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Abstract. The zero-order term of the time domain scattered electric field of an electromag- 
netic plane wave normally incident upon the surface of two quarter spaces is determined. 
The general solution is a development from a previous exact and complete solution in the 
frequency domain. The zero-order term of the scattered electric field has been computed 
in the upper medium (z < 0). The incident wave in the frequency domain assumes the 
same function for three cases: (1) The conductivity vanishes everywhere; (2) only the 
conductivity of the upper medium is zero; and (3) the three media are conductors. Case 
1 helps to understand cases 2 and 3. Case 2 is applicable to geophysical exploration. For 
cases 1 and 2 a causal time function decaying exponentially with time at every point above 
the fault (z < 0) describes the waveform of the incident plane wave. The zero-order term 
of the scattered field has been computed above the fault. At z = 0 it reduces to a closed 
expression for case 1 and to a single integral for the other two cases. In the three cases it 
contains an integral of a Hankel function for z • 0. The computation of the high-frequency 
part of the inverse Fourier transform for z -• 0 employs asymptotic expressions for the 
Hankel function using analytical techniques of the geometrical theory of diffraction for cases 
1 and 2. For case 3 the inverse Fourier transform may have two possible contributions: 
either from the residue at a single pole or from the integral along a branch cut in the w 
plane. The wave front of the scattered field is well defined in shape, phase, and amplitude. 
Its amplitude is discontinuous at ß - 0, and varies smoothly but presents a sharp jump for 
I• I<<1 z I. For I z I: O(z), there is a numerical noise that oscillates at 100 MHz. 

Introduction 

Given the large variation of the value of the elec- 
trical conductivity in Earth materials, the electro- 
magnetic methods present a degree of discrimination 
higher than the seismic methods. Therefore there is 
much interest in applying the electromagnetic meth- 
ods, where the seismic methods break down, as in 
the investigation of structures below volcanics or 
evaporites. So the investigation of the scattering of 
electromagnetic waves by sharp lateral variation of 
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electrical conductivity is fundamental for geophysi- 
cal exploration. It is also important in other areas 
involving the propagation of electromagnetic waves, 
as communications and Global Positioning Systems. 
The electromagnetic plane wave scattering by a ver- 
tical fault represents the simplest model of geophys- 
ical interest related to two-dimensional scattering of 
plane waves. Here we face the classical problem of 
scattering by a penetrable wedge. As it became evi- 
dent after years of intensive efforts, this problem can- 
not be solved in closed analytical form. Otherwise, it 
could provide a rigorous mathematical analysis of the 
wave phenomenon, as it has happened for the prob- 
lem of diffraction of a plane wave by a conductive 
half plane [Sommerfeld, 1896]. 
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Finite element and finite difference methods can 

be used for obtaining approximate solutions •o •his 
and more complicated forward modeling problems. 
These techniques are accurate for sufficiently small 
steps and sizes of the meshes, but they quickly be- 
come very time consuming wi•h the increase of bo•h 
time and distance from the scatter to the poin• of 
observation. They also lack a physical insight of the 
involved boundary problem, particularly at infinity. 
The ray method usually contains a detailed picture 
of waves involved in the process. For this case it fails 
due •o inability to find diffraction coefficients for the 
wave reradia•ed by •he fault. 

The objective of the present paper is to s•udy the 
wedge problem for •he case of vertical faults, based 
on integral equations and subsequent perturbation 
theory for them in the time domain. We consider 
not only the geometry but also the physical proper- 
ties of the three media that compose the fault mod- 
els. The models under consideration are simple, but 
they represen• an approximation to •he real world in 
certain cases, and our basic treatment of the problem 
is rigorous. I• also can be used to check •he degree 
of precision of other •echniques. 

Sampaio and Fokkema [1992] developed a complete 
and exact solution to this problem in the frequency 
domain. In the present paper we adapt their solution 
to find the scattered field in the time domain caused 

by a normally incident plane wave, represented by a 
causal time function that decays exponentially with 
time of propagation from a height of reference above 
the fault. We selected •he zero-order term of the 

expansion and computed the corresponding approx- 
imate scattered electric field component above the 
fault, considering the upper medium to be free space 
(cases 1 and 2). 

For the selected zero-order approximation we ob- 
tain analytical expressions for the wave field in terms 
of integrals with oscillating functions (in • domain). 
Using analytical techniques well known in GTD (ge- 
ometrical theory of diffraction), in particular, the 
stationary phase method, we derive high-frequency 
asymptotics for those integrals. This asymptotic ap- 
proach enables us to retrieve the geometrical picture 
of the waves involved in the process under consider- 
ation and allows us to simplify numerical computa- 
tions of the double integral for the scattered field. 

Statement of the Problem 

An electromagnetic plane wave propagates in the 
positive z direction and normally impinges on the 

surface of two quarter spaces as depicted in Figure 
1. We assume that the electric and the magnetic 
field components of the wave are horizontal and or- 
thogonal to each other, with the electric field paral- 
lel to the strike of the vertical plane that separates 
the two quarter spaces, and that the phase velocity 
of the wave has a finite and distinct value in each 

medium. The problem consists of solving the two- 
dimensional wave equation in the frequency domain 
for each medium, 

2 

+ + - 0, 

where •n - •w2•nen-iw•n•n, •(•n) • O, n- 
0, 1, 2. Two sets of boundary conditions have to be 
satisfied at each interhce: (1) continuity of the hori- 
zontal electric field and (2) continuity of the tangen- 
tial component of the magnetic field. In equation (1), 
En(•, z, w) and w represent the electric field and the 
angular frequency, respectively, •n is the magnetic 
permeability, e• is the dielectric permittivity, and a• 
is the electric conductivity of the nth medium. 

The primary inciden• electric field, Ei(z, w), exists 
only in the medium 0 (for z < 0), satisfies the one- 
dimensional wave equation, 

(O• + •g) •i (•, •) - 0, (2) 

and may be given by 

Ei (z, •) - A(w) e -i•ø•, (3) 
where we assume that 

A(w)- N(w) e_i•o• (4) a•iw ' 

N(•) - 
(• q•oeo•(• - iao)+ •o•q•e•) ' 

5•=--, n-0,1,2. 

Medium 0 

/zo, •o, (to O 

Medium 1 Medium 2 

/20• •1• 0'1 •-Z /20• 62• 0'2 
Figure 1. Configuration of the incident field and 
the fault model. 
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In (4), h > 0 is a height of reference above the sur- 
face, a is a real positive number having the dimension 
of frequency, and the subscript • refers either to the 
free space or to the air. A(w) has one pole at w = ia 
and two branch points at w = 0 and w = i5o. If 
medium 0 is not the air, the representation of A(w) 
assumes that the interface between medium 0 and 

the air is sufficiently distant, not to be reached by 
either the reflected or the scattered field during the 
time interval of investigation. If medium 0 is the air, 
we can approximate go = w/c, where c is the veloc- 
ity of the electromagnetic wave in free space. In this 
c•e the primary electric field in the time domain is 
given by 

g(•,t) - •(t •'+ •) •-•(•-•), (•) 
c 

where •(•) is the Heaviside step function. However, 
if medium 0 is a good conductor, the primary electric 
field must be written as 

Appendices A, B, and C contain a thorough analysis 
of equation (6). 

Zero-Order Field in the Upper Medium 

•om here on we will analyze and compute the 
field only in the upper medium (for z < 0). We 
will employ the representation given by Sampaio and 
Fokkema [1992] for the electric field in the frequency 
domain, with the change introduced by Sampaio and 
Popov [1996] for the acoustic field. Taking only the 
first term (zero-order term) of the series representa- 
tion of the scattered component, we have 

( c•--le+i•ø•) ro,•(•,•,•) - •(•) •-• + • + X 
•(o)(• • •). ß < 0 • < 0. (7) 

•o.•(•. •, •) - A(•) •-•o. + 
c2•1 

+•(o)(• • .). ß > 0 • < 0 (s) 
The zero-order scattered electric field in the fre- 

quency domain in z < 0 is given by 

•(o).(• • .)_ i•oA(.)c•.• / s,0 , , 2• u• d•, 
-- (9) 

•o- V/• •- 4. •(•o) > 0. 
•n EO 

c,• - •, n - 1, 2, (10) 
Po •;,• 

- 1 c2- 1) C2,• - . (11) Cl+l c2+1 

The path of integration of (9) and the branch cuts 
on the complex a plane are represented in Figure 2, 
assuming that medium 0 is free space. If medium 0 
is a conductive medium, the path of integration will 
correspond to the real axis, because the branch cuts 
may be chosen not to intersect it. Therefore we can 

express the real function e (ø) t) in the following s,0(• Z• 
form: 

(o)f• 1 / •,o• , •,•) - a• i•oC•,•(•)• •' x 

Zero-Order Scattered Electric Field for x - 0 

Equations (7) and (8) show th• •h• •o-o•d• 
scattered electric feld is odd with respect to z and 
discontinuous at z - 0. For z - 0 the branch cuts 

of (9) disappear. So we can close the contour in 
the lower half plane of a as shown in Figure 3, and 
therefore 

e TM 7ri +i•o z a• (•½o)2 da- e , z < 0. -- t½ 0 
--OO 

Substituting this result in (12) we obtain 

i 

I 

I 

I 

i 

I co 

Im(a) 

I 

• R½(•) • +•, 

Figure 2. Path of integration and the branch cuts 
of the c• plane for • • 0 and •ro - 0. 
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Im(•) 

Re(a) 

Figure 3. Path of integration and the poles of the 
a plane for z - 0 and •o - 0. 

to 

o(ø)tn , t) - • . •s,ot", z R C2,1A(w)e i•+i•øz dw 
o 

(•) 
If the three media are nonconductive, (13) reduces 

z- h _•(•+..•_:•) 14) o(O)(o, z, •) - c•,• •/(• + •) • . ( •'s,0 i 

Zero-Order Scattered Electric Field for x • 0 

According to Erd4lyi [1954], 

/• ¾,•_ (•o)• d• - -•mo(•)(•o¾• + z•). 

Therefore the scattered electric field assumes the fol- 

lowing expression for z • 0: 

jo)• , •) _ •(O)(o ' z, •) (•5) s,0k • Z s,0 

• •oC•,•A(•)•(,, z,•),'•' e•, 
where 

z. f .o 
o 

Nonconductive Upper Half Space 

For this case, /to -- 0 and •o - w/c. We as- 
sume that po - 4• x 10-7henries/m, and that 

= a-•7• x 10 -9 F/m. For nonconductive lower me- 

dia, al - a2 - 0. Under those circumstances, 
c2, and C2,1 are real and independent of frequency. 
Let pl - p2 -- P0, el -- 4e0, and e2 - 81eo. This 
is approximately the case when medium 0 is the air, 
medium 1 is a dry sandstone, and medium 2 is pure 
water. We verify at once that cl = 0.5, c2 = 1/9, 

jo) •) •/(•_)•_•- 0.s•/(•+)•_•+ 0,1(a• Z• -- -- 
(o), 

-es,o•Z,z,t), 
and 

e (ø)• ,t) 0,2{,• Z 

(16) 

+jo) •), (•7) 

where t- -- t d- (Izl- h)/c, and t + - t - (Izl d- h)/c. 
Here o(O) t) is given by (15), wi•h C2,• +7/15, •.s,0($g• Z• -- 
and o(ø)ta , t) given by (14) Also, •..s,0 k• Z . 

-iu• •- 

A(•) - •. (•8) 
a+iw 

Let us assume that for the conductive lower-media 

2 _ (• i•,), n- 1,2. This In this c•e, •n po• - 
implies that cx - c2 - C2,x - 0 for • - 0; 

and consequently that 

Therefore 

•(o)(• z •) - •(•-)•-•- + •(•) •(o)• 0, o,• , , o,• (z, •) - ,,o• , z, 
(20) 

and 

e(O) - o,•(•, z, •) - •/(•-) • "•- + •(•)•z •) + jo) , •). 0,2 k • s,0(a• Z 
(2•) 

Here e(ø)tz, ,•) is given by (15) with A(w) given by s,Ok Z • 
(18) •nd C'2,1 given by (19), •nd 

•(•)(z •)- • •(• •"- • •'•+ ) o,,• , • c,• + 1 a + iw dw , n- 1,2. 

(22) 
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Appendix D contains a thorough investigation of 
(•). 

Three Conductive Media 

Let • - poe•w(w- i8•), j - 0, 1,2, and Kn - 
e,•/eo. This implies that 

aT/, • 
x/•(• - iao ) 

x/••(•-ia•)' •- •'•' 

c•,• - +-..V•(• - iao) - ¾•(• - 

_ v'•(• -i•o) - x/•c•(• - •a•) 
x/•(• - iao) + x/•c•(• - ia•)' 

•(•) ,) (•4) o(O) ,) •i(z,,) + o,, (z,,) o(o)(, z ß .0,1(a• Z• -- -- "s,0 • • 
and 

•(o)•. _ •(•) •(o)(• z,•). (•s) o,•-, z, •) •i(z, •) + o,• (z, •) + •,o , 

ß e(ø)(z, z t) is given by Here e•o(Z, t)is given by (6), •,o , 
(15) with A(w) given by (4) and C•,• given by (23), 
and for n - 1, 2, 

e(S)•z t) -1 R(/A(w)c.-i ei•t+i•ozdw) ' 0,n• , • cn+l 

(•) 
Appendix D shows the integration of (26) similar to 
the analysis of equation (6). 

Computation for a Nonconductive 
Upper Medium 

Asymptotic Expression for H? ) 
For z • 0 and ]wz I >> 1, we can replace H? ) by 

its asymptotic expression. Sampaio and Popov [1996] 
employed the asymptotic expression of H? ) •o com- 
pute the acoustic scattering by a vertical fault for the 
regions I• I = O(Izl)and I•1 << Izl . They based their 
analysis on results ob•Mned by Popou and 
lynck [1996] and used the s•ationary poin• method 
[Smirnov, 1967] and •esnel's integral. According to 
A bramowitz and Stegun [1968], their result can be ap- 
plied in a straightforward manner to rewrite (15) in 
a form amenable to numerical computation for cases 
X •d 2. For [•l = 

e(O), ,,otZ, z,t) - 

(/ 1 • _ •oC•,•A(•o)e•ø"I(• z, •o) 
o 

f i•ot ß •oC•,•(•)• h.•)(z,•)• 
o 

) 
For I•l << Izl, 

e (ø) t) s,0(a• Z• -- 

• - •oC•,•,4(•)••(,, z,•) e• 
o 

fl' 

+ f •oC:,•A(•)•h,•)(z, •) • 
o 

- f •oC•,•A(•)•h•)(., z, •) d• 

) - f •oC•,•(•)•'••)(•,z,•)• . 
In (27) and (28) we have added and sub,racked [he 
integral of I(s•). respectively. over the interval (0. fi) 
and (0 fi*)to cancel out o(ø)(0, z, t); and • •$•0 

/(,•)(z, •) - 

h•O(z,z,•) - 
•/2¾z2 + z2 iei( {-•o•/=•+z 2) 

ß V'•(•o)• 

o 

and 

z•)(•,z,•)- •••'• •-,•o(1•1+•) •x/•(•o)• ß 
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Definition of the Parameters 

We employed the following constant values: c- 
3 x 10Sm/s; a - 2 x 107Hz; and h - 30m. We 
computed the scattered electric field for three values 

of z' zz - -9m, z2 - -21m, and z3 - -36m; 21 
values of 0m _< I•1 _< 10m at an interval of 0.5m; and 76 values of lOOns _• t _• 250ns at an inter- 
val of 2 ns. We computed the numerical values of 
the exact function I(•, z, w), employing the relation- 

ship between the Hankel function of the second kind, H0 (2), and the modified Bessel function of the second '•o 
kind, K0, via the following expression [Abramowitz 
and Stegun, 1968]' 

z, 22 ] + 7r 

o 

Figure 5. The vertical scale represents the variation 
of the ratio between the zero-order scattered electric 

field and the maximum value of the primary electric 
field with time and lateral distance to the fault for 
nonconductive media at z- -9 m. 

We followed the criterion of Popov and Camerlynck 
[1996] to define when w is sufficiently large to apply 
high-frequency asymptotics. The corresponding val- 
ues of w are n and f•* in (27) and (28). For con- 
venience we changed the variable of integration of 
the inverse Fourier transform from w to w/c. So in 

-0.5 

-1.0 

IO0 

1.0 , I , I , 

0.5 

0.0 , 

, ' o o - - .-. 7..•-----:' 

ß ........ ! -a, P- ........... 
ß 

ß 

: 

: 

3 50 200 250 

T (ns) 
Figure 4. The vertical scale represents the variation 
of the ratio between the electric field components and 
the maximum value of the primary electric field for 
z - -9 m, 100ns _• t _• 250ns, and nonconductive 
lower media: P, primary; Rz, reflected for • < 0; R2, 
reflected for ß > 0; and S, scattered for • - 0 +. 

order to achieve 10% precision in the computation, 
we obtain from the Hankel function that we have to 

satisfy, 
• 1.25 
- > - o(11), 
c - x/•2 + z 2' 

and similarly for the Fresnel integral, 

> 10'!J ', I,1 << I1. 
This means that f•/c : 1, for Izl = 5 and any 
value of •, and that f•*/c = 800 for Izl: 20 and 
I•l = 0.5 satisfy the condition of 10% precision. For 
the exact integration of the Hankel function we em- 
ployed an interval of integration of 10 -3 , and for the 
Fresnel integral we employed an interval of integra- 
tion of 0(0.05). In the inverse Fourier transform 
we employed an interval of integration of 10 -3 for 
w/c < •/c, and of 10 -2 for w/c > •/c. 

Nonconductive Lower Media 

We computed the total field employing (14), (16), 
and (17) for ß - 0. We computed the scattered field 
for ß y• 0 employing (27) and (28), bo•h for C2,• = 

(o)rn •) - 0 +7/15. Equation (14) shows that e,,o•,,,,zz, , 
for t < 130 ns, jumps to its maximum value equal to 
+7/30 at t - 130 + ns, and decays exponentially to 0 
with t, for t > 130ns. A similar behavior happens 
to both e (ø)/n t), and e (ø) [n t), except that the s,Ok•,• Z2, s,Ok•,• Z3, 
reference values of time are t -- 170 ns and t - 220 ns, 
respectively. 
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•.0 , I , I , 

0.5 ....... 

0.0- 

7• o 

Figure 6. The vertical scale represents the variation 
of the ratio between the zero-order scattered electric 

field and the maximum value of the primary electric 
field with time and lateral distance to the fault for 
nonconductive media at z- -21 m. 

Figure 4 presents the variation, for z- z•, of the 
primary field, the reflected field for both sides of the 
fault, as well as the scattered field at • = 0. Notice 
the relative magnitude of the three components of 
the total field. Except for a very low lateral contrast 
between the two values of the dielectric permittivity, 
the scattered component cannot be neglected. How- 
ever, it will be difficult to identify the scattered field 
component from the total field for measurements at 
a single point. Figures 5, 6, and 7 represent the vari- 
ation of e(ø)[• s,0• ,z,t) for z equal to zx, z2, and z3, 
respectively. We can observe that (1) the arrival and 

Figure 7. The vertical scale represents the variation 
of the ratio between the zero-order scattered electric 

field and the maximum value of the primary electric 
field with time and lateral distance to the fault for 
nonconductive media at z- -36 m. 

-1.0 ' I ' I ' 
1 O0 150 200 

T (ns) 
250 

Figure 8. The vertical scale represents the variation 
of the ratio between the electric field components and 
the maximum value of the primary electric field for 
z --9m, lOOns _• t •_ 250ns, and conductive lower 
media. P, primary; R•, reflected for ß < 0; R2, re- 
flected for ß > 0; and S, scattered for ß - 0 +. 

the propagation of the scattered wave front are well 
defined; (2) the wave front is better defined, vary- 
ing smoothly and presenting a sharp jump for [•[ 
small; and (3) the definition of the wave front arrival 
is disturbed by a numerical noise with a frequency of 
about 100 MHz for [•[ large. 

Conductive Lower Media 

We computed the total field employing (20), (21), 
and (22), combined with (13) for ß = O. We com- 
puted the scattered field with (27) and (28) for a• • 0, 
both for C2,x given by (19) employing the follow- 
ing constant values: •x - 36•r x 10•S/F; •2 -- 
36•r x 10 s S/F. Figure 8 presents the variation, for 
z - zx, of the primary field, the reflected field for 
both sides of the fault, as well as the scattered field 
at ß - 0. The behavior is similar to the one shown in 

Figure 4, except that the scattered component decays 
faster and the reflected components decay slower in 
this case. Figures 9, 10, and 11 present the variation 
of e(ø)(m z t) for z equal to zx, z2, and z3, respec- s•O ' ' 

tively. We can observe that (1) the magnitude and 
the phase of the scattered field, as well as the arrival 
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Figure 9. The vertical scale represents the variation 
of the ratio between the zero-order scattered electric Figure 11. The vertical scale represents the vail- 
field and the maximum value of the primary electric ation of the ratio between the zero-order scattered 
field with time and lateral distance to the fault for electric field and the maximum value of the primary 
conductive lower media at z--9m. electric field with time and lateral distance to the 

fault for conductive lower media at z = -36 m. 

and the propagation of the wave front, are well de- 
fined; (2) the wave front is better defined, varying 
smoothly and having a sharp jump for l a [<<[ z [; 

(s) is iss I-- 
and presents the same numerical noise oscillating at 
about 100 MH•.. Comparing Figures 9• 10• and 11 
with Figures 5, õ, and 7, respectively, we see that in 
the present case, the field has a smaller magnitude 
and decays faster in time. Otherwise, they present 
similar behavior. 

Three Conductive Media 

To determine the primary and the reflected fields, 
we employ equations (A2), (A3), (A4), (D6), (D7), 
and (D8). Notice that if a > a0/2, both (A4) and 

Figure 10. The vertical scale represents the vari- 
ation of the ratio between the zero-order scattered 

electric field and the maximum value of the primary 
electric field with time and lateral distance to the 
fault for conductive lower media at z- -21 m. 

(D8) do not contribute to the fields, and the integrals 
(A3) and (D7) are no longer Cauchy principal values. 
The contributions of (A2) and (D6) diffuse away with 
time very rapidly: for seawater (a0 - x 1½ S/F), 
they are negligible for t > 5ns; for •0 10 times 
smaller, they are negligible for t > 50 ns. So the main 
contribution comes from (A4) and (D8) for a < a0/2, 
and from (X3) and (D7) for a > 50/2. Notice also 
that Appendix B shows that the propagation velocity 
(not the phase velocity) does not depend on the con- 
ductivity of the medium. To determine the scattered 
field, we can employ the same path of integration of 
Appendix A and D on (13) and (15). So the main 
contribution will come from the integral around the 
pole w = ia, for a < if0/2, and from the integral 
along the branch cut fromw - 0 tow - i aø for 2 

a > •o/2. 

Conclusion 

We have successfully adapted to the time domain 
an exact and complete solution of the scattering of 
electromagnetic plane waves by two quarter spaces. 
This result can be employed to check the accuracy of 
results of forward modeling obtained by other tech- 
niques. The result obtained with the zero-order ap- 
proximation of the solution is useful because it 
fines the amplitude and the phase of the scattered 
field besides the shape of the wave front. However, 
refinement of the computation and higher-order ap- 
proximations are necessary to improve the accuracy, 
to decrease the numerical noise, and to consider the 
variations of e and • in the conductive media. 
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Appendix A' Integral for the Incident 
Wave in a Conductive Medium 

Equation (6) can be expressed as 

1 / N(•v) e_i,•o(z+h)+i,,, d•v (A1) eoI(z, t) -- • a + iw ' 
--00 

w• •o- •o•o •o, •o - •(•- •o), 

•(•) - (•o ß •o••)' 
Le• us se• the branch cu• on •he • plane between 
• - 0 and • - i•o. Le• us also fix •he regular 
branch of •o(•) by •he condition that •(•o) - 0 on 
•he cu• line. I• yields 

•o -- I•(• -- iao)l •/2 exp(i arg (•) + arg (• -- iao)) 2 ' 

This is indeed so, because arg(•o) - 0 on the right- 
hand side of the cut line and arg(•o) - -• on the 
left-hand side of the cut line. Outside the cut line, 
•(•o) > 0 •o• •(•) > ao/2, •(•o) - 0 •o• •(•) - 
ao/2, •na •(•o) < 0 •o• •(•) < ao/2. 

For t • (z • h)•poeo we can close the contour of 
integration in the lower half plane of •, resulting in 
4(z, •) - 0. So i• i• c•u•. •o• • > (z + •)g•o•o 
we deform the path of integration • shown in Figure 
A1, where we assume that a ( •o/2. Therefore 

•(z,•) - • + • + •, 

where I• is the integral along the straight line :v - 
*)-[-i•o/2, -oe < *) < -[-oe; I2 is the integral along 
both sides of the branch cut :v - i•, 0 _• • _• •0/2; 
and Is is the integral around the pole :v - ia. 

Since •o - •g"(,)l•ol on the straight line •(o•) -- 
•o/2, •hen N(o•) will vary accordingly. Therefore we 

Im(•v) 

i•To 

i•o/2 

ia 

R,(•) 

Figure A1. Path of integration and the branch cuts 
o• •n• • r•n• •o• •n• in•g• (X•), (Vl), •na (rS). 

can show that 

i• _ e ?• / I N(-*) -l- i-•) e+i[•o[(z+h)-i,• 2 •r a- a-x-i,) o 2 

N(+V + i•) e_i[•ol(•+•)+i,• ) dv ' (X2) a-•+iv 

Let •?)(•) - +•poeo•(•o- •) and •?)(•) - 
-4•0•o•((ao- () • •h• v•lu•s o• •o on •h• righ•- 
hand side and on the left-hand side of the cut line, 
respectively, for 0 • • • •o/2, • • a. Therefore 

N(•)(i•) _ 2ipo•p•e• , 
(•?)(•) + i•o•4•) 

and we can show that 

• = 2• a-( 
o 

+•(+)(i•)•-•4+•(•+•)) d•. (AS) 
Applying the theorem of residues, it is straightfor- 

ward to show that for • - a, 

_i•(o_)(•+•) 1 _• N(-)(ia)e 

+N(+)(ia) e-i•(o+)(z+ •) ). (A4) 

Appendix B' On the Wave Front for 
the Incident Wave 

It is necessary to search whether it is possible to 
close the contour of integration in the lower half plane 
of :v for values of z + h and t such that .q(•0(z + 
h) -:or) < 0. Similarly to Jordan's lemma, we have 
to study the integral along the semicircle :v - pe i•, 
-•r _• •b •_ 0. Developing the exponential term in 
(A1) along that semicircle, we have 

-i•o(z + •) + i• - -i•'•((z + •) V%o•o(• - •)- •), 

and therefore 

[exp (-i,oe'•' ((z + h)v/Poeo(1- •) -t))[ : 
•p {•co•(•)w" (z + •)v'•o•o 

+psin(q•)(W'(z + h)v'poe o - t)} (B1) 
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where 

and 

w' - IV'X - •1 co• arg(1 - •) 

w" - Ix/X - •1 sin arg(1 - •) 2 

It can be shown that W" cos(•fi) _• 0 for-•r < •fi < 
O. Now suppose that on this same interval of •fi the 
following equation holds: W' (z + h)x//•0eo -t • O. 
Then 

W' (z + h)v'/z0eo - t >_ n•n(W') (z + h) •v/-• - t, 
and it is clear that min•(W') - W' 
- -•r) - W•i n. Obviously, this minimum depends 
upon p. Taking this into account, we arrive at the 
following estimation: 

exp(psin(•fi)(W' (z q- h) •v/-•-• - t)) _• 

exp(psin(•fi)(W'min(z + h)x//zoe0 - t)). 
So i• is eviden• that in the limi• p -• oo along the 

semicircle-•r _• •fi • O, •he integral (A1)vanishes 
and 

lim (W•i•(z + h)•o•o -t) - (z + h)• -t, 
and •herefore •he singularity of •he integral is on •he 
wave fron• for (z + h) •oeo - t - O. 

Appendix C' Analytical Properties 
of N(w) 

Let us rewrite N(co) in the following form: 
2• 

N(•) - , 
Bx/•(• - i•o) + 0• 

where B -- V•o, •. The denominator is zero when 
the following equation is satisfied: 

(C1) 

So the denominator of N(w) is zero for cox - pe i$ = 
0. However, N(w) --• 0 as x/fi with p -• 0. Thus 
cox - 0 is a regular point of N(w). The second root, 
w2, of equation (C1)is 

B 2 

w2 -- i•0 B2 _ 1' 

Therefore R(w2) - 0 and, if we assume that B 2-1 > 

0, then .•(wa) > &0. Let us examine whether wa 
is located on that sheet of the surface of Rieman 

where the regular branch of V/co(co - i&o) is defined. 
Above the line •(w) = •0/2, -,•(V/w(w- i•o)) > 0, 
and .•(-w) < 0. This contradiction proves that w• 
is not located on the sheet of the surface of Rieman 
under consideration. The same contradiction occurs 

for B • - 1 < 0. Therefore N(w) does not interfere 
with the development of the integral for the incident 
wave. Let us finally express N(w) on both sides of 
the branch cut line co = i•, 0 _• • _• •0: ' 

N-(•) - 
-Bx/e(•o - •) + i½ 

N+(•) - 
+Bx/•(ao- •) + i• 

Appendix D' Integrals for the 
Reflected Waves 

Nonconductive Upper Medium 

We may write equation (22) for n - 1, 2 in the 
following form: 

e(R)(zt) - i / co-V/co(co-ian) e 'wt+ o,• , • co q- V/co(co - Jan) a q- i---• dco. 
--00 

(D1) 
Let us set the branch cut on the co plane between 
co - 0 and co - i•n. For t+ < 0 we can close the 
contour of integration in the lower half plane of co and 
therefore e (R) 0,,• (z, t) - 0, and it is causal. For t + > 0 
we deform the path of integration as shown in Figure 
A1, where we assume that a < &,•/2. Therefore 

e (a) (z t) - •4 + •s + • 0,•, • • 

where I4 is the integral along the straight line w - 
•7 + i•,•/2, -oo < • < +oo; I• is the integral along 
both sides of the branch cut co - i•, 0 < • _< &•/2; 
and I• is the integral around the pole w - ia. 

•__• t + oo 

i4_ &;e- '- f a (V cos(vt +) + • sin(vt +)) dr/, 
((• + •)• + (•)•) (• + •) 2 

/3-- 2 a, 

(D2) 
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2 

16 -- --e -at+ an -- a (D4) 

Conductive Upper Medium 

Let us express equation (26) for n- 1, 2 as 

e(n) 1 f M,(w) ei•o(•_h)+i•t dw, (DS) 0,n (z, t) -- • a + iw 
where 

2 pow x/p• e• 
(•o + •o•x/•e•) 

- 

•,• : x/'Poe,• •,•, and •,• : V/w(w - i•,•). If we 
choose the regular branch of •,•(u•) exactly as for the 
incident wave, every branch cut starts at •v - 0 and 
ends at •v - i•,•. So there are no singularities in the 
lower half plane of the •v plane. For t < (h- z) pv/-fi-O• 
we can close the contour of integration in the lower 
half plane of u• resulting in e (s) , o,,• (z, t) - O. So it is 
causal. For t > (h- z)v/poeo the contour of inte- 
gration can be deformed exactly like for the incident 
wave as shown in Figure A1, and 

e (n) - + + 

(DS) 
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