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The continuation of the previous work is presented. Here the instability matrices 
for the eight classes of HF solutions, considering time reversal and spin symmetries, are 
derived and explicitly shown. These matrices are expressed in terms of LCAO coeffi- 
cients. Hence they are of immediate application to the verification of instabilities in HF 
calculations. 

1. Introduction 

This work is a continuation of and a complement to the earlier one [1], hereafter 
referred to as paper I. In paper I we have shown that concepts of functional analysis 
as regular points, tangent subspaces, Lagrangian matrix restricted to the tangent 
subspace of a constrained surface can be used in connection with the Har t ree-Fock 
(HF) problem. In our development the energy functional in the linear combination 
of atomic orbital (LCAO) approximation was considered to be a polynomial real- 
valued function of several variables subject to subsidiary conditions - the maxi- 
mum-minimum formulation (MMF). From this standpoint we have determined 
the HF instability conditions at the general spin orbital (GSO) level, i.e., the general 
Har t ree-Fock (GHF) method. These conditions are directly related to the dynami- 
cal matrix used in linearized TDHF or RPA theory [2]. 

In order to apply our development to analyze HF instabilities of a given calcula- 
tion in a straightforward manner it is necessary to know if the different matrices 
for each class of HF solution can be determined from our fundamental instability 
matrix LM. This might seem quite a task since the M M F  is general and does not use 
symmetry considerations. Here we shall demonstrate that using an unitary similar- 
ity transformation applied to LM and imposing conditions on the LCAO coeffi- 
cients according to a particular class of HF solution all the known instability 
matrices [3,4] can be obtained from LM, and we shall explicitly give all these 
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matrices in terms of LCAO coefficients. Our results are therefore of direct applica- 
tion to numerical HF calculations. 

This work is arranged as follows. In section 2 we present a r6sum6 of our develop- 
ment, that is, the maximum-minimum formulation (MMF) of the instability condi- 
tions. In section 3 we obtain and present explicitly the various instability matrices 
in terms of LCAO coefficients. Finally, section 4 is devoted to concluding 
remarks. 

2. Equat ions  of  the M M  formulat ion 

In this section we present a r6sum6 (for more details and references, see paper I) 
of our mathematical development, the MMF, for determining the fundamental 
instability condition using the general spin orbital s (GSO), i.e., in the context of the 
general Hartree-Fock method. Our notation is the usual one. 

Let us consider the energy functional (in the Born-Oppenheimer approxima- 
tion) 

E[~] = (~IH.I~) 
- ( ~ 1 ~  > , (1 )  

where H ,  is an n-particle Hamiltonian and tkv) is a trial function consisting of a sin- 
gle Slater determinant, i.e., an antisymmetrized product of n single particle func- 
tions {~b j} j  = 1 , . . . ,  n such that 

(~il~bj) ~- / dv~)~3j = (~ij. (2) 

In paper I the molecular spin orbitals (MSOs) were given by 

~bk(r, c) = ~ok(r)r/(~c) + ~o~,(r)r/({) 

-Ik>l > + (3) 
with ~7 and 77' spin eigenfunctions, ~k, ~ spatial molecular orbitals (MOs) and 

(~bk(r,5)J~bt(r,5)) = (~k(r)l~ol(r))+ (~(r)l~}(r)) = 6kt. 

Here, we have required that the molecular orbitals qOk, ~ are linear combinations 
of atomic orbitals (AOs) X~, i.e. 

~9 k --- ~ X"/C"fk, 
7 

= <x,,Ix.> = 1. (4) 
7 

The coefficients {C~, C~} represent the molecular orbital (MO) in the chosen 
basis. These coefficients can be chosen so as to minimize (1) and we have the 
LCAO-MO approximation at the general spin orbital (GSO) level. (In this work, as 
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in paper I, the MO indices i , j ,  k,  and I vary from one to n and the AO indices (Greek 
letters) from one to m (number of atomic orbitals in the LCAO basis set).) 

Using relation (3) for ~bj, we treated the functional E[~] as a polynomial function 
in the 2ran variables C,j and C'~j. Therefore, instead of studying the HF instability 
problem as a variational one, we formulated it as a maximum-minimum problem 
of the real-valued function E ( X )  = E[~], X = { C,j, C~j}, subject to constraints 

6kt, (5) 

where S ~  is the overlap matrix, S ~  = (X~IXa). We called this approach the maxi- 
mum-minimum formulation (MMF) [1]. 

To derive the HF instability conditions in the M M F  scheme, we considered 
E[~] as a function E ( X )  subject to the constraints (5) and applied the local theory 
of constrained minimization problems. Thus, from the first-order conditions we 
obtained the G H F  equations [5,6] that determine the reference molecular orbitals 
{el,  C}}, i.e., 

FCk -- G'Clk = eSCk, 

F'C 'k  - G e k  = eSC'k, e = diagonal matrix, 

(6) 

(7) 
where F (F ~) is the matrix which collects all Fock operator matrix elements defined 
in terms of C and C' (C I and C). e = I lcktll is a Hermitian matrix and G and G'  are 
defined as the matrices ~'~k )-~'~Te Cg*k< 'YIl6 >Cak and ~-~k ~"~'76 
respectively. 

The type of local extremum point (maximum, minimum or saddle point) is char- 
acterized by second-order conditions. Then, according to the M M F  method, firstly 
we determine the Lagrangian matrix L. Secondly, we construct the tangent sub- 
space M. Finally, we obtain the restriction of L to M, LM, which in the M M F  
scheme is the fundamental instability matrix, 

LM= (L2)  , (L~)* " (8) 

Each block L ~  is a n(m - n) x n (m - n) matrix. We can identify an element of 
L ~  giving i ts /-row and j-column ( i , j  = 1 , 2 , . . . ,  n (m - n)) or specifying its sub- 
block characterized by the values of functions u( i), w( j )  (u, w = n + 1, n + 2 , . . . ,  m) 
defined below and, in that uw-sub block, the v(i)-row and x(j)-column 
(v, x = 1,2,--- ,  n). The specification of L ~  by using u, v, w, x- indices is more con- 
venient in order to compare our results to those of the literature. Functions u, v, 
w, and x are defined by 

u ( i ) = g  ~ + n +  l,  v ( i ) - - - - - i -g  n ,  (9) 



350 G. Mage la  e Silva et  al. / Har t r  ee-Fock instabilities. H 

w ( j ) =  g(~---~)  + n - b  l, x ( j ) = j - g ( ~ n - - ~ ) n ,  

where g(z) is the integer part ofz. Therefore (see paper I) 
1 / (L/M)U -- (LM)uw~x = (ew -- ev)6uw6xv + Juxow + Juxvw 

l + Iux~w + I~xvw - Juxwv - Jux~, 
2 P ! 

U - + + J. x + 
I 

- J u w x ~  - Juw=, 

with 

II1W1~3 x 

JUWI1)X - :  

I'uw,v x = 

J'uw,vx = 

(10) 

(11) 

(12) 

C~ C~w ( a/3l l'V6) a C~Cax , (13) 
~76 

C w( /311"r6) f vC' x , (14) 
a#-r8 

(  /311 6)o c% f' x , (15) 
~B'r6 

C2w( /311 6) (16) 
a/37~ 

and (aTI 1/36)a = (aT[ 1/36) - (a7116/3). 
Matrix LM with its elements defined by relations (11) and (12) is the instability 

matrix for the solutions of the GHF,  in the M M F  framework. We note that LM is 
constructed from occupied and unoccupied LCAO-MO coefficients, orbital ener- 
gies and AO integrals (a/31 [76)a and (a/31176). 

The eigenvalues of LM characterize the kind of local extremum point { C~a, C'~t} 
determined by eqs. (6) and (7). (see paper I.) 

3. Instabi l i ty  matrices 

Matrix (8) corresponds to the instability matrix of the TSW (torsional spin 
wave) solution in the Fukutome nomenclature [3,4]. Since for the other classes of 
HF-solutions, the MSOs used are special cases of MSOs given by (3), it is natural to 
think that, in principle, we can derive instability matrices for each kind of HF-solu- 
tion from (8) imposing restrictions on the LCAO-MO coefficients. 

In fact, to determine theses particular instability matrices we have achieved a 
direct two-step procedure: Firstly we have defined an unitary similarity transfor- 
mation. This is done using elements of the permutation group SN ---- {f~} in matrix 
form [~]. Next, we have imposed on the LCAO coet~cients conditions according to 
the class of HF  solution. The unitary similarity transformation does not change 
the eigenvalues of the Hermitian matrix LM given by (8) and allows us to write the 
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blocks L ~  (a = 1,2) in an alternative and convenient way to compare our 
instability matrices with Fukutome results. Specifically, we obtain that L~t 
= [~'~a]L~c/[~'~a]-I can be written as [7] 

0 0 0 0  OEOE O 0 0 E  O E O 0 ~  

E o e o  e e e E  E o e e  e E E O I  
L ~ t =  OOEO OEEE OOEE OEEOII ' (17) 

E O 0 0  EEOE EOOE EEO0 / 

where OOEE, for example, designates a submatrix of L ~  whose elements have 
for its four uvwx-indices Odd, Odd, Even, Even numbers, respectively. We will 
denote in the block L ~  each submatrix whose elements are arranged in the form 
(17) by a capital letter, and each submatrix in L~t by the corresponding small letter, 
that is, 

(i L ~ t =  G H 
K L 

O P Q 

(18) 

(i bc 
L ,  2 = g h " 

M k 1 

o p q 

Thus, the 
follows: 

(19) 

instability matrices for each class of HF solution are obtained as 

(a) Torsional spin density wave ( TSD W) solutions 
In this case ~ok and qa~ in eq. (3) are real functions [8]. In consequence, we have 

real LCAO-MO coefficients. Thus, from eqs. (11) and (12) we have L~ t = (LM)a *, 
a ---- 1,2. Further we can factorize the eigenvalue problem associated with L ~  and 
instead consider eigenvalue problems associated with the instability matrices 

LM(M+) = L% + L~,  

LM(M-) = L~t - L~t. 

LM(M+) and LM(M_) are the instability matrices for the TSDW solutions. The 
symbols in parentheses (M+ and M_, in this case) indicate the corresponding Fuku- 
tome symmetry classification for the instability matrix we have obtained. 

(b) Torsional spin current wave ( TSC W) solutions 
This class of HF solutions refers to systems with an even number of electrons. 

It has pairs of MSOs in the form (a and/3 spin eigenfunctions) 
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~b 1 ---- ~0~ + ~0t*/~, 

~b2 = -~o ' a  + ~o*/3. 

There fo re ,  Czi = - C 2 i _ l ,  C~+i = C2i_I, i = 1, 2, ..., m/2. Using  these  cond i t ions  in 
re la t ions  (11) and  (12) we  ver i fy  tha t  F = B*, G = A*, H = D*,  I = C*, M = K*,  
O = J*, P = N*,  q = I*, f = b*, g = a*, h = d*, i = c*, n = k*, o = j*, p = m*, a nd  
q = 1". H e n c e  the  ins tabi l i ty  ma t r ix  LM can  be  wr i t ten  as 

LM= ~L~ L~)' (20) 

. Tl la  wlaere L M are o b t a i n e d  f rom eqs. (18) and  (19) and  p e r m u t a t i o n s  o f  rows  a nd  col-  
umns ,  i.e. 

r.1 A* B* C* 
~xt  = K J .  M 

J* K L* M * ]  

and  

(21) 

b* d* 
r,,2 a* (22) 
" - 'M= j k 1 

k* j* m* 1"/ 

The  e igenvalue  p r o b l e m  assoc ia ted  wi th  mat r ix  (20) fac tor izes  a lso in this case,  
a n d  we ob ta in  for  T S C W  so lu t ions  the  ins tabi l i ty  mat r ices  

LM(T+)  T,,1 r,,2 ~-" ~"M + ~"M 

T i l l  1112 
L M ( T - )  = ~'M -- ~M" 

(c) Axialspin wave (ASW) solutions 
This  class has  M S O s  given by  

~bl = qoa, 

= 

or  co r respond ing ly ,  

C~k_ 1 = 0, 

C2k = 0. 

W i t h  these  condi t ions ,  we ob ta in  
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and 

A B a b )  

F t3 f g (23) 
L u ( A + ) =  a* b* A* B* 

f* g* F* G* 

LM(A_) = ( I m )  (24) p* Q* • 

(d) Axial spin density wave ( A SD W) solutions 
The instability matrices of this class are easily obtained from the ASW matrices. 

The additional restriction on the MSOs is that the MSOs must be real. Then, we 
have 

LM(A_M) = ( 
I 

k P 

and 

m) (25) Q 

( ( A +  a ) ( B  + b ) )  
LM(A+M+)= \ ( F + f )  (O+g) " (26) 

(e) Axial spin current wave (ASCW) solutions 
We add to the restrictions of the ASW class, the following condition 

= c b , _ l .  

Thus, we verify the relations: G = A*, F = B*, g = a*, 
p = m*. Therefore, the instability matrices become 

LM(A_ T+) = L + m 

and 

Lm(A+Ta:)= ( +a*)  (A*+b*)  " 

(27) 

f = b * ,  Q = L * ,  and 

(28) 

(29) 

(f) Charge current wave ( CCW) solutions 
This class of closed shell solutions has the additional restriction on the ASW class 

given by 

= c _1. (30) 

It follows that A = G, B = F, a = g, b = f, L = Q, and m = p. Hence, we arrive 
at 
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LM(1S)= (a*+b*)  (A*+B*)  (31) 

LM(3S) = ( L m )  
m* L* " (32) 

(g) Time-reversal invariant closed shell (TICS) solutions 
This class of HF solutions, closed shell with real MSOs, is the most used class 

in molecular calculations. The corresponding instability matrices are obtained 
from the CCW matrices through the condition of the MSOs being real. 

We have that B = b. Then, the instability matrices become 

LM(1ST+) = A + 2B + a, (33) 

LM( 1 ST_) = A - a,  (34) 

LM(3ST+) = L - m ,  (35) 

LM(3ST_) = L + m.  (36) 

The instability matrices LM (1 ST+) and LM (3 ST_) correspond to the well known 
singlet and triplet instability in the Cizek-Paldus classification [9]. LM(1ST+) and 
LM (3 ST_) were classified by Chambaud et al. [10] as non-real instabilities. Finally, 
we could classify the possible transformed instability matrices by the irreducible 
representations of SN. Nevertheless, we believe that the actual classification is 
already quite good. 

4. D i s c u s s i o n  a n d  c o n c l u d i n g  remarks  

In the previous paper we have considered an alternative formulation of instabil- 
ity conditions (the MM formulation) in order to clarify some geometrical aspects 
of the HF theory. Writing the energy expectation value E[~] in the LCAO-MO 
approximation, we have noted that E[~] can be analyzed as a polynomial function 
of the LCAO coefficients, i.e., as a real-valued function E(X) defined on a complex 
(or real) space K e (the dimension of K is obtained from the number n of electrons, 
the number m of atomic orbitals in the LCAO basis set and the class of HF-solution 
of interest). In consequence, the problem of HF instability conditions can be treat- 
ed as a constrained minimization problem relative to the energy function. 

In order to apply our development, however, it is necessary to know the different 
instability matrices for each class of HF solutions and to compare these matrices 
with those determined by others methods. This might look like a difficult task since 
the MMF is general and does not use symmetry considerations. Here we have 
demonstrated that using unitary similarity transformations applied to LM and 
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imposing condit ions on the L C A O  coefficients according to the class of  H F  solu- 
t ion we obta ined all the known instability matrices f rom our fundamenta l  matr ix 
LM. These matrices are expressed in terms of  L C A O  coefficients, therefore they are 
o f  s t ra ightforward application on numerical  calculations. The eigenvalues o f  the 
instability matrices characterize the ext remum points (the solutions of  the H F  cal- 
culations) as maximum,  minimum or saddle points [1]. This characterizat ion may  
guide the search for bet ter  solutions or the absolute minimum. 
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