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Abstract
The pure P-wave equation for modelling and migration in tilted transversely isotropic (TTI)
media has attracted more and more attention in imaging seismic data with anisotropy. The
desirable feature is that it is absolutely free of shear-wave artefacts and the consequent
alleviation of numerical instabilities generally suffered by some systems of coupled equations.
However, due to several forward–backward Fourier transforms in wavefield updating at each
time step, the computational cost is significant, and thereby hampers its prevalence. We
propose to use a hybrid pseudospectral (PS) and finite-difference (FD) scheme to solve the
pure P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms
in the equation are replaced by inexpensive FD operators, which in turn accelerates the
computation and reduces the computational cost. To demonstrate the benefit in cost saving of
the new scheme, 2D and 3D reverse-time migration (RTM) examples using the hybrid solution
to the pure P-wave equation are carried out, and respective runtimes are listed and compared.
Numerical results show that the hybrid strategy demands less computation time and is faster
than using the PS method alone. Furthermore, this new TTI RTM algorithm with the hybrid
method is computationally less expensive than that with the FD solution to conventional TTI
coupled equations.

Keywords: TTI wave equation, hybrid solution

(Some figures may appear in colour only in the online journal)

1. Introduction

Various methods for modelling anisotropic acoustic seismic
waves (Alkhalifah 1998, Zhou et al 2006a, Du et al 2008) as
well as wavefronts and rays (Bos and Slawinski 2010, Epstein
et al 2012) have been proposed and developed, especially
for vertical transversely isotropic (VTI) and tilted transversely
isotropic (TTI) media. In general, we can divide those methods
into two broad categories: methods that suffered from shear-
wave artefacts, usually known as coupled equations where P
and shear waves are coupled together (Alkhalifah 2000, Zhou
et al 2006a, 2006b, Fletcher et al 2009, Fowler et al 2010,

Duveneck and Bakker 2011), and pure P-wave (or decoupled)
equations which are free of shear-wave artefacts (Etgen and
Brandsberg-Dahl 2009, Liu et al 2009, Chu et al 2011, Pestana
et al 2012, Zhan et al 2012). Each has its pros and cons as
summarized in table 1.

The pure P-wave equation in the system of decoupled
equations of Zhan et al (2012) is in the wavenumber domain,
and at each time step it requires 8 fast Fourier transforms
(FFTs) for 2D and 22 FFTs for 3D. This imposes an unrealistic
demand for practical migration of large-scale 3D field seismic
data sets. In the work presented below, we follow the same

1742-2132/13/025004+08$33.00 © 2013 Sinopec Geophysical Research Institute Printed in the UK 1

http://dx.doi.org/10.1088/1742-2132/10/2/025004
mailto:ge.zhan@kaust.edu.sa
http://stacks.iop.org/JGE/10/025004


J. Geophys. Eng. 10 (2013) 025004 G Zhan et al

Table 1. Computational characteristics of TTI coupled equations versus decoupled equations.

Number of equations Method of Shear-wave Numerical stability
Category to solve solution artefacts with variable angles Cost

Coupled equations 2 FD Yes Unstable Efficient
PS No Unstable Intensive

Pure P-wave equation 1 PS No More stable Intensive

derivations as Pestana et al (2012) and Zhan et al (2012), but
reorganize and rewrite the wavenumber domain equation in a
compact way for efficient computation. After some algebraic
manipulations, it still requires 8 FFTs per time step for 2D
computation with the new formulation, but the number of FFTs
needed per time step for 3D is reduced from 22 to 14.

To further reduce the computational cost introduced by
numerous FFTs, we propose a hybrid pseudo-spectral (PS) and
finite-difference (FD) scheme to evaluate the equation by using
the relation between the spatial derivative and the operator
in the wavenumber domain. Both 2D and 3D reverse-time
migration (RTM) examples with the new hybrid algorithm are
tested and demonstrated to validate the uplift in computational
efficiency.

2. Equations

2.1. Isotropic wave equation

The constant-density acoustic wave equation in isotropic
media is

∂2u(�x, t)

∂t2
= L2u(�x, t), (1)

where u(�x, t) is the pressure wavefield at spatial location
�x = (x, y, z) and time t; L2 = v2(�x)∇2, where v(�x) is the
P-wave velocity in the medium and ∇2 is the Laplacian defined
as ∇2 = ∂2

x + ∂2
y + ∂2

z . An efficient numerical solution of the
wave equation on a discrete grid is our main interest. To solve
the discretized version of equation (1), we approximate the
temporal (left) and spatial (right) derivatives in the equation,
where the time derivative is approximated by a second-order
FD approximation

u(�x, t + �t) = 2u(�x, t) − u(�x, t − �t) − �t2[−L2u(�x, t)].

(2)

Here, �t denotes the length of a discrete time step.
The PS method (Reshef et al 1988) is known as a highly

accurate scheme for approximating the Laplacian operator. In
doing so, the numerical errors in the solution of the wave
equation are only dominated by the temporal discretization.
For the isotropic case, the −L2 operator in equation (2) can be
expressed in the wavenumber domain

− L2 = v2
v

(
k2

x + k2
y + k2

z

) = v2
v

(
k2

r + k2
z ) = v2

vk2
ρ, (3)

where vv is the velocity of a wave travelling vertically along the
axis of symmetry; kx, ky and kz are the spatial wavenumbers
in the x, y and z directions, respectively; k2

r = k2
x + k2

y and
k2
ρ = k2

x + k2
y + k2

z .

2.2. VTI pure P-wave equation

In the case of VTI, based on Harlan (1995) and later
rediscovered by Etgen and Brandsberg-Dahl (2009), Crawley
et al (2010), Pestana et al (2012) and Zhan et al (2012) where
they started from the exact phase velocity expression for VTI
media, equation (3) becomes

− L2 = v2
vk2

z + v2
hk2

r + (
v2

n − v2
h

)k2
r k2

z

k2
ρ

. (4)

Here, vn = vv

√
1 + 2δ and vh = vv

√
1 + 2ε represent the

normal moveout (NMO) velocity and the P-wave velocity in
the horizontal direction, respectively; δ and ε are the anisotropy
parameters (Thomsen 1986).

The resulting anisotropic wave equation derived in this
way is known as the pure P-wave or decoupled equation,
where the P-wave and shear-wave components are completely
separated and there are no spurious shear-wave artefacts in the
P-wave simulation.

2.3. TTI pure P-wave equation

A similar expression for TTI media can be deduced from
equation (4) through variable exchanges (Zhan et al 2012)

− L2 = v2
vk2

z̃ + v2
hk2

r̃ + (
v2

n − v2
h

)k2
r̃ k2

z̃

k2
ρ

, (5)

where k2
r̃ = k2

x̃ + k2
ỹ with kx̃, kỹ and kz̃ representing the spatial

wavenumbers in the rotated coordinate system⎡
⎣kx̃

kỹ

kz̃

⎤
⎦ =

⎡
⎣ cos θ cos φ cos θ sin φ sin θ

− sin φ cos φ 0
− sin θ cos φ − sin θ sin φ cos θ

⎤
⎦

⎡
⎣kx

ky

kz

⎤
⎦. (6)

Here θ and φ are dip and azimuth, and the following relation
holds:

k2
x̃ + k2

ỹ + k2
z̃ = k2

x + k2
y + k2

z . (7)

In the case of elliptical anisotropy where ε = δ

(i.e. vh = vn), the last term of equation (5) with wavenumbers
in the denominator disappears. Therefore, the first two terms in
equation (5) represent the properties of elliptical anisotropy,
while the last term compensates for anelliptical anisotropic
effects due to the rotation of the symmetry axis.

According to the rotation matrix (6), and denoting 	x =
sin θ cos φ, 	y = sin θ sin φ and 	z = − cos θ , we can rewrite
kz̃ in the rotated system in terms of kx, ky and kz:

kz̃ = −(kx sin θ cos φ + ky sin θ sin φ − kz cos θ )

= −(kx	x + ky	y + kz	z). (8)
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Hence, the three wavenumber terms in equation (5) can be
computed in the following order:

k2
z̃ = k2

x	xx + k2
y	yy + k2

z 	zz

+ 2(kxky	xy + kykz	yz + kxkz	xz) = V, (9a)

k2
r̃ = k2

ρ − V = H, (9b)

k2
r̃ k2

z̃

k2
ρ

=
[

k2
x

k2
ρ

	xx + k2
y

k2
ρ

	yy + k2
z

k2
ρ

	zz

+ 2

(
kxky

k2
ρ

	xy + kykz

k2
ρ

	yz + kxkz

k2
ρ

	xz

)]
H = T, (9c)

where 	i j = 	i	 j; V , H and T are differential operators in
the wavenumber domain that operate along the symmetry axis
direction, the symmetry plane perpendicular to the symmetry
axis and the tilted direction, respectively.

3. Numerical implementations

3.1. Pseudospectral scheme

The PS method is proposed by Kosloff and Baysal (1982),
which uses Fourier transformation, multiplication by ik in
the wavenumber domain and inverse Fourier transformation
back to the spatial domain to compute the spatial derivatives.
Differential operators V , H and T in equation (9) are written
in the wavenumber domain and are easily evaluated there with
the PS method. Meanwhile, as in the PS method, performing
the operations in the wavenumber domain guarantees that it
will not suffer from numerical dispersion.

Substituting equations (5) and (9) into equation (2), we
write the TTI pure P-wave equation as

u(�x, t + �t) = 2u(�x, t) − u(�x, t − �t)

−�t2{[v2
vV + v2

hH + (v2
n − v2

h )T
]
u(�x, t)

}
= 2u(�x, t) − u(�x, t − �t) − �t2

{
v2

vF−1[VF[u(�x, t)]]

+ v2
hF−1[HF[u(�x, t)]]+(v2

n −v2
h )F−1[TF[u(�x, t)]]

}
,

(10)

where F and F−1 are forward and inverse FFTs, respectively.
From the above equations, we can see that at each time step

of a 3D simulation, the evaluation of the differential operator
V demands at least a 3D forward FFT of the wavefield plus six
3D inverse FFTs. A similar analysis applies to the differential
operator T as well. Therefore, a total of 14 3D FFTs are
required to simulate the pure P-wave wavefield at each time
step in a TTI medium. When it comes to 2D, all ky terms are
eliminated, and thus only eight 2D FFTs are needed.

3.2. Hybrid pseudospectral/finite-difference scheme

During each time step, the TTI pure P-wave computation in
equation (10) requires 2 forward FFTs and 12 inverse FFTs,
which is computationally intensive. By revisiting equation
(9), we find that due to the appearance of the wavenumbers
in the denominators, equation (9c) must be evaluated using
the PS method and it would be difficult to derive pure FD
operators that correspond to the six right-hand-side terms.

However, there are no such terms in equations (9a) and (9b). To
greatly reduce the computation cost while avoiding spurious
shear-wave artefacts as well as numerical instabilities, we
propose a hybrid PS/FD scheme to evaluate the TTI pure
P-wave equation given in equation (10). That is, transforming
equations (9a) and (9b) using the relations kx ↔ −i ∂

∂x ,
ky ↔ −i ∂

∂y , kz ↔ −i ∂
∂z yields

k2
z̃ ↔ −

[
∂2

∂x2
	xx + ∂2

∂y2
	yy + ∂2

∂z2
	zz

+ 2

(
∂2

∂x∂y
	xy + ∂2

∂y∂z
	yz + ∂2

∂x∂z
	xz

)]
= V ′, (11a)

k2
r̃ ↔ −

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
− V ′ = H ′, (11b)

where V ′ and H ′ can be approximated by FD operators applied
along the symmetry axis and symmetry plane, respectively.
Spatial derivatives in the above equation can be cheaply
computed using a second-, fourth- or higher-order FD scheme
instead of using FFTs back and forth.

Although the wavenumber terms in equation (9c) cannot
all be replaced by corresponding FD operators, they could be
partially approximated as follows:

k2
r̃ k2

z̃

k2
ρ

=
[

kx
kx

k2
ρ

	xx + ky
ky

k2
ρ

	yy + kz
kz

k2
ρ

	zz

+2

(
ky

kx

k2
ρ

	xy + kz
ky

k2
ρ

	yz + kx
kz

k2
ρ

	xz

)]
H

=
[
(kx	xx + 2ky	xy)

kx

k2
ρ

+ (ky	yy + 2kz	yz)
ky

k2
ρ

+(kz	zz + 2kx	xz)
kz

k2
ρ

]
H

↔
[(

∂

∂x
	xx + 2

∂

∂y
	xy

) −ikx

k2
ρ

+
(

∂

∂y
	yy + 2

∂

∂z
	yz

)

× −iky

k2
ρ

+
(

∂

∂z
	zz + 2

∂

∂x
	xz

) −ikz

k2
ρ

]
H

= T ′. (11c)

Note that the number of wavenumber terms in equation
(11c) is reduced from six to three. And T ′ can now be
approximated by FD operators as well as V ′ and H ′.

Therefore, the resulting hybrid solution to the TTI pure
P-wave equation becomes

u(�x, t + �t) = 2u(�x, t) − u(�x, t − �t)

−�t2[v2
vV ′ + v2

hH ′ + (
v2

n − v2
h

)
T ′]u(�x, t). (12)

Notably, the proposed hybrid strategy only requires four (one
forward and three inverse) 3D FFTs per time step in simulating
a pure P-wave propagation in a 3D TTI medium. For a 2D
model, the number of FFTs reduces to three per time step with
the hybrid method.

3
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Figure 1. Anisotropic model parameters used in the accuracy test.
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Figure 2. Three traces computed from the 2D five-layer TTI model are displayed in wiggle mode. (a) compares the first (strongest)
reflection event, while (b) compares lower (weak) reflections.

Table 2. Number of FFTs per time step in simulating the TTI
wavefield: pseudospectral scheme versus hybrid scheme.

Dimension

Method 2D 3D

PS 8 14
Hybrid 3 4

3.3. Comparison of the two schemes

The most computationally intensive parts in solving the TTI
pure P-wave equation are the FFT calculations; therefore, we
need to count and compare the total number of FFTs in each
scheme. Table 2 displays the number of FFTs in modelling the
TTI wavefield at a time step with the pure P-wave equation
by the standard PS scheme and the new hybrid scheme.
Obviously, the number of FFTs using the hybrid method is
reduced by more than half in comparison with that using the
PS method, which indicates that the hybrid algorithm is more
computationally efficient compared to the standard PS scheme.

Nevertheless, the disadvantage of the hybrid scheme is that it
is no longer as accurate as the standard PS scheme.

3.4. Accuracy comparison

For the proposed hybrid PS/FD method, the costs of derivative
calculations are reduced at the expense of the precision, as
well as the accuracy of the solution, because some of the
wavenumber operators are substituted by FD approximations.
To demonstrate the consequent accuracy loss, we conduct a
2D modelling test on a simple five-layer TTI model. Figure 1
displays the model parameters that are used in this test. The
spatial interval of the computational grid is 10 m, and the
maximum frequency of the source wavelet is 30 Hz.

First, equation (10) using the standard PS method is
implemented. Then, equation (12) using the hybrid method
is computed, where the spatial derivatives in equations
(11a), (11b) and (11c) are approximated and calculated
using second-, fourth- and eighth-order centred FD schemes
from Taylor series expansions, respectively. To check the
amplitude differences, three wiggle traces at zero/middle/far
offsets computed using different methods are plotted and

4
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Figure 3. Histogram comparison of the 2D RTM runtimes.

compared in figure 2. As we can see from figure 2, amplitudes
computed from the PS method and the hybrid method with
the eighth-order FD scheme are perfectly matched. And
the computational costs of these two methods are almost
equivalent. When the fourth-order FD scheme is used, all major
amplitudes from shallow to deep are still well matched to the

PS result, except that some tiny discrepancies start to appear
due to numerical dispersion. However, the runtime is reduced
by half. A more compact second-order FD scheme may
further improve the computational efficiency; however, both
the amplitude discrepancies and phase errors are maximized
due to the strong dispersive behaviour associated with smaller
stencils.

According to the above analysis, in latter numerical
examples, the fourth-order FD scheme is chosen to compute
spatial derivatives in the hybrid method in terms of accuracy
and efficiency.

4. Computation examples

Computation examples associated with the BP 2D TTI model
as well as a 3D salt dome model are now presented to validate
the proposed hybrid PS/FD scheme. TTI RTM algorithms
with the pure P-wave equation using both the PS method
and the hybrid method are implemented. Computational
costs of running single common-shot-gather (CSG) migration
with different approaches are demonstrated. For comparison,
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Figure 4. TTI RTM image of the BP 2D TTI model in (a) is compared with the actual reflectivity model in (b).
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(a) (b)

(c) (d)

Figure 5. 3D salt dome models: (a) vv and (b) θ ; (c) and (d) are Thomsen’s parameters δ and ε. The front frame and side frame correspond
to 2D slices at Y = 6.5 km and X = 6.5 km, respectively.

Table 3. 2D 1-shot RTM runtime comparison using different
schemes.

Method
2D runtime (min)

Media FD PS Hybrid

Isotropic 1.9 16.4 –
VTI 9.2 28.0 –
TTI 68.7 94.4 65.5

standard isotropic RTM, conventional VTI coupled equations
(equations (5a) and (5b) of Du et al (2008)) and TTI coupled
equations (equations (2) and (3) of Fletcher et al (2009)) using
the FD scheme are also implemented and compared.

4.1. 2D example

The grid size of the computational 2D domain is 1001 grid
points in Z and 1061 grid points in X , and a total number of
12 267 time steps is computed for both forward propagation
and back propagation in migrating a CSG. The computational
costs for different RTM strategies running on a 12-core
Intel Xeon computing node are listed in table 3, and the
corresponding histogram is displayed in figure 3.

From the runtime comparison, we see that a transfer
from isotropy to anisotropy complicates the RTM algorithm
by taking into account two or more anisotropic parameters,
which results in gradually increasing computational costs with

increasing anisotropic complexities. We also note that the
standard PS method costs much more than the conventional
FD approach due to the introduced FFTs for better accuracy.
However, by solving the TTI pure P-wave equation in a hybrid
method, the RTM cost per shot (24 534 time steps in total)
is reduced from 94.4 to 65.5 min with the PS method, where
a saving of 31% in computational cost is achieved. And it is
even less expensive than the FD solution for the TTI coupled
equations (68.7 min per shot), which usually suffers from
shear-wave artefacts.

A stacked TTI RTM image of all 1641 CSGs using the
hybrid solution to the pure P-wave equation is shown in
figure 4(a). It is almost a perfect replication of the actual
reflectivity model as shown in figure 4(b) except for some
white shadows due to imperfect illuminations.

4.2. 3D example

The 2D example shown above demonstrated the efficiency of
the hybrid strategy. To further examine the performance of the
hybrid scheme, we test it on a 3D TTI salt dome model.

The models shown in figure 5 contain five major
layers: a water layer, three sedimentary layers with a
salt dome embedded in the middle and the salt base.
The water layer (vv = 1.5 km s−1) and the salt (vv =
4.5 km s−1) are set to be isotropic (δ = ε = 0, θ =
0◦). The three sedimentary layers are TTI media with

6
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Figure 6. Histogram comparison of the 3D RTM runtimes.

Figure 7. TTI RTM image of the 3D salt dome model.

Table 4. 3D 1-shot RTM runtime comparison using different
schemes.

Method
3D runtime (min)

Media FD PS Hybrid

Isotropic 23.7 35.4 –
VTI 39.2 50.1 –
TTI 98.2 138.5 94.3

vv = 2.5, 3.5, 4.0 km s−1 (figure 5(a)); δ = 0.06, 0.025, 0.1
(figure 5(c)) and ε = 0.12, 0.05, 0.2 (figure 5(d)) from shallow
to deep. A simple 2.5D tilt angle model (range from −50◦

to 50◦) was adopted with a tilt axis normal to the salt flank
(figure 5(b)). A constant φ = 15◦ is used in this case.

The 3D model has 201 grid points along Z and 651 grid
points along X and Y with a uniform grid point spacing of 20 m
in all three directions. For each CSG, the 3D RTM used a local
computation grid of 301 × 401 × 401 (100 grid points padding
in each direction) with a total of 4802 time steps in both the
forward and backward propagation operations. Table 4 lists the
runtimes of the 3D TTI RTM using one CSG on the 12-core
computing node. The isotropic and VTI RTM runtime results
are also presented for comparison. These computational costs
with different RTM algorithms are then graphically illustrated
in figure 6.

For the 3D model, the hybrid method is still faster than
the PS method by around 29%, because more than half the 3D
FFTs are replaced by less expensive FD calculations. Besides,
as we saw in the 2D case, the hybrid scheme in 3D achieves an
even better computational efficiency in comparison with the
standard FD solution to the TTI coupled equations. Figure 7
displays the TTI RTM image of this 3D salt dome model.

5. Conclusions

We have rewritten the TTI pure P-wave equation in a form
which reduces the number of FFTs per time step simulation.
Also, a hybrid pseudospectral (PS)/finite-difference (FD)
scheme is proposed to solve this equation, where wavenumber
operators are replaced by inexpensive FD spatial operators.
The computational costs of TTI RTM with the hybrid method
are reduced by 31% for the 2D case and 29% for the 3D
case. Therefore, the hybrid PS/FD scheme makes the TTI pure
P-wave equation more practical and realistic for industrial-
scale 3D migration problems.
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