eq. (4) ĥðiÞ is the Hamiltonian operator for the ith
electron moving in the potential of the nuclei A, B, . . .
alone and rj‘ is the distance between the jth and ‘th elec-
tron. By projecting Eq. (3) on U0ð~r1;~r2; . . . ;~rNÞ, we have
r2 þ k20
� �

nð~rÞ ¼ U 0nð~rÞ. ð5Þ

In Eq. (5) the kinetic energy of the incident electron sat-
isfies the relation 1

2
k20 ¼ E � E0 with E0 being the target

energy. As a vector state in the continuum part of the
spectrum, nð~rÞ can be calculated by imposing either out-
going (+) or incoming (�) wave-function boundary con-
ditions. In this work we have used the Schwinger
variational iterative method (SVIM) [23] for the calcula-
tion of nð~rÞ. The interaction potential U0 is obtained
from a target CI wave-function.
3. SVIM procedure

In this section we will briefly discuss the method used
to determine nð~rÞ; details can be found elsewhere [23].
The DCS for elastic electron–molecule scattering is
given by

dr
dX

¼ 1

8p2

Z
da sin b db dcjf ð~k0;~k

0
0Þj

2
; ð6Þ

where f ð~k 0
;~k

0
0Þ is the laboratory-frame (LF) scattering

amplitude,~k
0
0 and ~k

0
are the incident and scattered elec-

tron linear momenta, respectively, and (a,b,c) are the
Euler angles [33] which define the direction of the molec-
ular principal axis. The LF scattering amplitude is re-
lated to the LF T-matrix by the well-known formula

f ð~k
0
;~k

0
0Þ ¼ �2p2T~k

0
;~k
0
0
. ð7Þ

This LF T-matrix can be obtained from the correspond-
ing body-frame (BF) T-matrix T~k;~k0

by the usual BF–LF
transformation. The Schwinger variational expression
for the BF T-matrix can be written in the bilinear form:

T~k;~k0
¼ hfð�Þ

~k
jU 0jnð�Þ

~k0
i þ hnð�Þ

~k
jU 0jfð�Þ

~k0
i � hnð�Þ

~k
jU 0

� U 0G
ð�Þ
0 jnð�Þ

~k0
i; ð8Þ

where nð�Þ
~k

and fð�Þ
~k

denote the trial scattering and the
free-particle wave-functions, respectively, with outgoing
(+) or incoming (�) boundary conditions.

The trial scattering wave-functions can be partial-
wave expanded as

nð�Þ
~k

ð~rÞ ¼ 2

p

� �1=2
1

k

X
‘m

i‘nð�Þ
k‘mð~rÞY �

‘mðk̂Þ. ð9Þ

In practice the summation in ‘,m is truncated to some
cutoff values ‘c,mc. To proceed, a set of L2 functions
is used to represent the initial trial scattering wave-func-
tion. In our work, a set of Cartesian Gaussian basis
functions, R0, is chosen for this purpose. Improvement
of the scattering wave-functions can be achieved via an
iterative procedure, that consists basically of augment-
ing the basis set R0 by the set S of the partial-wave com-
ponents nð�Þ

k‘mð~rÞ. The new augmented set, R1 = R0¨S, is
used as a new basis for obtaining a new set S 0 of im-
proved wave-functions nð�Þ

~k
ð~rÞ. In the sequence R2 =

R0¨S 0 is now used as a new basis set and a set S00 is
determined. Hence we consider R3 = R0¨S00 and this
procedure is continued until converged nð�Þ

k‘mð~rÞ are ob-
tained [23]. These converged scattering wave-functions
correspond, in fact, to exact solutions of the truncated
Lippmann–Schwinger equation with SE potential.

In the static-exchange (SE) level of approximation the
potential U0 in Eq. (5) can be written as

U 0 ¼ 2V S þ 2V E; ð10Þ
where VS(VE) is the static (exchange) operator. In the
usual formulation U0 is constructed from a HF wave-
function of the ground state of the target [23], i.e., one
has for U0

UHF ¼ 2V S
HF þ 2V E

HF; ð11Þ
which is obtained (we consider that the target has an
even number N = 2n of electrons) from Eq. (3) with
Hð~r1;~r2; . . . ;~rN ; ~rÞ ¼ Âðw0ð~r1;~r2; . . . ;~rN Þnð~rÞÞ, where
w0ð~r1;~r2; . . . ;~rN Þ is a Slater determinant.

In the present paper we consider a configuration
interaction (CI) target many-electron function |U0i,
i.e., in usual notation

jU0i ¼ C0jw0i þ
X
a;r

Cr
ajw

r
ai þ

X
a<b
r<s

Crs
abjw

rs
abi þ � � � ; ð12Þ



Table 1
Basis set for the calculation of initial trial scattering functions

Symmetry Basis functions Exponents

r s 8.0, 4.0, 2.0, 1.0, 0.5, 0.2, 0.05
z 4.0, 2.0, 1.0, 0.3

p x 8.0, 4.0, 2.0, 1.0, 0.5, 0.2
xz 4.0, 2.0, 1.0, 0.3

d and higher xy 8.0, 4.0, 2.0, 1.0, 0.5, 0.2
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where |w0i is the HF Slater determinant taken as refer-
ence function. The other determinants jwrs...

ab...i are ob-
tained from |w0i by considering excitations from the
occupied molecular spin–orbitals (MSO) va,vb, . . . to
virtual MSOs vr,vs, . . .; the coefficients Cr

a;C
rs
ab; . . . are

determined by diagonalizing the target Hamiltonian Ĥ
given in Eq. (4). Specifically, in the case where we have
a finite basis set of 2KPN MSOs we can construct
M ¼ 2K

N

� �
different N�electron Slater determinants and

use these determinants as a basis set to expand the exact
many-electron function |U0i . In this case we have for the
potential U0 (for details see previous work [25])

UCI ¼ 2V S
CI þ 2V E

CI ð13Þ
with

V S
CInð~rÞ ¼

X2K
i;j¼1

f ði; jÞhvij
1

j~r0 �~rj jvjinð~rÞ þ
X
A

ZA

j~r�~rAj
nð~rÞ

ð14Þ
and

V E
CInð~rÞ ¼

X2K
i;j¼1

gði; jÞhvij
1

j~r0 �~rj jniujð~rÞgj; ð15Þ

where vjð~rÞ ¼ ujð~rÞgj are MSOs, v2i�1 = uiai, v2i = uibi,
(i = 1,2, . . .,n); a, b are spin functions and ui are molec-
ular spatial orbitals.

In Eqs. (14) and (15) a numerical integration with re-
spect to the~r0 coordinates is performed and the numer-
ical factors f(i, j) and g(i, j) depend on the CI coefficients
C0, C

r
a, . . . We have implemented a set of computational

algorithm to evaluate all factors f(i, j) and g(i, j); they are
calculated after the CI equations have been solved.

In order to analyse the importance of the electronic
correlation of the target in the determination of the
DCS, in the present work we have performed calcula-
tions with U0 given by Eq. (11) and by Eq. (13). Besides
we have considered two different atomic basis set (DZV
and DZV-d) and two CI calculations, that is, SDCI (CI
with single and double excitations) and SDTCI (CI with
single, double and triple excitations). Our results are
presented and discussed in Section 5.
4. Computational procedures

Here, the SE potential used in Eq. (5) is constructed
from a HF and from a CI wave-function |U0i of the
ground state of N2. We used in the HF and CI calcula-
tions two Double Zeta basis sets, namely, (10s5p)/
[3s2p] (DZV) and (10s5p1d)/[3s2p1d] (DZVd). The HF
and CI wave-functions were determined by the standard
quantum chemistry code GAMESS [34] and the numer-
ical factors f(i, j) and g(i, j) by our computer codes. The
bound orbitals as well as the wave-functions of the
scattering electron, nð~rÞ, were all determined using par-
tial-wave expansions, with the radial functions being cal-
culated on a grid sufficiently extended to ensure reaching
the asymptotic region. The partial-wave expansions were
truncated at ‘max = 40 for the static potential and at
‘max = 25 and mmax = 20 for the scattering functions.
Our results shown below were all converged within 5 iter-
ations. The normalization of all bound orbitals were
better than 0.999. In Table 1 we show the basis sets R0

used for the calculation of the initial trial scattering
functions.

The molecule N2 belongs to D1h symmetry and is a
non-polar target. With the atomic basis set DZV we
have done HF-SCF, SDCI and SDTCI calculations.
The resulting SDCI (SDTCI) wave-function was
composed by 508 (7760) CSFs with 1928 (67168) deter-
minants. At the experimental equilibrium geometry
(1.037 au) the energies of the CI wave-functions resulted
�109.082 au in the SDCI case and �109.087 au in the
SDTCI one, to be compared with the HF-SCF energy
of �108.878 au and the HF limit of �108.997 au [35];
the corresponding DCS were noted by HF-DZV,
SDCI-DZV and SDTCI-DZV. With the DZVd atomic
basis set both SDCI and HF-SCF calculations were per-
formed; in this case the SDCI wave-function was com-
posed by 1996 CSFs and 8270 determinants; the
resulting energy value was of �109.242 au, to be com-
pared to the corresponding HF-SCF value of
�108.959 au. The corresponding DCS were noted as
SDCI-DZVd and HF-DZVd, respectively.
5. Results and discussions

In Figs. 1–5 we show our calculated DCS for elastic
e�–N2 scattering in the (5.0–20.0) eV incident energy
range, along with the experimental data of Brennan
et al. [36], Srivastava et al. [37], Shyn and Carignan
[38], Nickel et al. [39], Zubek et al. [1], and Rolles
et al. [40], for comparison. We also show the theoretical
results of Siegel et al. [41], Huo et al.[42], Gillan et al.
[43], Sun et al. [44] and Rolles et al. [40], who used the
multiple scattering method (MSM), the Schwinger mul-
tichannel variational method (SMC), the R-matrix
method, the convergedvibrational close-couplingmethod
(CVCC) and a numerical method for the solution of
Schrödinger equation, respectively. Although the latter
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Fig. 2. DCS for elastic electron –N2 scattering at 7.0 eV. (a) ——,
present SDCI-DZVd results; � � � � � �, present SDCI-DZV results; – � –,
present SDTCI-DZV results. (b) ——, present SDCI-DZVd results;
� � � � � �, present HF-DZVd results; – � –, theoretical results of Sun et al.
[44]; s, experimental data of Shyn and Carignan [38]; j, experimental
data of Srivastava et al. [37].
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Fig. 1. DCS for elastic electron –N2 scattering at 5.0 eV. (a) ——,
present SDCI-DZVd results; � � � � � �, present SDCI-DZV results; – � –,
present SDTCI-DZV results. (b) ——, present SDCI-DZVd results;
� � � � � �, present HF-DZVd results; – – –, theoretical results of Huo et al.
[42]; – � –, theoretical results of Sun et al. [44]; – � � –, theoretical results
of Gillan et al. [43]; s, experimental data of Shyn and Carignan [38];
j, experimental data of Srivastava et al. [37]; ,, experimental data of
Zubek et al. [1] and ·, experimental data of Brennan et al. [36].
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two calculations [40,44] report vibrational excitation
cross sections, we compare our elastic DCS with their
vibrationally elastic m = 0 ! m 0 = 0 results, since is ex-
pected that this process is dominant.

In Figs. 1(a)–5(a) we compare our calculated DCS
from the three different calculations we have done,
i.e. SDCI-DZV, SDTCI-DZV and SDCI-DZVd. The
comparison among corresponding DCS and experimen-
tal results shows that the SDCI-DZVd calculation pro-
vides a better description of both angular and energy
dependence of the DCS, thus indicating the improve-
ment of the atomic basis set is probably more relevant
than the inclusion of higher-order excitations in the
configuration-space CI expansion with a poorer atomic
basis set.

In Figs. 1(b)–5(b) we compare both our HF-DZVd
and SDCI-DZVd results to experimental and theoretical
results available in the literature. A generally good
agreement is observed among our SDCI-DZVd results
and all of the experimental data, for all of the chosen
energies, in the (10–130�) angular range. For scattering
angles above 130� there is still a good agreement among
our SDCI-DZVd results and experiment, except at
5.0 eV incident energy, where a discrepancy is observed
between ours and Shyn and Carignan�s data [38]. How-
ever, even in this case our results are in good agreement
with the more recent experimental data of Zubek et al.
[1]. In particular at 10.0 eV there is an excellent agree-
ment among our SDCI-DZVd results and those Srivast-
ava et al. [37], in the entire angular range.

The comparison of our CI results with the available
theoretical data show a good agreement with those of
Sun et al. [44] (at 5.0, 7.0 and 10.0 eV) in the entire
angular range and a very good agreement with the re-
sults of Huo et al. [42] (at 5.0 eV) for h > 35�; in the
angular range 0 6 h 6 35� the Huo�s results are better
than ours. Sun et. al. and Huo et al. results are the
only theoretical calculations that include target corre-
lation (i.e. static correlation) effects. It is interesting to
notice that Huo et al. calculation includes both target-
correlation and polarization effects (e.g. dynamical
correlation) by using the Schwinger multichannel for-
mulation through single particle-hole excitations. This
can explain the discrepancies observed between Huo
et al. results and ours for h < 35�, since our procedure
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Fig. 3. DCS for elastic electron –N2 scattering at 10.0 eV. (a) ——,
present SDCI-DZVd results; � � � � � �, present SDCI-DZV results; – � –,
present SDTCI-DZV results. (b) ——, present SDCI-DZVd results;
� � � � � �, present HF-DZVd results; – – –, theoretical results of Siegel and
Dehmer [41]; – � –, theoretical results of Sun et al. [44]; – � � –,
theoretical results of Gillan et al. [43]; s, experimental data of Shyn
and Carignan [38]; j, experimental data of Srivastava et al. [37].
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Fig. 4. DCS for elastic electron –N2 scattering at 15.0 eV. (a) ——,
present SDCI-DZVd results; � � � � � �, present SDCI-DZV results; – � –,
present SDTCI-DZV results. (b) ——, present SDCI-DZVd results;
� � � � � �, present HF-DZVd results; – � –, theoretical results of Rolles
et al. [40]; – � � –, theoretical results of Siegel et al. [41]; s, experimental
data of Shyn and Carignan [38]; j, experimental data of Srivastava
et al. [37].
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is based on a monochannel theory and does not
include the dynamical correlation. In fact our results
are based on an improved static-exchange potential
determined directly from the Hamiltonian ĤT in Eq.
(3). On the other hand, although the comparison of
our CI results with those of Gillan et al. [43] (at
10.0 eV) and Rolles et al. [40] (at 15.0 eV) is still good
in the intermediate-angle region (h > 30�), discrepan-
cies are observed between the small-angle data of
Gillan et al. and ours at 5.0 eV, as well as between
those of Siegel et al. [41] (at 10.0 and 15.0 eV) and
ours in the entire angular range. These discrepancies
can possibly be due to the lack of target correlation
effects in their calculations.

The comparison of our SDCI-DZVd and HF-DZVd
results shows that all the calculated DCS in the former
calculation are in better agreement, both in shape and
magnitude with the available experimental data, than
those obtained from HF wave-function. These results
are particularly meaningful since they confirm the valid-
ity of our description via correlated static-exchange po-
tential. In particular for energy e = 10.0 eV the
comparison of our DCS with existing experimental data
shows excellent agreement, both qualitatively and quan-
titatively. For energies e > 10.0 eV we note that the dif-
ference between CI-DCS and HF-DCS are less
pronounced; this confirms that the electronic correlation
of the target are more important for lower energies. In
fact for e = 7.0 and 5.0 eV the DCS obtained using
HF wave-functions are overestimated at small
(h < 60�) scattering angles, underestimated for h > 130�
and very different if compared to experimental data;
our CI-DCS results, however, are in very good agree-
ment with these experimental values.

Concluding this section we remark that in their
study on the N2 shape resonance Meyer et al. [20] have
done calculations using both CI and algebraic dia-
grammatic construction (ADC) methods [45–47]. In
their work they have shown that, for the used basis
set, very extensive multi-reference CI (MRCI) calcula-
tions are need in order to correctly describe the target
correlation in the energy range (2–5) eV. On the con-
trary, in the present work we investigate a different
quantity, the DCS, in a different energy range, i.e.
(5–20) eV. Besides, the expression we use to obtain
the static and exchange potentials is different from that
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Fig. 5. DCS for elastic electron –N2 scattering at 20.0 eV. (a) ——,
present SDCI-DZVd results; � � � � � �, present SDCI-DZV results; – � –,
present SDTCI-DZV results. (b) ——, present SDCI-DZVd results;
� � � � � �, present HF-DZVd results; – � –, theoretical results of Siegel
et al. [41]; s, experimental data of Shyn and Carignan [38]; j,
experimental data of Srivastava et al. [37]; ,, experimental data of
Nickel et al. [39].
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of Meyer et al. (for example, in Eqs. (14,15) g(i, j) and
f(i, j) are different factors while in Eq. (2.5) of [20] the
same factor qij is used to determine both VS and VE

contributions). This can explain why a conventional
SDCI calculation with a DZVd basis set is sufficient
to our present calculation.

Another point to comment is the role played by the
dynamical correlation. It is known that for low-energy
electron scattering its contribution to the cross section
can result very important, mainly at or near multi-
channel resonant structures. In a previous work [25]
we have reported a procedure to account for this con-
tribution via a local correlation-polarization potential
that uses the exact one-particle density q (see [25]
for details). However, for the sake of clearing the dis-
cussion, we have chosen do not include this contribu-
tion in our present work. As a matter of fact, for the
energy range we have considered here the dynamical
correlation becomes much less important. This
explains why we have found a good agreement with
experiment using only the static correlation and also
why this agreement is much better for 15 eV than
for 5 eV.
6. Conclusions

In this work we have used a general method previ-
ously developed by Vianna et al. [25] for the use of
correlated CI-type target wave-functions in the calcula-
tion of differential cross sections for elastic electron–
molecule scattering. In our procedure the static and
exchange contributions to the interaction potential are
obtained from correlated target wave-functions.
Although the polarization contribution to the scattering
potential can be determined using our procedure [25],
we have not considered this contribution in the present
study because our interest was to analyze the DCS in an
exact SE level. One of the advantages of our method is
that the static and exchange contributions to the inter-
action potential can be written in terms of the molecular
spin–orbitals using different numerical factors f(i, j) and
g(i, j), respectively. As a consequence, our procedure al-
lows that an arbitrary number of CSF be used in the CI
calculation, always demanding the same computational
effort in the scattering calculation. In the present work
we have studied the elastic e�–N2 collision with the
scattering electron wave-function calculated at the SE
level of approximation. We have used two different
atomic basis set and performed both HF and CI
calculations for the ground-state target wave-function.
In the CI case, single and double (SD) and single, dou-
ble and triple (SDT) excitations were considered; all
the DCS obtained with a CI-expansion truncated up
to single excitations resulted practically equal to the
HF-DCS.

We would like to comment that the main goal of the
present work is to show the importance of static correla-
tion (isolated target) for a reliable description of elastic
e�–N2 scattering. This could be hardly done at the reso-
nance region, where both static and dynamical correla-
tion (polarization) are known to be very important
since an undesirable superposition of effects then occurs.
Hence we looked for energies above the resonance
region in order to avoid this superposition and so to
determine clearly the role played by the static correla-
tion in the calculation of DCS.

Our results for the elastic e�–N2 scattering in the (5–
20) eV energy range using a static-exchange potential
obtained from CI wave-functions show that, at these
energies: (i) for a given atomic basis set (DZV or
DZVd in our case), higher-than-double excitations are
not needed to be included in the CI expansion since,
differently of the resonance energy region [20], a con-
ventional SDCI calculation is capable of providing the-
oretical results of DCS in good agreement with
experimental values; (ii) it is by far more relevant for
the calculation of CI-DCS for elastic e�–N2 scattering,
to improve the used atomic basis set than include such
higher-order excitations using a poorer atomic basis
set.
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A systematic investigation on the influence of both
the size of the atomic basis set and of the inclusion of
higher-order excitations on other physical processes
than e�–N2 scattering is needed and is underway by
the authors. Another point to investigate is the analysis
of the scattering potential in the N2 resonance energy
using our procedure for the determination of the static,
exchange and polarization contributions and the deter-
mination of DCS. This is now under study.
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