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SUMMARY

Recurrent incidence of infant diarrhoea is studied, using daily data collected in Salvador, Brazil, from 754
children over 455 days. Aalen’s additive intensity model is taken as the basis of the modelling strategy
and a frailty extension is proposed. The idea is to estimate the frailty dynamically as time proceeds
and information accrues. This provides an alternative to the inclusion of dynamic covariates based on
individual event patterns. Simulation results indicate good performance of the estimation methods. In our
first analysis, there is no account taken in the natural clustering of the children into 21 different districts
of the city. The model is therefore extended to incorporate the possibility of spatial or spatio-temporal
clustering effects, possibly caused by unobserved environmental factors or infectivity. Significant frailty
and significant clustering are both identified in the data. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper describes the analysis of data from a study carried out in northeast Brazil into the
incidence of infant diarrhoea. The northeast region of Brazil, with a population of 40 million, is
the poorest area of the country. Diarrhoea is the main cause of infant deaths, responsible for 13.6
per cent of deaths in children under 1 year old in 1995 [1].

The data to be considered are taken from a household survey carried out through home visits
over 455 days from October 2000 to January 2002 [2]. One child aged under three years at entry
was monitored from each household and in this paper we will concentrate on the 754 who were
recruited at the beginning of the study and who had at least 90 days of follow-up. For each child
we have records of incidence of episodes of diarrhoea, an episode being a sequence of days with
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Figure 1. Incidence and dropout patterns for the first 50 children. Each line represents a child, with gaps
where data are missing. Crosses represent new episodes and circles indicate dropouts.

diarrhoea until there have been at least three consecutive clear days. Onset of episodes forms a
process of events in time and leads naturally to the use of event-history methodology in studying
both changes in incidence over calendar time and the relationship between incidence and various
socio-economic and demographic factors, particularly sanitation arrangements. Figure 1 illustrates
the data for the first 50 children in the study. There is one horizontal line per child, which is
missing on days when there is no information, and the crosses mark the onset of episodes of
diarrhoea.

Borgan et al. [3] provide further information on these data, augmented by an additional 172
children who were late entrants to the study and who will not be considered here. Those authors
describe the advantages of an approach based on Aalen’s additive intensity model [4, 5]. The
advantages include the facility to capture time-varying effects with time-varying covariates, very
quick computation, and straightforward adaptation to individuals being at risk or otherwise at any
given time. The latter is important for the diarrhoea incidence study, because children are not at
risk of a new episode until the previous one is cleared. In addition, some of the children dropped
out early from the study and although there is no evidence of this being informative [3], methods
still need to be adaptive to changing risk sets. Note that under this approach we use calendar time
as time scale. Another approach would be to analyse inter-event or gap times between episodes of
diarrhoea as a renewal type process (e.g. [6]). However, we are specifically interested in changes
in intensity over calendar time and also it is unlikely that the processes are stationary, hence our
approach and choice of scale.

To allow for significant heterogeneity between individuals, as can be seen in Figure 1, Borgan
et al. [3] included so-called dynamic covariates in their models. These are internal or endogenous
covariates summarizing the previous history of episodes [7, 8]. Their inclusion allows the model
to incorporate the intuitive possibility that a child with a history of frequent diarrhoea may have
different susceptibilities to future episodes than another child who has been so far diarrhoea-free
but is otherwise comparable. Another approach to the same problem is to include a frailty or
random effect term in the model to describe the unexplained heterogeneity [9]. This leads to the
first of our two main aims in this paper. Inclusion of frailty terms within a proportional intensity
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model is by now standard [10], but frailty within the additive model structure is less easily handled,
at least for estimation [11]. In Section 2 we describe the test and apply an iterative approach in
which we alternate between a marginal analysis to estimate the frailty distribution and a conditional
approach to estimate, at each timepoint, the additive model parameters.

Our second main aim is to examine the possibility of clustering of the incidence of diarrhoea,
both in space and time. Borgan et al. treat children as being independent but acknowledge in
discussion that since diarrhoea can be infectious there could be association between the incidence
processes of children living close together. In Section 3 of this paper, we investigate this possibility
after demonstrating that the sample consists of 21 clusters of between 23 and 47 children. To
begin with, we assume that the clustering is spatial only, but in Section 4 we show that space–time
clustering is indeed present in the data, as might be expected.

Notation, the standard Aalen additive regression model and a frailty extension are described
in Section 2, all based on an assumption of independence between children. In Section 2.2,
we describe and test an estimation procedure and we apply the method to the diarrhoea data
in Section 2.3. In Section 3.1, we recognize possible non-independence and describe the parti-
tion of the 754 children into clusters. In Section 3.2, we examine a variety of methods for
testing for differences in intensity patterns between clusters. In Section 3.3, we extend the frailty
approach to allow for heterogeneity between, and within, clusters and in Section 3.4 we fit the
frailty model to the clustered data. Section 4 has a generally similar structure to Section 3 but
allows the possibility of space–time variation. The paper is concluded with a brief discussion in
Section 5.

2. THE AALEN ADDITIVE INTENSITY MODEL WITH FRAILTY

2.1. Notation and model construction

To begin with, we assume independence between children. Throughout we consider dropout and
periods of intermittent missingness to be non-informative, which is equivalent to independent
censoring in event-history methodology. The study period is from time zero to time �, which is
455 days for the application.

Our work is based on the Aalen additive model for events in time [4, 5]. The counting process
Ni (t) for episodes for child i with vector of covariates xi (t)=(1, xi1(t), xi2(t), . . . , xip(t))′ is
assumed to have intensity

�i (t |Ft−, xi (t))=Yi (t)�(t |xi (t))
where Ft− is the history of events, censoring, and covariates prior to time t , and Yi (t) is an at-risk
indicator with value one when individual i is susceptible to new episodes being observed, and zero
otherwise. Since Ft− includes covariates, formally there is no need to have xi (t) in the conditioning
above. We have included it however to emphasize the elements of Ft− included in the model. We
assume that

�(t |xi (t))=�0(t)+�1(t)xi1(t)+·· ·+�p(t)xip(t)

where �0(t) is the baseline hazard and � j (t), j =1, . . . , p, are covariate coefficients. Estimation
[3–5] is usually by least squares or generalized least squares at each event time and inference is
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directed towards the cumulative coefficients

Bj (t)=
∫ t

0
� j (u)du

To allow for the possibility of heterogeneity between children not explained by covariates, we
can introduce subject-specific multiplicative random effects or frailties into the model as:

�i (t |Ft−, xi (t), Zi )= ZiYi (t)�(t |xi (t)) (1)

However, since Zi is not observed we have to work with the marginal intensity:

�i (t |Ft−, xi (t))=E{Zi |Ft−}Yi (t)�(t |xi (t)) (2)

If Zi is assumed to follow a gamma distribution with unit mean and variance � then it is straight-
forward to show that

E{Zi |Ft−}= 1+�Ni (t−)

1+��i (t)
(3)

where

�i (t)=
∫ t

0
Yi (u)�(u|xi (u))du

2.2. Estimation

To estimate the parameters, we adopt an iterative approach based on estimating the frailty parameter
� from the marginal distribution of total event counts, and the other parameters, given �, from
(2) and (3). Since � is estimated from the total events there is mild conditioning on the future
and formally the martingale structure, which underpins that the non-frailty inference for this class
of model no longer holds. However, our experience in simulations is that there is no observable
consequence of the breakdown and the method works well.

The iterative algorithm proceeds as follows:

1. Assume that E{Zi (t)|Ft−}=1 for all times and individuals. Collect these into vectors Ẑ(t)
at each t .

2. Take an initial value for �.
3. At each event time t form a design matrix X (t) of covariates and an intercept column,

and combine at-risk indicators Yi (t) into a vector Y (t). Estimate the regression parameters
through

X∗(t) = Y (t)Ẑ(t)X (t)

b̂(t)dt = [X∗(t)′X∗(t)]−1X∗(t)′ dN (t)

where dN (t) is a vector of indicators for event experiences at time t .
4. Estimate �, for fixed b(t), by maximizing the marginal likelihood of total event counts. This

is obtained from the negative binomial distribution arising from a gamma mixture of Poisson
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Table I. Properties of �̂ estimated using procedure in Section 2.
Results based on 100 simulated samples.

Sample size � Mean (�̂) S.D. (�̂)

100 0.5 0.493 0.082
1.0 0.980 0.148

250 0.5 0.495 0.052
1.0 1.014 0.096

500 0.5 0.497 0.038
1.0 1.012 0.070

1000 0.5 0.495 0.026
1.0 1.012 0.048

random variables. The contribution of child i is

P(Ni (�)=n)= 1

n!
�

(
n+ 1

�

)
�(1/�)

[��i (�)]n
[1+��i (�)]n+1/�

5. Update the Ẑ(t) using (3).
6. Repeat steps 3–5 until convergence.

Table I summarizes some of our simulation results. We took �=100, two time-constant binary
covariates with distribution P(xi =0)= P(xi =1)= 1

2 , �0(t)=0.05, and �1(t)=�2(t)=0.1. The
number of events per individual is averaged 15 and ranged from 1 to 35. The mean and standard
deviation of estimates of � are given for a variety of sample sizes and true values of �, in each case
based on 100 simulated samples. Results are good. Similarly encouraging results were obtained
for the estimation of Bj (t).

2.3. Aalen model with frailty applied to diarrhoea data

The frailty variance was estimated as �=0.81 (bootstrap SE 0.097 from 100 samples), indicating
considerable heterogeneity in the data. Table II summarizes results of testing for covariate effects.
It is straightforward to adapt to the frailty model a statistic Uj developed for the Aalen model for
testing H0:� j (t)=0 for all t ∈(0,�). The test statistic Uj is formed as

∫
L j (t)dB̂ j (t), where L j (t)

is a weight function. Following Aalen we took L j (t) equal to 1/{(X∗(t)′X∗(t)}−1
j j , in analogy

with linear regression, to give more weight to the more precisely estimated regions. If L j (t)
is predictable then standard martingale results can be used to provide concise expressions for
the variance of the Uj . In our case the expected frailties are, given �, functions of history only
and hence L j (t) is predictable. As stated, estimation of � formally causes dependence on the
future, but our experience is that this has no noticeable effect. Further information on inference
for the additive model is available in [3], where the covariates for the diarrhoea data are also
described. Results are generally similar to those obtained by [3], who used a dynamic covariate
(the average number of events per unit time) term in the model to describe heterogeneity rather
than a frailty approach. Incidence of diarrhoea is affected by having more than three people per
bedroom, living in an area with open sewerage or rain affected accommodation, and having a
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Table II. Diarrhoea data: tests for covariate effects under Aalen’s additive model with frailty.

� Test U SE(U ) U/SE p-Value

Low socio-economic status −12.80 26.46 −0.48 0.628
Other children �5 years 0.98 29.63 0.03 0.973
More than three people/bedroom 92.68 25.79 3.59 <0.001
Poor street quality −11.27 24.53 −0.46 0.646
Contaminated water source −15.09 25.12 −0.60 0.548
Contaminated water storage 32.54 26.31 1.24 0.216
Standing water 6.23 24.07 0.26 0.796
Open sewerage 115.89 22.38 5.18 <0.001
Rain affected accommodation 62.25 26.45 2.35 0.019
Mother <25 years 77.12 31.09 2.48 0.013
Gender 6.45 31.28 0.21 0.837
Starting age (months) −8596.34 576.39 −14.91 <0.001
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Figure 2. Empirical standard deviations of standardized martingale residual processes: solid line, only
fixed covariates x included in the model; dashed line, dynamic covariate N (t−)/t also included; dotted

line, frailty model of Section 2.

young mother. Child age seems to be the most important with reduced incidence among older
children.

Model fit within the Aalen class of models can be summarized by the empirical standard
deviations of standardized martingale residuals, i.e. the difference between observed and expected
counting processes, standardized by the model-based standard deviation. If the model is correctly
specified then these should be close to one. Figure 2 shows these quantities for three different
models: the Aalen model without heterogeneity, i.e. fixed covariates only; the Aalen model including
a dynamic covariate (previous rate of episodes per unit time); and the frailty model fitted here. It
is clear that the heterogeneity needs to be taken into account and there is little difference between
the dynamic covariate and frailty approaches, although the latter may be slightly preferred.
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3. CLUSTERING

3.1. Identification of clusters

So far we have considered diarrhoea incidence to be independent among children. But because
diarrhoea can be caused by bacteria or viruses that have been transmitted from person to person,
in other words an infection, it is possible that there are clusters of cases. In this section, we cluster
the children based on their living area and then we test whether there is a difference in diarrhoea
patterns between these clusters. In Section 4, we will investigate whether any differences are time
varying.

Since the data were obtained through daily home visits, we at first assumed that children assigned
to the same data collector lived close to each other and clustered the data accordingly. We obtained
the clusters by observing common missingness patterns for children with consecutive identification
numbers, making the assumption that the missingness was caused by the data collector being
unavailable. This suggested 21 clusters, with cluster sizes varying between 23 and 47. Subsequently,
we received information on the childrens’ home locations, which confirmed that the data were
indeed comprised of samples from 21 different geographic districts within Salvador. Fortunately,
the two clustering methods gave complete agreement. As an aside, we note that this suggests
that our assumption of non-informative intermittent missingness is credible: the absence of an
observation seems to be due to administrative reasons not associated with the health of the child.

3.2. Comparison of clusters

Before attempting modelling, we undertook some preliminary screening to determine whether there
was an evidence of differences between the clusters. Figure 3 shows the fitted baseline cumulative
functions for the 21 groups when each cluster was considered alone and covariates were not
included. The baseline for a common fit is also shown. As a Monte Carlo test for between-cluster
differences, we simulated data from the common baseline and clustered into 21 groups as for
the original data. We then fitted a separate baseline intensity to each cluster in the simulated
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Figure 3. Cumulative baseline functions for the 21 clusters (grey lines) and for all children (black line).
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data and at each time point determined the between-cluster variance in these quantities. There
was considerably more between-cluster variability in the diarrhoea data than can be explained by
sampling error from a common model.

Some differences between clusters might be explained by demographic differences between
districts, perhaps captured by known covariates. The procedure above does not take covariates
into account and so far a more formal comparison with adjustment for covariates we used a log
rank test for recurrent event data [11, 12]. The test is based on a weighted comparison at each
event time between the observed and expected number of events in each cluster. We applied the
test with weight w(t)=1 with and without covariates in the model. Having no covariates gave
�2=143.568 on 20 df, which has p-value <0.0001, and with covariates we obtained �2=118.752
on 32 df, which also has p-value <0.0001. Thus, only part of the between-cluster differences is
explained by differences in covariate patterns and we are confident that there is significant genuine
association in the data.

3.3. Correlated frailty model for recurrent event data

Association in survival, or more general event-history applications, is often described by a shared
frailty model under which intensities for all individuals in a cluster are affected by the same random
effect and there is independence between clusters. Since we expect high individual heterogeneity
in addition to cluster-level association we prefer to employ a correlated frailty model which allows
partial association between-cluster members. This model was introduced by Petersen et al. [13] to
model the clustered survival data. We extend the model here for clustered individuals with recurrent
event data. Let N (t)=((Ni1(t), . . . ,Nimi (t); i=1, . . . ,n)) be a multivariate counting process. In
this set-up, n clusters with mi subjects in the i th cluster are observed. The intensity process for
subject j in cluster i is defined as (1) in which Zi is replaced with Z ( j)

i defined as follows:

Z (1)
i = Zi0+Zi1

...
...

Z (mi )
i = Zi0+Zimi

(4)

Here, Zi0, Zi1, . . . , Zimi are independent gamma distributed random variables with parameters
(�,1/�), (�∗,1/�), . . . , (�∗,1/�), respectively. To make the intensity identifiable, we take �+�∗ =
1/� so that E(Z ( j)

i =1). Note that

Var(Z ( j)
i )=Var(Zi0)+Var(Zi j )=�

and the marginal distribution of Z ( j)
i is gamma as for the frailty model of the previous section.

Independence between clusters is assumed but subjects within clusters are correlated through the
common frailty Zi0. The correlation is not complete because of the independent subject-specific
terms Zi j . A large value of � supports the clustering and a large value of �∗ indicates high individual
heterogeneity and less correlation within the clusters.

Estimation follows the algorithm of Section 2 with the exception that the frailty parameters (any
two of �, �∗, and �) are estimated by maximizing for fixed � j (t) the cluster marginal likelihood
defined in the Appendix.

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:6489–6504
DOI: 10.1002/sim



FRAILTY MODELLING FOR CLUSTERED RECURRENT INCIDENCE OF DIARRHOEA 6497

Table III. Diarrhoea data: tests for covariate effects under Aalen’s additive model with correlated frailty.

� Test U SE(U ) U/SE p-Value

Low socio-economic status 2.70 19.83 0.14 0.891
Other children �5 years 35.97 22.09 1.63 0.103
More than three people/bedroom 83.31 19.42 4.29 <0.001
Poor street quality −24.68 19.27 −1.28 0.200
Contaminated water source −25.35 18.43 −1.37 0.169
Contaminated water storage 21.32 19.23 1.11 0.267
Standing water −0.55 17.93 −0.03 0.975
Open sewerage 91.01 16.08 5.66 <0.001
Rain affected accommodation 70.08 20.31 3.45 0.001
Mother <25 years 79.05 23.47 3.37 0.001
Gender 27.69 23.15 1.19 0.232
Starting age (months) −7425.60 454.77 −16.33 <0.001

3.4. Correlated frailty model applied to diarrhoea data

When the correlated frailty model for recurrent event data was fitted to the diarrhoea data, we
obtained �̂=0.84 (bootstrap SE 0.139 from 40 samples), reassuringly close to the 0.81 obtained
under the independent frailty model of the previous section. There is good evidence of clustering
since the estimated variance of the shared component is 0.22, which is 27 per cent of total variance,
leaving 0.62 (73 per cent) as the independent component variance. In the bootstrap samples, the
proportion of frailty variance, which is explained by the shared component, varied from 23 to 39
per cent.

Test statistics for covariate effects are given in Table III. The same variables are significant as
found in Table II, but evidence in all cases is stronger.

4. SPACE–TIME CLUSTERING

4.1. Exploratory analysis

Time-constant differences between clusters would indicate spatial or environmental effects not
explained by covariates. If the difference between the clusters is due to local infections then we
expect to see temporary periods of high risk within clusters. Figure 4 suggests that differences
between clusters do indeed vary over time. The figure shows the average number of episodes
per child-day for each month of the study and clusters are ordered according to the overall rate.
Incidence of one episode per child per month, which would be a serious diarrhoea problem,
corresponds to about 0.03 on this scale. We see that most clusters approach this level on occasions
and no cluster is consistently very high or very low. Cluster 2, for instance, has low incidence
for most of the study, but a relatively high rate appears in the closing months. Cluster 8 has the
opposite pattern and there seems to be a similar high within-cluster variation for most clusters.

For a simple investigation, as to whether these differences can be explained by chance, a
permutation study was used. First, we permuted all children and clustered them randomly into 21
clusters with sizes the same as the original data. Next we calculated again the average number
of events per child-day in each new cluster every month. The between-cluster monthly variance
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Figure 4. Cluster-specific monthly rates. Each cell represents the average number of events per child-day.

was then calculated and compared with the corresponding observed quantity. The procedure was
repeated 1000 times and in all cases the observed variance was higher, each month, than the
permutation variance. Hence further modelling is justified.

4.2. Aalen additive model for space–time variation

For a more formal approach to the identification of genuine time-varying cluster differences, we
can fit the Aalen additive model with cluster-specific terms included through appropriate indicator
variables. Cumulative coefficients, one per cluster, with standard errors are shown in Figure 5.
Some clusters seem to have no real effect, some have fairly constant effects, and some have
evidence of time variation.

Suppose the regression coefficient for cluster k is �k(t), k=1,2, . . . ,21. Then we will be
interested in testing, for each cluster, the following hypotheses:

H01: �k(t)=0 for all t (5)

H02: �k(t)=�k for all t (6)

First, we consider the null hypothesis H01:�k(t)=0 for all t, which is equivalent to test the
hypothesis H01: Bk(t)=0. If the hypothesis is true there is no difference between cluster k and the
overall pattern. A test using standard machinery is based on a weighted average of the estimated
coefficients [3–5]. Nine of these: clusters 1, 2, 3, 4, 10, 15, 17, 19, and 20 have highly significant
differences from the overall pattern. In all the cases, comparison with Figure 5 shows that zero
falls outside the pointwise confidence intervals for substantial regions of the time axis.

What is not clear is whether these differences are time constant or time varying, and hence the
need to test the second of the hypotheses, H02, of constant but non-zero effect. An innovative
resampling test procedure developed by Scheike and Martinussen [11, 14] are summarized in the
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Figure 5. Cumulative coefficients Bk(t) for the cluster effects, with ± two standard errors.
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Table IV. Estimated total, between- and within-cluster frailty
variances over disjoint subintervals.

Variance
Time period
days Total Between clusters Within clusters

1–30 0.832 0.087 0.745
31–60 0.161 0.033 0.128
61–120 0.575 0.133 0.442
121–240 0.980 0.461 0.519
241–455 0.411 0.092 0.319

1–455 0.841 0.225 0.616

Appendix. The hypothesis of constant effect is rejected unambiguously only for clusters 1 and 2,
though p-values are low also for clusters 4, 6, and 10. Clusters 1 and 2 have clear changes in slope
of the cumulative coefficients (Figure 5) and from Figure 4 we see that they are the two clusters
with relatively high incidence in the closing months of the study.

4.3. Correlated frailty model applied to subintervals

To close the analysis, we report results of fitting the correlated frailty model to disjoint subintervals
of the axis. In Section 3, we assumed the frailty terms to be time constant and hence clusters
were assumed to be consistently high or low throughout the study. With the results above in mind
it seems more sensible to allow frailty to vary in time. Unfortunately, there seems as yet to be
no available time-varying frailty model that can account for within-cluster correlation. Instead,
we simply fit separate time-constant models to separate subintervals and to ensure that there are
sufficient events for reliable estimation we choose interval lengths, which increase over time, as
the number of episodes of diarrhoea correspondingly fall.

Estimated frailty parameters are given in Table IV and it is interesting to compare these with the
rates illustrated in Figure 4. During the first month there is high variability between individuals but
apparently little within-cluster association. In the second month, however, there is little variability
as rates are low throughout. Between- and within-cluster variance pick up over the following
months but declines again for the last six months or so.

5. DISCUSSION

We have described an event-history analysis of a longitudinal study into the incidence of diar-
rhoea among young children. We do not of course claim our analysis procedure to be the only
approach to data of this type, since there are many alternatives available. But we do consider
the method to have many advantages. The Aalen additive model and associated martingale basis
for inference provide an easily computed and flexible basis for dealing with complex incidence
data, with time-varying effects, dropout, and missing observations. The frailty extension reported
here allows modelling of both heterogeneity not explained by covariates and clustering in both
space and time, and is perhaps more intuitively reasonable than the dynamic covariate method
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[7, 8], where future incidence is assumed to depend on the previous history of events. This allows
heterogeneity to develop over time, whereas the frailty approach assumes heterogeneity from the
onset.

Further work to consider how a time-varying frailty structure can be incorporated would be
useful. In Section 4, we simply divided the time interval into subintervals and assumed a separate
frailty model for each. This is unrealistic since there is unlikely to be independence between
clusters and also the partitioning is arbitrary and unlikely to be appropriate for all clusters. It would
be preferable to introduce a smooth time-varying frailty Z(t), either at the individual or at the
cluster level, or both. How this can be achieved is not yet known, though a multivariate gamma
distribution used in [15] for longitudinal count data may be a useful starting point.

Another topic for further work would be the conditional multiplier test developed by Scheike
and Martinussen [11, 14] and described in the Appendix. The particular form of test we chose to
use gives equal weight to all regions of the time axis, but it may be preferable to weight some
regions more heavily than others, for instance, where there are more events. Similarly, it will be
useful to compare power properties of different tests based on B̂(t). For instance, we have used
the integrated squared difference between B̂(t) and B̂(�)t/�, but [11] also describes a test based
on the supremum of the absolute difference. How each test performs against particular alternatives
is not known.

APPENDIX A

A.1. Marginal likelihood construction for correlated frailty model

First, we construct the likelihood for one cluster. For simplicity, take � j (t)=� j (t |Ft−, x j (t)). For
known frailties the likelihood for cluster i at time � is

Li (�,�,�∗,�)=
mi∏
j=1

{
�∏

t=1
[Z ( j)

i � j (t)]dN j (t)
}
exp

[
−Z ( j)

i

∫ �

0
� j (u)du

]

and the marginal likelihood can be proven to be

MLi (�,�,�∗,�) =
{

mi∏
j=1

�∏
t=1

[� j (t)]dN j (t)

}(
1

1+��Q(�)

)� mi∏
j=1

(
1

1+�� j (�)

)�∗

× ∑
k∈K (�)

mi∏
j=1

{
�(N j (�)−k j +�∗)

�(�∗)

[
�

1+�� j (�)

]N j (�)−k j
}

×�(kQ+�)

�(�)

[
�

1+��Q(�)

]kQ

where � j (�)=
∫ �
0 �(s)ds, �Q=∑mi

j=1� j (�), N (�)=∑�
t=1 dN j (t), k=(k1, . . . ,kmi ), K (u)=

{k|k j ∈{0,N j (u)}, j =1, . . . ,mi }, kQ=∑mi
j=1 k j .
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For the algorithm, we need the expected frailty terms given history to time t . The shared compo-
nent is obtained as

E[Z0(t |Ft−)]

= �

1+��Q(t−)

∑
k∈K (t−)

∏mi
j=1{C

N j (t−)

k j
�(N j (t−)−k j +�∗)}�(kQ+�+1)

[
�

1+��Q(t−)

]kQ
∑

k∈K (t−)

∏mi
j=1{C

N j (t−)

k j
�(N j (t−)−k j +�∗)}�(kQ+�)

[
�

1+��Q(t−)

]kQ
and the non-shared frailty is estimated as

E[Z j∗ (t |Ft− )]

= �

1+�� j∗ (t−)

∑
k∈K (t−)

∏mi
j=1{C

N j (t−)

k j
k j�(N j (t−)−k j+�∗)}(N j (t−)−k j∗ +�∗)�(kQ+�)

[
�

1+��Q(t−)

]kQ
∑

k∈K (t−)

∏mi
j=1{C

N j (t−)

k j
�(N j (t−)−k j +�∗)}�(kQ+�)

[
�

1+��Q(t−)

]kQ

where j∗ ∈{ j | j =1, . . . ,mi }. The expected frailty is the sum of these terms.

A.2. Conditional multiplier test for time-constant effects

The following applies to any of the cumulative coefficients B(t). We wish to test

H02:�(t)=� for all t

This hypothesis is equivalent to test H02: B(t)=�t for the cumulative regression coefficient. We
will use B̂(�)/� as an estimate of the constant � under the null.

Because the process n1/2(B̂(t)− B̂(�)t/�) is not a martingale, standard methods based on B̂(t)
and its variance cannot be used. Scheike [14] suggested instead a resampling approach, based
on earlier work by Lin et al. [16], using so-called conditional multipliers. The idea is that, if
Di , i=1,2, . . . ,n, are independent with zero mean and n−1/2∑n

i=1 Di converges in distribution
to some random variable D, and if Zi are independent with zero mean and unit variance, then∑n

i=1 Zi Di also converges in distribution to D. Simulating Zi thus gives us an approach to
approximating the distribution of D.

First, we would need to write B̂(t)−B(t) as a sum of independent terms equivalent to
n−1/2∑n

i=1 Di . This is impossible. However, it can be shown [11, 14] that B̂(t)−B(t) acts in the
required manner, which is sufficient. We summarize the argument here. Let M(s) be a vector with
elements Mi (s)=Ni (s)−�i (s). Then

√
n{B̂(t)−B(t)} = √

n
∫ t

0
(XT(s)X (s))−1X (s)dM(s)

= √
n
∫ t

0

(∑
i
xi (s)x

T
i (s)

)−1∑
i
xi (s)dMi (s)

= 1√
n

∑
i

∫ t

0

(
n−1∑

i
xi (s)x

T
i (s)

)−1

xi (s)dMi (s)

= 1√
n

∑
i

�i (t)
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say the inverse, with divisor n, converges at a faster rate than the remaining terms and can in effect
be considered as deterministic so the sum acts like a sum of independent terms. Now let

�̂i (t)=
∫ t

0

(
n−1∑

i
xi (s)x

T
i (s)

)−1

xi (s)dM̂i (s)

and

�(t)=n−1/2
n∑

i=1
�̂i (t)Zi

where Zi are independent and standard normally distributed. Then �(t) has the same limiting
distribution as n1/2(B̂(t)−B(t)) [11].

Thus, a test statistic for H0: B(t)=�t can be constructed based on replications of �(t). The test
statistic that is considered in our work is

T1=n
∫ �

0

(
B̂(t)− B̂(�)

t

�

)2

dt

Under the null we have B(�)=�� and B̂(t)− B̂(�)t/� are equivalent to �(t)−�(�)t/�. Therefore,
the function n1/2(B̂(t)− B̂(�)t/�) has the same asymptotic distribution of �(t)−�(�)t/�, and
replications of T1 based on the latter generate the appropriate sampling distribution.
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