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There is mounting observational evidence that the expansion of our Universe is undergoing a late-time
acceleration. Among many proposals to describe this phenomenon, the cosmological constant (�) seems
to be the simplest and the most natural explanation. However, despite its observational successes, such a
possibility exacerbates the well known � problem, requiring a natural explanation for its small, but
nonzero, value. In this paper we consider a cosmological scenario driven by a varying cosmological term,
in which the vacuum energy density decays linearly with the Hubble parameter, � / H. We show that this
��t�CDM model is indistinguishable from the standard one (�CDM) in that the early radiation phase is
followed by a long dust-dominated era, and only recently the varying � term becomes dominant,
accelerating the cosmic expansion. In order to test the viability of this scenario, we have used the most
recent type Ia supernova data, i.e., the High-Z SN Search Team and the Supernova Legacy Survey (SNLS)
Collaboration data. In particular, for the SNLS sample we have found 0:27 � �m � 0:37 and 0:68 �
H0 � 0:72 (at 2�), which is in good agreement with the currently accepted estimates for these parameters.
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I. INTRODUCTION

Over the last years, a considerable number of high-
quality observational data have transformed radically the
field of cosmology. Results from distance measurements of
Type Ia supernovae (SNe Ia) [1–3] combined with cosmic
microwave background observations [4], dynamical esti-
mates of the clustered matter [5], and age measurements of
the oldest structures [6] seem to indicate that the simple
picture provided by the standard cold dark matter scenario
is not enough. These observations are usually explained by
introducing a new hypothetical energy component with
negative pressure—the so-called dark energy or quintes-
sence (for recent reviews on this topic, see [7]). Besides its
consequences on fundamental physics, if confirmed, the
existence of this dark component would also provide a
definitive piece of information connecting the inflationary
flatness prediction with astronomical data.

On the other hand, from a purely theoretical viewpoint,
the existence of a dark energy is related to an old problem
of quantum field theories and theoretical cosmology,
namely, the role of vacuum in the cosmic evolution [8].
Arguments of covariance and symmetry lead to an energy-
momentum tensor for the vacuum of the form T�

�� �

�g��, where � is a scalar function which, in spatially
homogeneous and isotropic space-times, may be, at most, a
function of time only. Therefore, the vacuum acts as a

cosmological term, that is, as a perfect fluid with negative
pressure given (in a comoving frame) by p� � ��� �

�� [we work in units where MP � �8�G��1=2 � c � 1].
Nevertheless, any tentative estimation of the vacuum

energy density by quantum field theories in flat space-
time leads to a divergent result, and any natural cutoff we
may choose to impose in those calculations leads to a
vacuum contribution at least 40 orders of magnitude larger
than the observed limits [9]. A possible way out of this
trouble is to postulate some cancellation mechanism that
leads to an exactly null vacuum contribution—the ob-
served dark energy being due to a genuine cosmological
constant or to other fields like quintessence or any other
else. However, a more careful look at the problem of
vacuum energy may suggest another possibility. The di-
vergent result obtained by quantum field theories in flat
space-time cannot, rigorously speaking, be used in the
context of curved, expanding backgrounds. On the other
hand, in Minkowski space-time the Einstein tensor is null,
and, therefore, any vacuum contribution to the energy-
momentum tensor, divergent or not, should be canceled
by a bare cosmological constant in Einstein equations.
Now, if we could obtain the vacuum energy density in
the expanding background, we should subtract the
Minkowskian contribution, obtaining a ‘‘renormalized’’
vacuum density which would depend on the curvature,
being very high for early times but decreasing as the
Universe expands.

As is well known, the Bianchi identities G�
�;� � 0 lead,

via Einstein equations, to T��;� � 0, which is an expression
of energy-momentum conservation in the presence of the
gravitational field [10]. In the Friedmann-Lemaı̂tre-
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Robertson-Walker (FLRW) space-time, this equation leads
to _�� 3H��� p� � 0, where � and p are the total energy
density and pressure, respectively, while H � _a=a is the
Hubble parameter. By introducing the energy densities and
pressures of vacuum and matter, one finds

 _� � � 3H��� � p�� � � _�: (1)

The above equation is equivalent to a continuity equation
for matter in the presence of a source� _�, meaning that the
process of vacuum decay is concomitant to a process of
matter production, a general feature of the vacuum state of
any nonstationary space-time. We are probably far away
from a definite theory of quantum vacuum in curved back-
grounds or from the correspondent microscopic description
of vacuum decay. Alternatively, we can consider effective,
theoretically or empirically motivated, decaying laws for
the vacuum density, exploring its effects by means of
macroscopic equations like (1). Such an approach has an
old history in the literature [11] and a renewed interest in
recent years [12].

In this regard, a viable possibility has been proposed,
with the vacuum density decaying as � � �H, where � �
m3
� has the order of the cube of the energy scale of the

QCD vacuum condensation [13]. By using the observed
values of m� and H, it is straightforward to verify that the
above law provides a value for � very close to the value
presently observed. Naturally, the theoretical justification
for this decaying law is based on some phenomenological
hypothesis and, as such, needs to be verified from a fun-
damental theory viewpoint. However, the important aspect
here is that it leads to cosmological solutions in agreement
with the standard scenario for the evolution of the
Universe, as explicitly shown in [14]. The above decaying
law, for instance, leads to an early radiation-dominated
phase where the vacuum term and the photon production
are negligible, and where the scale factor and temperature
evolve exactly as in the standard Friedmann solution. This
phase is followed by a matter-dominated decelerating era,
long enough to allow structure formation, and during
which the vacuum density and matter production are dis-
missable until very recently. Finally, the Universe switches
to an accelerated expansion driven by the vacuum, which
tends asymptotically to a de Sitter solution. If we consider
the present relative matter density (the only free parameter
of the model, besides the Hubble constant) around 1=3, we
also obtain the present age parameterH0t0 � 1, which is in
good accordance with current observations [6].

In this paper we are particularly interested in testing the
viability of the above scenarios in light of the latest super-
nova (SNe Ia) data, as provided recently by Riess et al. [2]
and by Astier et al. [3]. As is well known, these two SNe Ia
samples constitute the compilation of best observations
made so far and provide the most direct evidence for the
observed late-time acceleration of the Universe. We also
discuss other observational quantities, as the deceleration

parameter q, the transition redshift zT (at which the expan-
sion switches from a decelerated to an accelerated phase),
and the total expanding age of the Universe. In Sec. II we
revise the main expressions and predictions of the cosmo-
logical solution with � � �H. The observational quanti-
ties of the model are discussed in Sec. III. Section IV
presents our SNe Ia analysis and a discussion on the
observational constraints. In Sec. V we summarize our
main conclusions.

II. THE MODEL

In the context of a FLRW space-time with null spatial
curvature, the Einstein equations lead to the Friedmann
equation

 � � �� �� � 3H2; (2)

which, together with (1), the equation of state for the
matter fields [p� � ��� 1���], and a decaying law for
�, completely describes the evolution of the scale factor
and densities. As discussed earlier, we will consider � �
�H, so that by combining the above expressions we find

 2 _H � 3�H2 � ��H � 0: (3)

By imposing the conditionsH > 0 and �� > 0, we can also
obtain the solution for the scale factor [14], i.e.,

 a�t� � C	exp���t=2� � 1
2=3�; (4)

where C is the first integration constant and the second one
has been set equal to zero, in order to have a � 0 at t � 0.
Note that the vacuum and matter densities are, respectively,
given by � � �H and �� � ��� � 3H2 � �H. Thus,
by using Eq. (4), it is also possible to rewrite them as

 �� �
�2

3

�
C
a

�
3�=2

�
1�

�
C
a

�
3�=2

�
; (5)

and

 � �
�2

3

�
1�

�
C
a

�
3�=2

�
: (6)

A. Radiation-dominated era

For the radiation epoch (� � 4=3), Eq. (4) is given as

 a�t� � C	exp�2�t=3� � 1
1=2; (7)

so that in the limit of small times (�t� 1), we have

 a �
�������������������
2C2�t=3

q
; (8)

which is the same time dependence as in the standard
scenario. Equations (5) and (6) reduce now to

 �r �
�2C4

3a4 �
�2C2

3a2 ; (9)

and
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 � �
�2

3
�
�2C2

3a2 ; (10)

while, in the limit a! 0, we have

 �r �
�2C4

3a4 �
3

4t2
; (11)

and

 � �
�2C2

3a2 �
�
2t
: (12)

From the above expressions, it is straightforward to see that
for small times the expansion is completely driven by the
relativistic matter with its energy density scaling as a�4.

B. Matter-dominated era

For the dust phase (� � 1), Eq. (4) scales as

 a�t� � C	exp��t=2� � 1
2=3; (13)

which means that for small times (compared to the
present), it can be approximated by

 a�t� � C��t=2�2=3: (14)

Note that the above expression has the same time depen-
dence as in the standard scenario. This, in other words,
amounts to saying that the varying cosmological term starts
dominating only very recently, which guarantees a large
enough dust-dominated era.

For this matter-dominated epoch, Eqs. (5) and (6) read

 �m �
�2C3

3a3 �
�2C3=2

3a3=2
; (15)

and

 � �
�2

3
�
�2C3=2

3a3=2
: (16)

The first term in (15) gives the usual scaling of nonrelativ-
istic matter fields, whereas the second term is related to the
production of matter at the expenses of the vacuum decay.
Note that in the limit of large times (�t� 1), Eq. (13)
leads to the de Sitter solution, i.e.,

 a�t� � C exp��t=3�: (17)

Note also [from (15) and (16)] that while �m tends to zero,
� tends to a genuine cosmological constant.

III. OBSERVATIONAL QUANTITIES

The Friedmann Eq. (2) for the dust-dominated epoch can
be rewritten as

 H�z� � H0	1��m ��m�1� z�3=2
; (18)

where �m and H0 stand for the current values of the
relative matter density and Hubble parameters. From the
above equation, it is straightforward to show that the
deceleration parameter, defined as q � �a �a= _a2, now takes

the following form:

 q�z� �
3
2 �m�1� z�3=2

1��m ��m�1� z�3=2
� 1; (19)

or, at the present time (z � 0),

 q�z � 0� �
3

2
�m � 1: (20)

Note that for any value of �m < 2=3 (as indicated by
clustering and dynamical estimates [5]), the present-day
cosmic expansion is accelerating, which seems to be in full
agreement with current supernova observations [2,3] (see
Sec. IV). From Eq. (19), it is also possible to obtain the
transition redshift zT at which the Universe switches from
deceleration to acceleration, i.e.,

 zT �

�
2
�

1

�m
� 1

��
2=3
� 1: (21)

As one may anticipate, due to the process of matter pro-
duction resulting from the vacuum decay, the transition
redshift zT in this model will be always higher than (but of
the same order of) the transition redshift in a �CDM
model for the same value of �m. In reality, the cosmic
acceleration in the presence of dust matter and a cosmo-
logical term is given by

 6
�a
a
� 2�� �m: (22)

Therefore, the net effect of the additional terms in (15) and
(16) is to increase the acceleration for a given value of �m.

It is also possible to verify that the transition occurs soon
after the first term in (15) is supplanted by the sum of the
second term and �. In other words, the late-time accelera-
tion starts just after the end of the dust matter epoch, which
occurs at the redshift

 z
 �
�
�1�

���
2
p
�

�
1

�m
� 1

��
2=3
� 1: (23)

Finally, as shown in Ref. [14], the present age parameter
can be expressed by

 H0t0 �
2
3 ln��m�

�m � 1
; (24)

which means that for the current accepted interval for the
matter density parameter �m � 0:30� 0:05 (2�) [5], one
finds H0t0 ’ 1:15� 0:08, i.e., in accordance with current
age parameter estimates [6].

IV. SUPERNOVA CONSTRAINTS

SNe Ia observations are certainly among the most re-
markable findings of modern observational cosmology and
provide the most direct evidence for the observed late-time
cosmic acceleration. In this section we test the viability of
the decaying vacuum scenario discussed above through a
statistical analysis involving the most recent SNe Ia data,
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namely, the High-Z SN Search (HZS) Team [2] and the
Supernova Legacy Survey (SNLS) Collaboration data [3].

A. SNe Ia samples

The total sample presented by the HZS Team consists of
186 events distributed over the redshift interval 0:01 &

z & 1:7 and constitutes the compilation of the best obser-
vations made so far by them and by the Supernova
Cosmology Project plus 16 new events observed by the
Hubble Space Telescope. This total data set was divided
into ‘‘high-confidence’’ (gold) and ‘‘likely but not certain’’
(silver) subsets. Here, we will consider only the 157 events
that constitute the so-called gold sample.

The current data from the SNLS collaboration corre-
spond to the first-year results of its planned five-year
survey. The sample includes 71 high-z SNe Ia in the
redshift range 0:2 & z & 1 and 44 low-z SNe Ia compiled
from the literature but analyzed in the same manner as the
high-z sample. This data set is arguably (due to multiband,
rolling search technique, and careful calibration) the best
high-z SNe Ia compilation to date, as indicated by the very
tight scatter around the best fit in the Hubble diagram and a
careful estimate of systematic uncertainties. Another im-
portant aspect to be emphasized on the SNLS data is that
they seem to be in a better agreement with Wilkinson
Microwave Anisotropy Probe results than the gold sample
(see, e.g., [15] for a discussion). In what follows we briefly
outline the main assumptions for our analysis (see also [16]
for some recent SNe Ia analysis).

B. Statistical analysis

The predicted distance modulus for a supernova at red-
shift z, given a set of parameters s, is

 �p�zjs� � m�M � 5 logdL � 25; (25)

wherem andM are, respectively, the apparent and absolute
magnitudes, the complete set of parameters is s �
�H0;�m�, and dL stands for the luminosity distance (in
units of megaparsecs),

 dL � c�1� z�
Z 1

x0

dx

x2H�x; s�
; (26)

where x0 � R�t�
R0
� �1� z��1 and H�x; s� the expression

given by Eq. (18).
We estimated the best fit to the set of parameters s by

using a �2 statistics, with

 �2 �
XN
i�1

	�i
p�zjs� ��i

o�z�
2

�2
i

; (27)

where N � 157 and 115 for gold and SNLS samples,
respectively, �i

p�zjs� is given by Eq. (25), �i
o�z� is the

extinction corrected distance modulus for a given SNe Ia
at zi, and �i is the uncertainty in the individual distance
moduli.

Figures 1(a) and 1(b) display the Hubble diagram for a
fixed value of the Hubble parameter, h��
H0=100 Km:s�1 Mpc�1� � 0:7, and some selected values
of �m. For the sake of comparison our current standard
model, i.e., a flat �CDM scenario with �m � 0:27, is also
shown. Note that for the interval of �m considered, the
predicted magnitude-redshift relation is very similar in
both classes of scenarios, i.e., �CDM and ��t�CDM. In
Figs. 2(a) and 2(b) we show the results of our statistical
analysis. Confidence regions (68.3%, 95.4%, and 99.7%)
are shown in the �m � h plane by considering the gold and
SNLS samples, respectively. The best-fit parameters for the
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FIG. 1. Hubble diagram for 157 supernovae from HZS Team [Panel (a)] and 115 supernovae from SNLS Collaboration [Panel (b)].
As indicated in the figure, the curves correspond to a fixed value of the Hubble parameter, h�� H0=100 Km s�1 Mpc�1� � 0:7, and
selected values of �m. For the sake of comparison, the current standard cosmological model, i.e., a flat �CDM scenario with �m �
0:27, is also shown.
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gold sample analysis are �m � 0:39 and h � 0:64, with
the reduced �2

r � �2
min=� ’ 1:14 (� is defined as degrees

of freedom). At 95% C.L. we also obtain the intervals
0:34 � �m � 0:44 and 0:62 � H0 � 0:66. Note that these
estimated values for the matter density parameter are con-
siderably large, being only marginally compatible with the
current accepted range, i.e., �m � 0:30� 0:05 (2�) [5].
We also note that the above reduced value of �2 is equal to
the one found for the flat �CDM scenario and is slightly
larger than the one obtained for the �CDM model with
arbitrary curvature (�2

r ’ 1:12). For the SNLS analysis
[Fig. 2(b)], the best-fit parameters are �m � 0:32 and h �
0:7 (�2

r ’ 1:0), which correspond to an accelerating uni-
verse with q0 ’ �0:52, a total expanding age t0 ’
15:7 Gyr, and a transition redshift zT ’ 1:62 (with z
 ’
1:97). At 95% C. L. we also obtain 0:27 � �m � 0:37 and
0:68 � H0 � 0:72, which seem to be in better agreement
with the current accepted values for both clustered matter
density and Hubble parameters.

V. CONCLUSIONS

We have discussed a decaying vacuum scenario which is
indistinguishable from the standard model with a genuine
cosmological term in what concerns the general features of
the predicted cosmic evolution. The early radiation phase
in this ��t�CDM model is unaffected by the process of
vacuum decay, as well as the physical phenomena taking
place at early times (e.g., the primordial nucleosynthesis).
The following era is dominated by dust for a long time, and
only recently the varying cosmological term has become
important.

Here, we have presented some quantitative results which
clearly show that, even in the current stage of the Universe

evolution, our decaying vacuum scenario is very similar to
the standard one. We also have statistically tested the
viability of the model by using the most recent SNe Ia
observations, as given in Refs. [2,3]. For the so-called gold
sample, we have found 0:34 � �m � 0:44 and 0:62 �
H0 � 0:66 at 95.4% C.L., with the reduced �2

r ’ 1:14,
which is equal to the one obtained in Ref. [2] for a flat
�CDM model. The SNLS data in turn provide 0:27 �
�m � 0:37 and 0:68 � H0 � 0:72 (with �2

r ’ 1:0), which
is in better agreement with the currently accepted estimates
for both parameters. From the analysis presented above, we
also noted that a more precise determination of the tran-
sition redshift zT from upcoming SNe Ia data may be able
to distinguish this scenario from the standard model since
their predictions for this quantity are considerably different
[see Eqs. (21) and (22)].

We also emphasize that an important observational as-
pect that deserves a careful investigation concerns the
growth of density perturbations in the realm of this
��t�CDM model. In this regard, a preliminary analysis
indicates that the evolution of the matter contrast ��=�
shows no considerable difference relative to the standard
�CDM case. A complete study on the formation of large-
scale structures in this class of scenarios will appear in a
forthcoming communication.

Finally, it is worth observing that, from the theoretical
viewpoint, it would be interesting to investigate possible
relations between our approach and other quintessence
models or modified gravitational theories recently dis-
cussed in the literature. For this purpose, we note that
some authors have already pointed out a mathematical
equivalence between dark energy and scalar-tensor or other
forms of ideal fluid with inhomogeneous equations of state
(see, e.g., [17]).
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FIG. 2. The results of our statistical analysis. (a) Confidence regions in the �m � h plane for the gold sample of 157 SNe Ia. The
best-fit parameters for this analysis correspond to �m � 0:39 and h � 0:64. (b) The same as in (a) for the SNLS sample of 115 SNe Ia.
In this case, the best-fit model happens at �m � 0:32 and h � 0:70, with �2

r ’ 1:0.
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