Replacement of Neisseria meningitidis C cc11/ET-15 variant by a cc103 hypervirulent clone, Brazil 2005–2011

Guilherme Sardinha, Soraia Cordeiro, Erica Gomes, Cinthia Romanelli, Claudia Andrade, Joice Reis, Ivano de Filippis

Abstract

Outbreaks caused by serogroup C meningococci in the northeast region of Brazil from 2005 to 2011 were associated to the emergence of variant ET-15 of cc11, which has been replaced by cc103 from 2006 to date. The increase of cc103 should be closely monitored to prevent the spread of this clone to neighbouring regions.

© 2013 Elsevier Inc. All rights reserved.

Neisseria meningitidis is a human upper respiratory tract commensal and is the etiological agent of meningococcal disease (MD), a life-threatening disease causing an estimated 500,000 invasive infections worldwide each year (WHO, 2002). N. meningitidis is classified into 13 serogroups based on their capsular polysaccharide serologic properties; however, about 90% of invasive infections are caused by serogroups A, B, C, W135, X, and Y. Meningococci can also be genetically classified as sequence types (STs) and grouped into clonal complexes (cc) by multilocus sequence typing (MLST) (Maiden et al., 1998). N. meningitidis serogroup C of the ST-11/ET-37 clonal complex (cc11) is a widespread clone that has caused many outbreaks worldwide, including United States in the 1960s and Brazil and South Africa in the 1970s (Gaugant, 2002). The variant ET-15 of cc11 first described in 1986 in Canada (Whalen et al., 1995) has been associated with outbreaks and high case fatality rates in different countries of Europe and United States (Garnier et al., 2011; Jackson et al., 1995; Kaczmarski, 1997; Kremastinou et al., 1999; Krizova and Musilek, 1995). In Brazil, isolates from patients with confirmed meningococcal disease are reported through the Brazilian national meningitis surveillance system. Clinical and demographic information on suspected patients with meningitis is routinely collected as part of this surveillance system (de Lemos et al., 2007). Meningococcal disease in Brazil is endemic with a current incidence of 2–3 cases per 100,000 inhabitants, an annual average of 2,860 cases from 2005 to 2011 and case fatality average rate of 20% according to data of the Ministry of Health (de Filippis et al., 2012a). The most frequent serogroups in the country are B and C accounting for more than 90% of all the serogrouped strains. Since 2005, the prevalence of serogroup C strains increased from 47.5% in 2005 to 80% in 2010, while the prevalence of serogroup B decreased from 46.6% in 2005 to 13% in 2010 (Fig. 1). The rise of serogroup C cases was followed by case fatality rates as high as 22% in 2010. A slight decrease of the number of serogroup C cases has been observed from 2010 to date (75.5%) and increase of serogroup B (16.7%) within the same period. This was in part due to local vaccination campaigns to halt sporadic outbreaks using a conjugated C vaccine. The aim of this study was to assess the prevalence of clone cc11/ET-15 among serogroup C strains isolated from 2 states of the northeast (NE) region of Brazil: Bahia (BA) and Pernambuco (PE), where several outbreaks due to serogroup C meningococci were reported.

A total of 152 serogroup C meningococcal isolates were recovered from 2 states of the NE region of Brazil (BA, n = 84; PE, n = 68) presenting the highest incidence of MD from 1996 to 2011. All strains were confirmed by culture and nspA-PCR (de Filippis et al., 2005), and serogroup was confirmed by latex agglutination and siaD-PCR (Tzanakaki et al., 2003). STs were determined following the MLST...
genotypes among serogroup C strains within 2 states of the NE region in 2009 (de Filippis et al., 2012b; Gorla et al., 2012). The event in the state of Bahia where 11 cases with 7 deaths were reported suggests that the use of polysaccharide C–conjugated vaccines during 2005 to 2011 has dramatically decreased the circulation of cc103 in that region. Our results also show that from 2006 to 2009, the proportion of cc103 to other cc was of 72/40, while in 2010, this proportion increased to 16/2; therefore, the raise of this clone over others should be closely monitored as well as the antibiotic susceptibility. Additional studies with a larger number of strains from other states of Brazil should be carried out in order to determine the possible association of cc103 with strains with reduced susceptibility to rifampicin and fluoroquinolone antibiotics. We believe that the emergence of new strains belonging to hypervirulent clones that can be prevented by vaccination justifies the introduction of mass vaccination in the whole population to prevent the spread of this clone to neighbouring regions.

Fig. 1. Distribution of N. meningitidis serogroups by years in the NE region of Brazil (%).

Fig. 2. Distribution of N. meningitidis clones by years in the NE region of Brazil.

ET-15 and cc103 from 2005 to 2011, with the decrease of cc11/ET-15 from 1996 to 2001 followed by the increase of cc103 from 2001 to date, suggests that cc11/ET-15 has been replaced by cc103, which has been associated to several outbreaks within these 2 states. Our data suggest that the use of polysaccharide C–conjugated vaccines during 2010 in several cities of the NE region to halt local outbreaks caused by serogroup C strains has dramatically decreased the circulation of cc103 in that region. Our results also show that from 2006 to 2009, the proportion of cc103 to other cc was of 72/40, while in 2010, this proportion increased to 16/2; therefore, the raise of this clone over others should be closely monitored as well as the antibiotic susceptibility. Additional studies with a larger number of strains from other states of Brazil should be carried out in order to determine the possible association of cc103 with strains with reduced susceptibility to rifampicin and fluoroquinolone antibiotics. We believe that the emergence of new strains belonging to hypervirulent clones that can be prevented by vaccination justifies the introduction of mass vaccination in the whole population to prevent the spread of this clone to neighbouring regions.

Acknowledgments

We thank the staff of the Laboratório Central de Saúde Pública “Dr. Milton Bezerra Sobral”—LACEN-PE for providing meningococcal strains. The authors are also grateful to the “Plataforma Genomica de Sequenciamento de DNA/ PDTIS-FIOCRUZ” for providing meningococcal strains. The authors are also grateful to the “Plataforma Genomica de Sequenciamento de DNA/ PDTIS-FIOCRUZ” for providing meningococcal strains. The authors are also grateful to the “Plataforma Genomica de Sequenciamento de DNA/ PDTIS-FIOCRUZ” for providing meningococcal strains. Financial support was provided by INCQS/FIOCRUZ and FAPERJ APQ1 – 171.176/2006.

References