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Secular terms occur in many perturbative solutions of nonlinear equation systems. In this work, 
an investigation is made of which cases they may occur in as the result of the application of the 
linear Carleman embedding to a system of nonlinear equations. The solution for the embedded 
system is written in a form that makes it convenient to see how these terms originate. Their 
occurrence for the general case is discussed and the results are exemplified by working out the 
Henon-Hei1es system. 

I. INTRODUCTION 

Secular terms appear very often in connection with per­
turbative expansions of the solution of a system of nonlinear 
equations. These terms should be avoided when we look for 
approximate solutions over several revolutions of the sys­
tem. Otherwise they will cause steadily growing amplitudes 
with time, in disagreement with the observed motion in the 
majority of cases. The anharmonic oscillator is a simple sys­
tem where secular terms do appear if conventional straight­
forward perturbation expansion is performed. 

The concepts of Carleman embedding (CE) and secular 
terms have been put together in a review article on the CE by 
Montroll and HeIleman. 1 They employ the CE to recover the 
known exact solution ofthe logistic equation, and show how 
it can be used to develop a perturbation theory without secu­
lar terms. This last point is illustrated by the analysis of the 
anharmonic oscillator. Since this work, some attempts have 
been made to apply the CE to more complex systems. Steeb 
and Wilhelm,2 have treated the two-dimensional Lotka­
Volterra system in a first-order approximation, with results 
in agreement with the first term of an expansion of the limit 
cycle. In the context of the Lorenz model, Andrade and 
Rauh3 show that any finite-order approximation given by 
the CE breaks down at the turbulent threshold. 

The present work has been motivated by an analysis of 
the Henon-Heiles system.4

•
5 We wished to investigate how 

the CE would work near the transition to chaos in this mod­
el. Unlike the case of the Lorenz model, this transition is not 
associated with a stable fixed point that becomes unstable at 
a well-defined threshold value of a control parameter. In the 
Henon-Heiles model, we have a large region of values of the 
energy where there are two kinds of coexisting trajectories, 
namely, those lying on the surface of the two-dimensional 
tori, and those which are chaotic. We have found that the 
approximate solutions are always similar, for all values of 
the energy, without any recognizable structural difference 
between a chaotic and a regular regime. Moreover, secular 
terms are present in the approximate solutions of order larg­
er than 1. This behavior, of course, contrasts with the pro­
posals of Montroll and Helleman,1 who emphasize the ab­
sence of secular terms within the framework of the CEo A 
critical reading of the paper of Montroll and HeIleman, how­
ever, reveals that the absence of secular terms is not due to 
the CE itself, but rather to a subtle expansion of the oscilla­
tion frequency which is carried out by the authors together 

with the embedding. Similar expansions of the frequency 
may be performed without any connection with the CE, and 
are related to the evaluation of the so-called Poincare recur­
rence time.6•7 

The main purpose of this work is to clear up these 
points. Also, we present a detailed discussion of the occur­
rence of secular terms when a given nonlinear system is 
treated by the CE only, without any extra approximations as 
in the paper of Montroll and Heileman. We think it is impor­
tant to discuss the occurrence of the secular terms even if we 
wish to avoid them. This discussion provides a deeper insight 
of the method itself, and allows some comparisons between 
the CE and other methods which show the same kind of 
problem. In this paper we formally consider an autonomous 
system of P equations with quadratic nonlinearities and sup­
pose, for the sake of simplicity, that it is written in a coordi­
nate basis with a diagonal linear part. Section II is devoted to 
developing the formal CE solution of the system into a form 
which is particularly useful for the discussion of the occur­
rence of secular terms. This will be accomplished in Sec. III, 
where we show which terms may appear in each block of the 
infinite CE time evolution operator. In Sec. IV we illustrate 
the discussion of the preceding sections by the presentation 
of some results for the Henon-Heiles system. Finally, we 
make some concluding remarks in Sec. V. 

II. THE SOLUTION 

We consider a P-dimensional system described by the 
vector x(t), whose equations of motion may be written as 

dx _ =Ax+BxI2 ] 

dt ' 
(1) 

where A and B are constant matrices of order P xP and 
P X P 2, moreover A is. supposed to be diagonal, and 
x[2l =x®xisaP2-dimensionalvector,where ® denotes the 
Kronecker product.2,8 After proceeding with the embedding 
of the original system, we are led t02

,8 

o 
o ::: )(=;::). 

BN xlN ] (2) 
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or, in shorthand notation 

!!.-X=MX. 
dt 

(2') 

In (2) we have 

x lN ] = X IN - I ] ®x, xII] = x, 

AN=A'®IN-'+I'®AN-', A'=A, (3) 

B N = B I ® I N - I + I I ® B N - I, B I = B, 

where I N indicates the pH X pH identity matrix. Our inten­
tion is to write the solution of (2') as 

X(t) = exp(Mt)X(O) = Texp(Mt)T-IX(O), (4) 

where T is the matrix which transforms M into its diagonal 
form M. We will write T in terms of its block components 
denoted by capital indices TL,K' The dimension of such a 
block T £OK is pL X pK . Due to the structure of M and to the 
fact that theA I (and hence allAN) are diagonal matrices we 
have 

TL,l( = 0, L >K, TK,K = I K. (5) 

The blocks of the inverse matrix T -I = U will be denoted by 
U L,K of order pL X pK , and may be easily expressed in terms 
of the TL,K by 

UL,K = (-I)L+KDet(T')K,L' (6) 

where (T')K,L is the matrix obtained from T by elimination 
of the K th block line and the L th block column. Now, 
Det(T')K,L indicates a matrix ofdimensionpL xpK which is 
obtained by performing matrix multiplications and sums 
among the blocks of (T ')K,L in the same way we calculate the 
determinant of a matrix. As a matter of fact, (6) is the block 
equivalent to the well-known expression for the elements of 
the inverse matrix. In the evaluation oft 6) we must pay atten­
tion that the order ofthe factors TL,K in each term must be 
such that the several matrix multiplications are possible, but 
the product of an identity block by another identity block (or 
by a nonsquare block) does not afford them to be compatible 
in the sense of usual matrix multiplication. For instance, we 
have 

UL,L = I L, UL,L + I = - TL,L + I' 

(7) 

UL,L+2 = TL,L+ I TL+ I,L+2 - TL,L+2' 

The results above do indicate how we can bring (6) to the 
simpler form 

J+K-I 
~ UL,MTM,L+K' 

M=J 
(8) 

The blocks TL K and U L K are to be determined from the 
condition M = UMT, and ~ we have ML,K = AL 8L,K we 
get 

K K-I 

A L8L,K = ~ UL,MA MTM,K + ~ UL,MBMTM+ I,K' 
M=L M=J 
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(9) , 

When L = K, the above equation becomes an identity; when 
L =l=K, it gives the relations which determine the TL,K' Mak­
ing use of (8) we can reduce (9) to 

-TM,KAK +BMTM+"Kl =0. (10) 

Since (10) must be valid for any K, the T M,K will have to 
satisfy 

AMTM,K-TM,KA K = -BMTM+I,K' (11) 

At this point we shall introduce a new notation for the blocks 
of T and U, which takes into account better the fact that the 
solution of (11) is dependent of the diagonal the block be­
longs to. So let 

TL,K = TL,L+K' UL,K = UL,L+K' (12) 

With this notation it becomes clearer that (11) gives a solu­
tion for the blocks oftheK th diagonal in terms of those of the 
(K - 1 )th diagonal. The components of this block are ex­
pressed as 

BL .TL+ I,K-I 
TL.K _ ~ mJ J,n 

m," - ~ A L + K _ A L 
J" m 

(13) 

Now if we successively explicit the ]L,K - I in terms of the 
]L,K - 2 , ]L,K - 3 , and so on, we get the general result 

(14) 

The next task is to determine the U t;t, starting from (8). We 
will not deduce it here, but we can easily see that if we insert 
the expression 

(15) 

together with (14) into (8) we come to an identity. 
Now we can finally write down the evolution operator 

exp(Mt). Since we are interested in the evolution of the first 
block component XII] = x of X, we concentrate on the eva­
luation of the block components (~t kK' 

(16) 

If we define (~t) I,K = (~t kK + I , and make use of the nota­
tion introduced in (12) we get 

K 

(~t)I,K = ~ ~ TI.M.(efM+lt).U~,K-M. (17) 
m,n ~ ~ m,J 'J J,n 

M=O j 

Now we insert expressions (14) and (15) into (17) to get the 
explicit form of the (~t H~fK 
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We proceed one step further and bring (18) to a more conven­
ient form for the analysis we will undertake in Sec. III, 

K-I 

(~t)I.K - ) II B N + I 
I .. IK - I .... ~_I N= I ,IN' IN + I 

(19) 

where we consider that 

1
. 1-8N.M 
1m = 1. 

M_N A MI + I _ A f" + I 
M N 

(20) 

III. DISCUSSION OF THE SECULAR TERMS 

In this section we will discuss the conditions necessary 
for the secular terms to occur. Ifwe consider (19) we see that 
it is much like the expansion coming from perturbation the­
ory for the eigenvalues of a perturbed Hamiltonian 
H = Ho + J.,H' in terms of the eigenvalues of Ho. It is well 
known that this expansion breaks down whenever you have 
degenerated states. A similar fact happens in (19) when we 
have 

AMI +1 =Af"+I. (21) 
M N 

In such a case the denominator in (19) goes to zero. However, 
due to the presence of the sum in M, we have two (or more) 
terms in (19) with the same denominator which will cancel 
each other, leading to an indetermination of the type 0/0 
which is responsible for the secular terms. In order to see 
when (21) may occur, we have to consider that the eigenval­
ues A ~ of A M may be expressed in terms of the eigenvalues 
A! of A I as4•S 

p p 

A ~ = L cnA!, O<cn eN, L cn =M. (22) 
n=1 n=1 

So (22) indicates that (21) will be satisfied for large enough 
values of M and N provided 

A~/A!=plq, p,qeZ, (23) 

for at least one pair of eigenvalues of A I. 

Before we start performing a detailed analysis of the 
occurrence of secular terms, we make simplifying changes in 
the notation and consider only the part oft 19) that is relevant 
for the secular terms. So, for a given value for the set (Iv I in 
(19) we consider the subset S g with q + 1 elements of the set 
{A ~ + I} such that 

(24) 

We may consider, without loss of generality, that these ele­
ments are theA ~ + I, M = 0, 1, ... ,q, and will write henceforth 

M 

a -AM+I 
m - 1M • (25) 

Then the occurrence of secular terms for that particular 
choice of the {I k I will depend upon 

(26) 

In (26) it is sufficient to take the sum until m = q, since the 
terms with m = q + 1,q + 2, ... ,K do not contribute to the 
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secular terms associated with the set S g . 
The evaluation of the Q g is performed by the usual limit 

procedures, e.g., by writing an = ao (1 + rn), n = 1,2, ... ,q, 
and then taking the limit as r n -0. As a result of the limit 
procedure we arrive at the expression 

Qg =ea"t f 1 ± ~ 
n=q+1 ao-an .=0 sl 

q-. 1 
X L II . 

nl~ ... ,nq_s=q+la=1 ana -ao 
(27) 

We verify easily that (27) holds for low values of q. and for 
larger values we may proceed by induction to show that it is 
valid overall. This proof. though simple. is too lengthy to 
justify discussing the details here. 

Now we recall the most important features, which indi­
cate the number and the order of the secular terms that ap­
pear in any block (~t )I.K • This time-evolution block is given 
by (19). in which several sums are to be taken over the set of 
indices {/o,/I, ...• iK }. For each set of values that these indices 
may assume. we ought to perform another sum over M 
= 0,1 •... ,K. We determine, for that particular choice ofthe 

{lK I. the subsets SgO,sT' •... ,s~t of the set (A ~+ I, M 
= 0,1 , ... ,K I, such that all q n + 1 eigenvalues belonging to a 

givenS :'are equal. Now in the sum over M we group togeth­
er all those terms corresponding to the' values of M for which 

the A ~ + I belong to the same set S :., and call this group of 

terms Q :'. Each of the Q:' will contain secular terms of 

maximal order t q., whose general expression is given by (27). 
Now the highest-order secular term appearing in (19) for that 
particular choice of the (I K I is proportional to t t, where 

q = max { qo.q\> ... ,qt I. (28) 

The number of secular terms in (~t) I.K increases mono­
tonically with the value of K. This block will contain all 
secular terms which had already appeared for lower K's and 
also new terms. These are due either to new eigenvalues that 
become equal, leading to secular terms associated with a new 
frequency, or to a larger number of equal eigenValues already 
present in former blocks, which lead to a higher-order term 
associated with that frequency. 

IV. EXAMPLE 

We have undertaken an analysis ofthe Henon-Heiles4
•
s 

model along the lines described in Sec. II and III. Several 
approximations for the trajectories have been evaluated, by 
considering different cutoffs of the matrix M. For each cut­
offwe determined the blocks (~t )I.K, and then approximate 
the solution. The model we worked with is described by the 
following Hamiltonian: 

H(ql,q2,PI,P2) = !(p~ + p~ + q~ + q~) + q~q2 - qU3. 
(29) 

This model is nonintegrable and the trajectories in the phase 
space are qualitatively different, depending upon the energy 
E of the system. In what follows we restrict the discussion to 
the cases where E < 1. For energies far lower than 1. the tra­
jectories are confined to tori in the phase space. Increasing 
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the energy until E = ! makes the trajectories leave the invar­
iant tori and meander chaotically in the space among those 
most stable tori, which do exist until E =!. Despite the dif­
ference in the character of the trajectories for different values 
of E, all of them remain bounded in this range of energy. 

If we write the equations of motion for the system de­
scribed by (29), it turns out that the matrix A I, which gives 
the linear part of the system is not diagonal, as the previous 
discussion affords it to be. We change then to a new coordi­
nate basis in order that the matrix A I becomes a diagonal. In 
this new coordinate basis we have 

Qj = 2 -1I2(qj _ ipj)' Pj = 2 -1I2(qj + ipj). (30) 

The eigenvalues of A I are ± i, each one double degener­
ate. This indicates, according to (22), that the eigenvalues of 
AM will be of the form 

i(M - 2m), m = 0,1, ... ,M. (31) 
The nonlinear part is described by the matrices BN

, as indi­
cated in (2). It is originated by the cubic terms in the Hamil­
tonian. 

Now we consider several approximations. An sth-order 
approximation takes into account the first s + 1 blocks AM 
and s blocks BM. The zeroth-order approximation is that 
which considers no informations of the nonlinear part. The 
trajectories are the same as for the harmonic oscillator, and 
expressed by trigonometric funtions of t. 

The first-order trajectories are still limit cycles, but now 
they contain harmonic contributions. There is still no secu­
lar term at this order, for there is no degeneracy between the 
eigenvalues of A I and those of A 2. We write below the time 
evolution for ql at this approximation 

q~I)(t) = ci?)(t) + H q?q~ + ~p? p~)cos t 
- i( p? q~ + p~ q? )sin t + !(q? q~ - p? p~ )cos 2t 

+ 11 0 0 + 0 0)' 2 I 0 0 0 0) 'l,PI q2 ql P2 slO t - ,qlq2 + PI P2 , (32) 

where superscript 0 indicates the values of the coordinates at 
t = O. In terms of the accuracy, this approximation is equiva­
lent to that presented by Steeb2 for the Lotka-Volterra mod­
el. 

The second-order approximation gives trajectories 
which do contain secular terms of the type t sin t and t cos t. 
Hence they are not limit cycles, but open orbits which revo­
lute with increasing amplitUde. The presence of these terms 
is due to the occurrence of the cases A L = A ~2 = ± i in the 
sums of expression (19). The approximation also includes 
higher harmonic contributions, as becomes clear in the 
expression below for the ql(t) when q~ = p~ = 0: 

69 

ciI2)(t) = cill)(t ) + iP,(q?3 - 3q? p?2)COS 3t 

+ ~(q?3 + 4q? p?2)COS 2t 

+ Th (29q?3 - 55q? p?2)COS t 

- q?3/3 + 'f,Jq?3 + q? p?2)t sin t 

+ iP,(3P? q?2 - p?3)sin 3t 

+ M2P?3 - p? q?2)sin 2t 

+ Th(5p?3 + 65P? q?2)sin t 

- -fi(P?3 + p? q?2)t cos t. 

J. Math. Phys .• Vol. 27. No.1. January 1986 

(33) 

The next approximation would consider four diagonal 
blocks. We have not worked out this case explicitly, but we 
are in a position to indicate which terms it will contain, based 
on the results of the previous sections. In the case of four 
blocks, besides those terms already present in (33), there 
would appear two more terms, which are linked with the 
cases A 1, = A t = 0, ± 2i in (19). Such analysis may be ex­
tended to higher-order approximations with the following 
general result: the blocks (eMt)I.K will contain secular terms 
of maximal order L, when K = 2L or K = 2L + 1. 

We should consider two points about the presence of 
secular terms in the approximate solutions of the Henon­
Heiles system. The first has already been partially referred to 
in the Introduction; they indicate a growing amplitude, 
whereas the orbits are bounded for values of E < !. 

The second is connected to other general aspects of the 
trajectories of the system. They are not limit cycles, and the 
time interval between two successive intersections with a 
plane in the phase space oscillates around 21T. If there were 
no secular terms, the approximate trajectories would be limit 
cycles with period 21T at any order considered, since all 
eigenvalues of M are of the form given by (31). That would 
not agree even qualitatively with the observed picture. So the 
presence of secular terms seems to be necessary and is, per­
haps, the only way this method can display non periodicity 
and other nonlinear features of the solution of the system. 
An infinite number of such terms will certainly sum up to 
give the right solution, but as long as we are faced with a 
finite number of terms, the problems discussed above for the 
solution (33) will appear. 

v. CONCLUSIONS 

We have discussed the occurrence of the secular terms 
in the solution of a system of nonlinear equations using the 
method of the Carleman embedding without any concomi­
tant perturbation expansion. We have obtained the formal 
CE solution of the system under consideration and brought 
it to a form particularly useful for the analysis of the occur­
rence of secular terms. If we concentrate on the blocks of the 
type (eMt )I.K, which are responsible for the description of the 
trajectories, we show that these terms will occur whenever 
we have two (or more) equal eigenvalues which belong to 
different diagonal blocksAL and AN of the matrixM, with 
L,N<.K. 

The occurrence of secular terms in the blocks (~t) I.K is 
cumulative, since these blocks, for a given K, will contain all 
secular terms already present in the blocks with lower K, in 
addition to new terms. These new terms are due to the fact 
that either new eigenvalues become equal or the number of 
equal eigenvalues already present for lower K have in­
creased. Since there is a well-known recurrence relations for 
the eigenvalues of AN in terms of the eigenvalues of the block 
A I, it turns out that it is quite simple to see which terms will 
appear in a given order of approximation of the solution. 

We have illustrated the use of the general results ob­
tained in this paper by presenting our early expressions for 
the approximate solution of the Henon-Heiles system. The 
occurrence of secular terms has been explicitly shown for a 
second-order cutoff, and a general discussion of the presence 
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of other secular terms for higher-order truncations has been 
presented. 
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