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Abstract – This letter addresses the issue of learning shortest paths in complex networks, which
is of utmost importance in real-life navigation. The approach has been partially motivated by
recent progress in characterizing navigation problems in networks, having as extreme situations the
completely ignorant (random) walker and the rich directed walker, which can pay for information
that will guide to the target node along the shortest path. A learning framework based on a
first-visit Monte Carlo algorithm is implemented, together with four independent measures that
characterize the learning process. The methodology is applied to a number of network classes,
as well as to networks constructed from actual data. The results indicate that the navigation
difficulty and learning velocity are strongly related to the network topology.

Copyright c© EPLA, 2009

Introduction. – There has been great interest in
the study of navigation in complex networks, and to
relate the resulting dynamics to the network topologi-
cal properties. The concept of navigation implies that
an agent (or walker) has to move within the network
from a source node s and reach the target node t. Two
extreme navigation schemes have attracted the attention:
navigation of random walkers and directed walkers. In
the first one, the walker placed on a given node moves
towards one of the neighboring nodes at each time step
in a completely random way [1–3]. In an alternative but
similar problem, the walker may use a weighted tran-
sition probability, which dynamically evolves with the
network [4]. In the second approach, the walker selects
the shortest path to the target, by asking (and paying
for) information about the choice of the best motion at
each node it visits. This strategy allows to reach the
target using the minimal number of steps [5–8]. Situa-
tions lying between these extremes have also been consid-
ered. Directed navigation with limited information has
been explored by assuming that the information the walker
gets at each node is not complete [9]. The consequence of
missing information is to substantially increase the trav-
eled distance in comparison to the actual shortest path.

(a)E-mail: danielcajueiro@gmail.com
(b)E-mail: randrade@ufba.br

Quite recently, one of us considered the issue of optimal
navigation in complex networks [10], where the walker
can either pay for (correct) information at each node
it visits, or randomly follow one of the available paths.
Since two constant costs are associated to the trajec-
tory, the stepping and the information costs, the walker
can make an optimal decision by minimizing the sum
of the costs associated to the complete trajectory.

Although learning is one important phenomenon that
arises in real-life navigation, none of the approaches
presented above copes explicitly with it. In order to fill
the gap, this letter addresses such issue by investigating
how a walker learns paths in complex networks. During
the learning process it acquires knowledge about all short-
est paths and will be able to navigate optimally, without
paying for any further information. The basic assump-
tion is that learning paths arises from on-line experience,
which is mimicked by a Monte Carlo reinforcement learn-
ing framework [11–13]. We show that the difficulty and
velocity of learning paths in a given complex network is
strongly associated to its topology.

Let us recall that one particular practical issue also
considered in the literature of navigation is the problem
of searchability of specific nodes in a given complex
network [14–21]. This problem is inspired by a classical
study [22], where individuals were asked to deliver letters
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to a specific target person. If the individual knew the
target, the letter should be sent to this person. Otherwise,
it should be addressed to a friend more likely to know the
target. As we will see later on, this issue tackled here is
related also to the difficulty of reaching certain network
nodes.

Quantifying learning. – We start with a network G,
with n nodes in a set V (G) = {1, 2, . . . , t, . . . , n}, where
t is a special node called target. Let N (i) denote the
neighborhood of a node i, i.e., the set of nodes j that
are connected to node i and can be reached from i
in one single step1. We define an episode η as either
the complete trajectory from one given source s to the
target t, or a trajectory that the walker followed in
less than mn steps, where m is the a multiple of the
number of nodes n. The η−episode is a basic definition
for the current investigation, since the notion of on-
line experience is based on the division of the problem
in episodes. Furthermore, in order to ensure that past
decisions will be available and the walker will learn by
experience, we have limited the time duration of η by m
times the number of nodes of the network. Episodes will
be numbered sequentially, i.e., η= 1, 2, . . . , Nη.
Let Q(s, a) be the expected number of steps required by

the walker to go to the target t, when it departs from node
s and steps towards a∈N (s) . The essence of our method
is to estimate Q(s, a) for s∈ V (G) and a∈N (s) based
on previous episodes using the so-called first-visit Monte
Carlo algorithm (FVMCA) [11–13]. It amounts to average,
over past η’s, the number of steps that the walker used to
go to target t, after the node s was visited and the action
a∈N (s) was selected. From the definition of Q(s, a), it is
clear that the eligible best path a∗(s) to be followed from
node s is such that Q(s, a∗(s)) attains the minimum value
when compared to the paths through other nodes in the
neighborhood of s:

a∗(s) = argmin
a
Q(s, a). (1)

For a given η, consider that the walker is in node
s∈ V (G) and wants to go to node t. If it is the first
time that the walker is in this node, then the walker will
randomly follow one of the paths available in this step.
On the other hand, if it has been in this node before,
with probability (1− ε+ ε/degree(s)) the walker follows
the direction that is the best direction given by a∗ and
with probability ε/degree(s) the walker follows randomly
one of the other possible paths. One should note that it is
essential for continuous learning that the walker does not
always follow the supposed optimal path. If the walker
always follows the supposed optimal path, there is no
further learning. This policy, which allows the walker a
global non-zero probability ε to choose any neighbor from
a given node s, is called ε-soft policy. In the limit of

1Although the framework here is built for undirected and
unweighed, it can be easily extended to the general case.

Table 1: Key steps of the FVMCA adapted for the case where
a walker wants to go to the target node t.

for all epsisode do
count= 0;
Choose the source node s.
while s �= t and count�m×n do
count= count+1;
if it is the first episode that the node s happens
then
the next node a is a neighbor randomly chosen;
a�(s) = a;
else
With probability (1− ε+ ε/degree(s)), the next
node a= a�(s);
With probability (ε/degree(s)), the next node a
is a neighbor randomly chosen;
end if
s= a;
for all i∈ V (G) and j ∈N (i) such that the step
from i to j happened in this episode do
cost(i, j) = cost(i, j)+ 1;

end for
end while
for all i∈ V (G) and j ∈N (i) such that the step from
i to j happened in this episode do
Q(i, j) = average(cost(i, j)) over all episodes that
the step from i to j happened;

end for
for all i∈ V (G) such that the node i happened in
this episode do
a�(i) = argminaQ(i, a);

end for
end for

ε→ 0, the ε-greedy policy is reached. The key steps of
the FVMCA, adapted to evaluate the discussed learning
process, is presented in the algorithm (table 1). By using
it, one can estimate the cost J(s), as well as the optimal
cost J∗(s), to go to the target node t from node s based
on the walker’s current knowledge as

J(s) = (1− ε)min
a
Q(s, a)+

ε

degree(s)

∑

a

Q(s, a), (2)

J∗(s) =Q(s, a∗(s)). (3)

Although J(s) reflects the actual cost to go from s to
t when the walker follows FVMCA, we notice that J∗(s)
reflects more appropriated the current level of knowledge
of the walker about the paths of the network. Furthermore,
if the walker decides to stop learning and Q(s, a) is
estimated without learning, this is the cost that he/she
will face to go to the target node t from node s.
Note that after the walker repeated FVMCA many

times (η→Nη� 1), J∗(s) converges to a value very close
to the shortest path length from node s to node t. This
value is not exactly the shortest path length since Q(s, a)
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for s∈ V (G) and a∈N (s) was estimated using an ε-soft
policy.
Several average values based on J(s) are of relevance.

So let J̄N (s), ∀s∈ V (G) be the average of J∗(s) over the
set of targets t, which also depends on the value of η.
It measures the current navigation difficulty (∼ to the
number of steps) to go from s to any other node j. Then
let J̄H(i) , ∀i∈ V (G) be the average of J∗(j), over set of
starting points j with the condition that target t= i. Since
it also depends on η, it measures the current ability that
a node has to be hidden, which is ∼ the number of steps
to go to t from any other node s (see [5,7] for a discussion
of the so-called hide property). By combining J̄N (s) and
J̄H(s), we obtain 〈J〉, the average of J∗(s) taken over all
sources s and targets t, the η-dependent overall network
navigation difficulty. Keeping track of the η-evolution of
these averages, it is possible to assess how difficult the
optimal path learning is. In a similar way, it is possible to
evaluate 〈J〉�, the average of J∗(s)/�(s, t) over all sources
s and targets t, where �(s, t) is the shortest path from node
s to node t. An obvious advantage of 〈J〉� in comparison
to 〈J〉 is that, independent on the network features, it is
expected that this variable converges to a value close to 1.
One can measure the instantaneous velocity of learning

using V (η) = 〈J(η+1)〉− 〈J(η)〉. Another way to compare
velocity of learning among networks is to use the the
instantaneous normalized velocity of learning given by
V�(η) = (〈J(η+1)〉− 〈J(η)〉)/(〈J(η+1)〉− �̄), where �̄ is
the characteristic path length. V�(η) may be interpreted
as the fraction of the total learning that the walker learns
in a given episode. Furthermore, 0� |V�(η)|� 1, since it
is the ratio between the learning from one episode to the
next one and the greatest possible learning.
By counting the number of times Ns(i) that an episode

η starting from a source node i was interrupted due to
the fact that the number of steps count exceeds mn,
one gets information about the difficulty to learn paths
starting from i. Similarly, counting the number of times
Nt(i) that an episode to target i was interrupted by the
same reason, one gets information about the difficulty to
learn paths to reach target i. Finally, the overall difficulty
to learn paths in a given network can be estimated by
NT =

∑
i(Ns(i)+Nt(i)) .

In the rest of this paper, we analyze the results of
FVMCA when applied to several complex networks. In all
simulations of this paper, we have chosen ε= 0.2,m= 1000
and Nη = 500 000.
To find an optimal choice for ε, it is clear that the

region of small values of ε must be investigated, as we
have done in this paper. While larger values of ε imply
in easier learning, smaller values of it imply in better
convergence. We have varied ε∈ [0.1, 0.3] and found that
ε= 0.2 is a good tradeoff between faster learning and
better convergence. Finally, we note that the choice of m
has impact only on the number of steps that a walker keeps
trying to find a path from a source node s to a target node
t and the number of events that generates Nt, Ns and NT .

Results. – Let us now discuss the results we obtained
when applying the proposed framework to several network
classes.
Scale-free networks: We start with typical Barabasi-

Albert (BA) scale-free networks [23], as well as for the
corresponding maximally (Max) and minimally (Min)
hierarchical versions [24,25]. These hierarchical versions
were built by multiple preferential rewiring of pairs of
edges [25], ensuring the full network connectivity. For
building the maximally (minimally) hierarchical version,
at each step one select two pairs of connected nodes
and connects the node with the highest degree among
these four nodes to the next highest degree node (the
lowest degree) in this subset. The other two nodes are
then linked. Figure 1 presents the relative difficulty of
navigation, expressed by 〈J〉�. In fig. 1(a), differences in
the behavior of the learning process for BA, Max, and
Min networks can be visualized, while fig. 1(b) illustrates
the dependence of 〈J〉� for BA networks with different
sizes. Since logarithmic scales are used in both axes of
fig. 1, we note that the hierarchical structure causes a large
difference in the learning process. Figures 1(a) and 1(b)
make clear that: a) An increase in the network hierarchy
is directly related both to the navigation facility and
learning capacity; b) the path learning process runs faster
in smaller networks. The dynamics of 〈J〉 (not shown) is
exactly the same of 〈J〉�.
Figure 2 provides us some clues about the learning

velocity in the same networks used in fig. 1. Figure 2(a)
shows that |V Max|< |V BA|< |V Min|. Since in the begin-
ning of the learning process there is so much to be learned,
it is expected that the absolute value of the velocities2

decreases with η until it converges to zero. Figure 2(b)
compares V BA� with V Max� . For small values of η, one notes
that V Max� /V BA� > 1, indicating that, in the first episodes
of the learning process, the walker learns proportionally
more paths in the Max version than in the original BA
network. However, the value of V Max� /V BA� decreases when
η increases, as the number of paths to be learned in the
Max version is smaller than the corresponding number in
the original BA network. Although |V Max|< |V BA|, learn-
ing in the Max version proceeds at a faster pace than in
BA network. Similar conclusions can be derived from the
curves for |V Min|< |V BA| and |V Max|< |V Min|, drawn in
the same panel of fig. 2.
The value of NT for the learning process of the

same networks have been normalized by the number
of episodes Nη, leading respectively to are respectively
given by NBAT /Nη = 3.6× 10−5, NMaxT /Nη = 1.4× 10−5
and NMinT /Nη = 1.0× 10−3. This pattern often happens
for a large range of m. Furthermore, these values are in
agreement with the results presented in fig. 1(a) regarding
the learning path difficulties in the BA networks and
other generalized versions of it. We have also found that
Ns and Nt are highly irregular over the nodes for each

2Note that these velocities are by definition negative.
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Fig. 1: (a) Behavior of average cost 〈J〉� as a function of η
for representative BA (dash-dotted line), Max (dotted line),
Min (dashed line) and ER (solid line) networks, when n= 200
nodes. (b) The same for BA networks with different values of
n= 50 (solid line), 100 (dotted line), 150 (dashed line), 200
(dash-dotted line).
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Fig. 2: (a) Behavior of V as a function of η for typical BA (solid
line), Max (dotted line) and Min (dashed line) networks, when
n= 200 nodes. (b) Behavior of the ratios V x� /V

y
� as a function

of η for x=Max and y=BA (solid line), x=Min and y=BA
(dotted line) and x=Max and y=Min (dashed line). In (b),
the curves have been smoothed by a slide window averaging
process of size 20.

one of the networks (not shown) implying that there are
nodes that are quite easier to be reached, while others
provide the best location to be hidden. In particular,
larger degree nodes tend to present larger Ns and smaller
Nt. This is intuitive since the walker in larger degree
nodes has to choose among a larger number of paths to
follow. On the other hand, it is easy to arrive at nodes
with larger degrees since most paths connect other nodes
to these nodes.
The study of the learning process in BA networks

has shown that, in first place, there is clearly a relation
between difficult of navigation in a network and difficult
of learning paths in a network, i.e., a walker learns paths
faster in networks that are easier to be navigated. Next,
it shows that the node degree is an important feature
related to both navigation difficulty and hiding ability.
Furthermore, besides the node degree, the learning also
depends on the hierarchy of the network.
Random networks: We start this section by reporting

the results for a random Erdős-Renyi (ER) network where
the attachment probability p is such that leads to the same
〈k〉 of the BA networks presented in fig. 1. The resulting
learning curve lies between those for BA and Min network
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Fig. 3: Behavior of average cost 〈J〉 (a) and 〈J〉� (b) as a
function of η, for representative ER networks with p= 0.1 and
different values of n= 50 (solid line), 100 (dotted line), 150
(dashed line), 200 (dash-dotted line). Behavior of 〈J〉 (c) and
〈J〉� (d) as a function of η, for ER networks with n= 200
nodes and different values of the connection probability
p: 0.05 (solid line), 0.1 (dotted line), 0.25 (dashed line),
0.5 (dash-dotted line).

in fig. 1(a), indicating that increased randomness with
respect to BA makes navigation harder but, on the other
hand, easier than in the more uniformly degree distributed
Min.
Then, we considered several different values of p, so

that we can explore learning features of ER networks with
different size and average node degree. This is exemplarily
shown in the different panels of fig. 3. In panel (a) we
see that, for small values of η (for instance η/500 = 1,
〈J〉n=50 < 〈J〉n=100 < 〈J〉n=150 < 〈J〉n=200. This happens
because the upper bound of 〈J〉 is larger for the largest
networks. However, since the number of connections of the
largest networks is correspondingly larger, as well as the
characteristic path length, 〈J〉 decreases at different pace
for distinct values of n. It results that, the above relation
is reversed after some learning (when η increases). On the
other hand, such network size effect is excluded from the
behavior of 〈J〉�, as shown in fig. 3(b). In fact, the form of
the curves is much similar to those in fig. 1(b).
The inverse effect is observed when we compare

networks of the same size but with different number
of connections. Figures 3(c) and (d) show the effect of
varying the ER node attachment probability p in the
values of 〈J〉 and 〈J〉�. Now it is possible to observe that
line crossings are observed for the latter measure, but
not for the former. This can be explained by noting that
when the number of connections is high, it implies that
the shortest paths are smaller. Therefore, the crossing of
the curves presented in fig. 3(d) is a consequence of the
normalization procedure.

58004-p4



Learning paths in complex networks

10
0

10
1

10
2

10
3

10
−5

10
0

10
5

−V

η/500

(a)

0 500 1000
0

0.5

1

1.5

V
p
=

0.
1

�
/
V

p
=

0.
05

�

η/500

(b)

10
0

10
1

10
2

10
3

10
−5

10
0

10
5

−V

η/500

(c)

0 500 1000
0

0.5

1

1.5

V
15

0
�

/
V

20
0

�

η/500

(d)

Fig. 4: (a) Behavior of V as a function of η for ER typical
networks when n= 200, and connection probability p= 0.05
(solid line), and p= 0.1 (dashed line). (b) Behavior of the ratio
V p=0.1� /V p=0.05� for the same data. (c) Behavior of V as a
function of η for ER networks when p= 0.1, and different values
of n= 150 (solid line) and n= 200 (dashed line). (d) Behavior
of the ratio V n=150� /V n=200� for the same data. In (b) and (d),
the curves have been smoothed by a slide window averaging
process of size 20.

As in fig. 2, fig. 4 compares the learning velocities and
relative velocities of some networks in fig. 3. We now
observe that line crossing is observed for networks with the
same value of n and different values of p. The fluctuations
are also much larger than obtained for BA networks.
Following the arguments of the discussion related to fig. 2,
the main conclusion that can be drawn from fig. 2 is
that the learning process in more connected networks is
faster.
Apollonian networks: We now study how a walker

learns paths in geometrically constructed Apollonian
networks, which are simultaneously scale-free, small-
world and Euclidian [26]. Although they share such
important features with well studied network types as BA
and Watts-Strogatz (WS) [27], they have own individual
characteristics that put them apart from those quoted
classes systematic application of multivariate statistical
methods is applied [28]. Therefore, the analysis of a third
network type helps clearing out the effect of network
structure on the learning process. The qualitative behav-
ior of 〈J〉 and 〈J〉� (not shown) over η is quite similar to
those ones presented in fig. 1(b).
Figure 5 compares the learning velocities and the

relative velocity of Apollonian networks with different
sizes such as in fig. 2 and fig. 4. Figure 5(a) shows that
larger networks have larger absolute learning velocities
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Fig. 5: (a) Behavior of V as a function of η for Apollonian
networks with n= 43 (solid line), n= 124 (dotted line) and
n= 367 (dashed line). (b) Behavior of the ratios V x� /V

y
� as a

function of η for x= 43 and y= 124 (solid line), x= 43 and
y= 367 (dotted line) and x= 124 and y= 367 (dashed line). In
(b), the curves have been smoothed by a slide window averaging
process of size 20.

since the walker has more information about the paths
to learn. Figure 5(b) shows the trend of V 43� /V

124
� and

V 43� /V
367
� to zero meaning that the learning process is

finishing in the smallest network. Different from the BA
network (not shown), fig. 5(b) shows that in the beginning
of the learning process, larger networks always have larger
relative velocities.
Real networks: We have also applied this methodol-

ogy to explore navigation in some real networks, namely
(a) the US airlines connections network [29], (b) the
Zachary Karate club social network [30], (c) a repre-
sentative subgraphs with 200 nodes of the Swedish city
Ume̊a mapped into an information network (see [6] and
comment [24] at the reference list of [10]), and (d) the
Boston underground transport system [31].
Figures 6(a) and (b) compare the measures 〈J〉 and V�

for the real networks indicated above with with those of
their random counterparts [32,33]. Much like the situation
in fig. 1, there is not essential distinction between the
behavior of 〈J〉 and 〈J〉�. The results of fig. 6(a) show that
the measures of the randomized network are noticeable
smaller than those of the original networks for all but the
Boston underground transport system. This is likely to
happen due to the real (geometric) constraints that the
real networks are subjected to as suggested by [6]. For
the Boston underground transport system network, the
random network achieves a small increase in the value of
〈J〉 for the whole considered η range. This indicates that
is more difficult to find optimized paths in networks with
some structure than in fully random ones. We conjecture
that this particular result is a consequence of the rather
unusual node distribution of this transport network.
As shown in fig. 6(b), although the absolute values of

the learning velocities |V | in most real networks are higher
than their random counterparts, the learning process
measured by |V�| proceeds at a faster pace in their random
counterparts. This indicates that there is more to learn on
such structured networks than in an random environment.
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Fig. 6: While (a) shows the ratio between average costs 〈J〉
for the real network and 〈J〉random for the random counterpart,
(b) shows the ratio between V� for the real network and V

random
�

for the random counterpart: US airlines connections network
(solid line), the Zachary Karate club (dotted line), a representa-
tive subgraph with 200 nodes of the Swedish city Ume̊a (dashed
line), Boston underground transportation system (dash-dotted
line). In (a), the measures of the ER networks are smaller
than those of real networks for all but the Boston under-
ground transportation system network. In (b), the curves have
been smoothed by a slide window averaging process of size 20.
(b) confirms the odd behavior of the Boston transportation
system network detected in (a). It shows that the randomized
network version has slighter larger values of V� than the original
one.

Final remarks. – This paper has introduced a frame-
work to understand the issue of learning paths in complex
networks based on the assumption that a walker learns
paths by online experience. We fully characterized the
learning process by a first-visit Monte Carlo algorithm,
and proposed four different measures that allows to quan-
tify the progress achieved by the the walker in the learning
process. We have applied this framework to study random
networks, scale-free networks, Apollonian networks and
also four real networks. We have shown that the difficult
of learning paths in complex networks is strongly related
to the topology of the network.
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