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Using an extended expression for the Landau-Lifshitz free-energy density we have computed or-
der-parameter fluctuation eigenmodes for the triple hexagonal incommensurate charge-density-
wave (ICDW) phase in 2H-TaSe2. Phasons and amplitudons have been obtained for two particular
directions and we have performed some numerical calculations.

1. Introduction

Many theoretical and experimental works have emphasized the importance of the phe-
nomenon of charge-density-waves (CDWs) in solids, which has received a great deal of
attention from condensed matter physics researchers in recent years. A large quantity
of materials with a highly anisotropic band structure develops CDW. Organic conduc-
tors (tetrathiafulvalene±tetracyanoquinodimethane: TTF±TCNQ), inorganic layer com-
pounds, various semiorganic compounds (like postassium platinocyanide: KCP), as well
as inorganic linear-chain compounds (NbSe3, TaSe3, . . .) are good examples of such sys-
tems [1 to 5]. GruÈ ner [2] has stressed that the formation of CDW ground states is by
now well discussed in a broad range of so-called low-dimensional solids.

Very recently, many authors have discussed distinct problems involving CDW. Laty-
shev et al. [4] studying Aharonov-Bohm effect (ABE) on CDW in NbSe3, have ob-
served oscillations of the CDW conduction as a function of magnetic field due to the
CDW passing columnar defects containing trapped magetic flux. These authors have
stressed that such observation is consistent with the instanton ABE predicted in CDW
systems. In a recent work, Montambaux [5] has shown that, in an appropriate geometry,
the dephasing of the electron±hole pair may lead to the suppression of the CDW or
spin-density-wave state by an applied electric field.

Using a sophisticated Landau-Lifshitz free-energy density, in order to discuss differ-
ent properties of 2H-TaSe2, McMillan [6] was successful in introducing the notion of
discommensuration defect or soliton-like behaviour of the incommensurate CDW near
the incommensurate±commensurate ``lock-inº phase transition despite the existence of
alternative theoretical models. Wilson and Yoffe [3] have pointed out that the transition
metal 2H-TaSe2 has a layered structure, in each layer a hexagonal sheet of Ta ions is
sandwiched between two hexagonal sheets of Se ions.

The order parameter fluctuation modes (phasons and amplitudons) for the CDW
in incommensurate systems have been studied by other authors and, in the case of
2H-TaSe2, there has been a great deal of work due to the complexity of its phase transi-
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tion picture [7]. The experimental work performed by Steinitz and Genossar [8] im-
proved substantially the understanding of the incommensurate superlattice of this sub-
stance, inferring that in the range between 112 and 90 K, this superlattice presents two
different phases. The first with hexagonal symmetry exhibits at 112 K a first-order phase
transition to an orthorombic stripe phase, which subsequently ``locks-inº at 90 K. De-
spite the controversy around the commensurate (hexagonal or orthorhombic symmetry)
phase, meanwhile between 112 and 122 K, this substance presents an incommensurate
phase characterized by the space group D6h ±6/mmm, that is, in this range the hexago-
nal symmetry is retained on a larger scale [7,8].

In this work we report some calculations of amplitudons and phasons using an ex-
tended expression for the Landau-Lifshitz free energy density keeping terms up to sixth
order [9]. In Section 2 we present calculations involving the ICDW phase, maintaining
the same notation of Rocha et al. [9]. In Section 3 we will perform calculations involv-
ing eigenmodes frequencies and providing new analytical results, for two distinct direc-
tions of the excitation wave vector (q), for the case of phasons and amplitudons, respec-
tively. In Section 4 we present some numerical results, which are illustrated by different
figures and, finally, in Section 5 we discuss the results of this work.

2. Theoretical Formalism

In order to perform the eigenmode frequencies calculations, we write the extended
expression for the Landau-Lifshitz free-energy density

V �
�

d2r
P6
j�2
�ÿ1�j ~aja

j � ~a7
P3
j�1
j�Qj ÿrÿ iQ2

j � wjj2
"

�~a8
P3
j�1
jQj �rwjj2 � ~a9�jw1w2j2 � jw2w3j2 � jw3w1j2�

#
; �1�

where ~aj �j � 2; . . . ; 9� are the phenomenological parameters, with ~a5 � 0. The real or-

der parameter a�r� � Re
P3
j�1

wj�r� is obtained from the electronic charge density r�r�,
and wj�r� are complex order parameters linked to the three components of the triple
charge-density-waves occurring in this material [9]. Normally, we define the following
vectors: Qj �j � 1; 2; 3� are the three incommensurate vectors, which lie in directions
120o apart; Gj �j � 1; . . . ; 6� are the six shortest reciprocal lattice vectors in the hexago-
nal symmetry; qj �j � 1; 2; 3� are the charge-density-wave vectors and q are the excita-
tion wave vectors. We must remember from [6, 9] that

~aj�r� � ~a0j�r� � ~a1j�r�
P3
j�1

exp �iGj � r� : �2�

Let us consider the hexagonal incommensurate phase of 2H-TaSe2. We have performed
the calculations of excitation modes, which have been previously considered by McMillan
[6], despite that author has only discussed phasons (phase fluctuation modes) with
wave-vector q along a symmetry axis. In this work, we report our calculations on ampli-
tude fluctuation modes (amplitudons) for two different q-directions, doing the same for
the case of phasons, and considering a new expression for the free-energy density.
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In this phase, the extended Landau-Lifshitz free energy can be rewritten as

V � 1
2

�
d2r

P3
j�1
�~a02 jw0j�r�j2 � 1

4 3~a04 jw0j�r�j4 � 1
8 5~a06 jw0j�r�j6

(
� 2~a07 j�Qj � rw0j�r�j2 � 2~a08 jQj �rw0j�r�j2� ÿ 1

2 3~a03�w01�r� w02�r� w03�r�
� w*01�r� w*02�r� w*03�r�� � �3~a04 � 2~a09� �jw01�r� w02�r�j2 � jw02�r� w03�r�j2

� jw03�r� w01�r�j2� � 1
2 45~a06�jw01�r� w02�r� w03�r�j2 � 1

4 �jw01�r�j4 �jw02�r��j2

� jw03�r�j2� � jw02�r�j4 �jw03�r�j2 � jw01�r�j2� � jw03�r�4 �jw01�r�j2 � jw02�r�j2���
)
: �3�

We can observe that the main contributions for the free energy in Eq. (3) are of the
uniform terms from expresssion (2), that is, ~a02, ~a03, ~a04, . . . In this case the cubic ``lock-
inº term vanishes. The first three terms in the equation above are typical of the Landau
free-energy expansion. The fourth and fifth terms are contributions from the elastic
energy, while the sixth and seventh ones indicate the interaction between the charge-
density-waves. The other terms are also resulting from interactions between CDWs and
they have arosen in this equation due to the inclusion of the sixth order term in the
homogeneous part of the free-energy potential expression. We have also seen that in
the Eq. (3) two types of quartic terms arise, and that if ~a09j j � 1

2 3~a04 �~a09 < 0�, the first
quartic term vanishes and there is no quartic order interaction energy between the
three CDWs.

In order to make simple our calculations we have considered, like other authors
[6,10], the simple case where the CDW amplitudes are equal and constant, that is
w01�r� � w02�r� � w03�r� � w0. In this case, we can integrate Eq. (3) on unit area, such
that

V�w0� � 1
2 3
�
~a02 ÿ ~a03w0 � 1

4

ÿ
15~a04 � 8~a09

�
w2

0 � 1
8 155~a06w

4
0

�
w2

0 : �4�
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Fig. 1. Incommensurate free energy
V�w0� versus order parameter w0,
with ~a06 � 1, T0 � 112 K. The other
phenomenological parameters are
given in the text



Fig. 1 shows the generalized free energy, which reproduces McMillan's results [6] when
~a06 � 0. In Eq. (4) we can see the cubic ``lock-inº term where we consider ~a03 > 0, be-
cause this term should contribute for the free-energy reduction. The extremals of the
potential (4) are given by w0 � 0, and by solutions of the following equation:

2~a02 ÿ 3~a03w0 � �15~a04 � 8~a09� w2
0 � 1

4 465~a06w
4
0 � 0 ; �5�

which gives the other order parameter values that minimize the free energy and com-
pute the transition temperature between the normal and incommensurate phases in
2H-TaSe2.

3. Amplitudons and Phasons Calculations

In this section we compute the order parameter fluctuation modes for the triple hexa-
gonal incommensurate charge-density-wave in 2H-TaSe2. We will assume the phase and
amplitude of the order parameter to vary, and we use the Lagrangian mechanics back-
ground in order to consider the oscillations associated to the triple CDWs. So, the free
energy given in Eq. (4) is considered as the potential energy of the system, and the

kinetic energy is expressed by T � � d2r 1
2

P3
i; j�1

Tij�@w0i=@t� �@w*0j=@t�, where (Tij) is a

symmetric matrix. The Lagrangian is given by L � T ÿ V, and the components of our
order parameter have been considered as components of a classical field and can be
rewritten as

w0j�r; t� � w0j � hj�r; t� ; �6�
where hj�r; t� is a small deviation of the amplitude, w0j � w0 (j � 1; 2; 3), of the static
CDW. However, hj are periodic, such that we can expand them in Fourier series, that is,
hj �

P
q

exp �iq � r� w0jq�t�, finding directly the Euler-Lagrange equation for the Fourier

amplitudes w0jq�t� or, equivalently, to work with the quadratic Lagrangian in w0jq�r; t�
from beginning, so we can substitute

w0j�r; t� � w0 �
P
q

exp �iq � r� w0jq�t� �7�

in the Lagrangian L. After integrating we find the following expressions for the kinetic
and potential energies, respectively:

T �P
q

P3
i;j�1

1
2 Tij _w*0iq�t� _w0jq�t� �8�

and

V � V�w0� �
P
q

P3
j�1

1
2

�
~a02 � �9~a04 � 4~a09� w2

0 � 1
8 675~a06w

4
0

� 2~a07�Qj � q�2 � 2~a08�Qj � q�2� w*0jqw0jq

� 1
8 3
ÿ
~a04 � 1

2 105~a06w
2
0

�
w2

0

P
jq

ÿ
w*0jqw*0jÿq � w0jqw0jÿq

�
ÿ 1

2

�
1
2 3~a03w0 ÿ �3~a04 � 2~a09 ÿ 45~a06� w2

0

� P
q
�w*01qw*02ÿq � w01qw02ÿq � permutations)

� 1
2

��3~a04 � 2~a09� w2
0 � 45w4

0

� P
q
�w*01qw02q � w*02qw01q � permutations� ; �9�
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where V�w0� is given by Eq. (4), with w0 being a solution of Eq. (5) and _w0jq

� �@=@t� w0jq.
These results are generalizations of those found by McMillan [6] and Ribeiro Filho

[10], for the case of ~a06 � 0. It is worthwhile to stress that McMillan has omitted the
contribution of the last term in Eq. (9), which we will retain because it is necessary in
order to calculate the amplitude fluctuation modes or amplitudons. We can observe
from Eqs. (8) and (9) that w0jq and w*0jÿq are coupled modes, and in this case, in order
to avoid the crossed terms in amplitude and phase, we use the standard expression for
phase (Pjq) and amplitude (Ajq) in terms of symmetric and anti-symmetric combinations:

Ajq � 1=
���
2
p �w0jq � w*0jÿq�; A*jq � 1=

���
2
p �w*0jq � w0jÿq� � Ajÿq; Pjq � 1=

���
2
p �w0jq ÿ w*0jÿq�;

and P*jq � 1=
���
2
p �w*0jq ÿ w0jÿq� � ÿPjÿq. Substituting these expressions in Eqs. (8) and

(9), we obtain:

T� �P
q

1
4

P3
i; j�1

Tij
_A*iq _Ajq ; �10�

V� � 1
2

�P
jq

�
1
4 3~a03w0 � 1

2 3~a04w
2
0 � 1

4 105~a06w
4
0 � ~a07�Qj � q�2 � ~a08�Qj � q�2�A*jqAjq

ÿ � 1
4 3~a03w0 ÿ �3~a04 � 2~a09� w2

0 ÿ 45~a06w
4
0

�
�P

q
�A*1qA2q �A*2qA1q � permutations�

�
; �11�

Tÿ �P
q

1
4

P3
i; j�1

Tij
_P*jq _Pjq ; �12�

Vÿ � 1
2

�P
jq

�
1
4 3~a03w0 � ~a07�Qj � q�2 � ~a08�Qj � q�2� P*jqPjq

� 1
4 3~a03w0

P
q
�P*1qP2q � P*2qP1q � permutations�

�
; �13�

and we can write the Lagrangian as

L � L0 � L� � Lÿ �14�
such that L� � T� ÿ V�, Lÿ � Tÿ ÿ Vÿ, and L0 � V�w0�.

The Euler-Lagrange equations obtained from Eq. (14) implicate two distinct systems
of ordinary differential equations (in time), one for phasons calculations and another
for amplitudons. The time-Fourier transform of these two systems of differential equa-
tions, for instance, Pjq � �1=2p� � dw Pjqw exp �iwt�, leads to two systems of three homo-
geneous linear equations in Pjqw. The condition for the existence of non-trivial solutions
is given by the secular equations Det �w2T ÿ V� � 0, where w is the frequency, T is the
matrix of elements Tij, and the matrix elements of V are, for each system, given by

Vij � @2V�

@M*iq @Mjq

 !
0

; �15�

where V� ) M � A and Vÿ )M � P, in the equation above. The secular equation
solutions which represent the frequencies of fluctuation modes can be found applying

New Calculations of ICDW Eigenmode Frequencies of 2H-TaSe2 599



the standard procedure in matrices T � �Tij� and V � �Vij�, respectively. We can see
that among these six modes, four are optical, that is, w�q � 0� 6� 0, three of them being
amplitudons and one a phason. The other two are acoustic phasons. In order to write
the expression of these modes, we will consider two distinct directions of q. We will
assume q parallel to Q1 and, also, q perpendicular to Q1. In the first case we find the
following amplitudons:

M*w2 � 1
2 3~a03w0 ÿ

ÿ
1
2 3~a04 � 2~a09

�
w2

0 ÿ 1
4 75~a06w

4
0 � 1

4

ÿ
~a07 � 3~a08

�
Q2

1q2 . . . �E2g� ; �16�
M*w2 � 1

2 3~a03w0 ÿ
ÿ

1
2 3~a04 � 2~a09

�
w2

0 ÿ 1
4 75~a06w

4
0 � 1

4

ÿ
3~a07 � ~a08

�
Q2

1q2 . . . �E2g� ; �17�
M*w2 � ÿ 1

4 3~a03w0�
ÿ

1
2 15~a04 � 4~a09

�
w2

0� 1
4 465~a06w

4
0 � 1

2

ÿ
~a07 � ~a08

�
Q2

1q2 . . . �A1g� ; �18�
and the following phasons:

M*w2 � 1
4 �~a07 � 3~a08�Q2

1q2 . . . �E1u�; �19�
M*w2 � 1

4 �3~a07 � ~a08�Q2
1q2 . . . �E1u�; �20�

M*w2 � 1
4 9~a03w0 � 1

2 �~a07 � ~a08�Q2
1q2 . . . �B1u� : �21�

The normal modes can be classified in accordance with the irreducible represen-
tations of the symmetry group of the system. In Eqs. (16) to (21), E2g, A1g, E1u, and
B1u are the symmetry character of the irreducible representations of the space group
D6h ±6/mmm that characterizes the hexagonal structure of the incommensurate phase of
2H-TaSe2. These results of M*w2, where w is the mode frequency, are numerically
sketched in Figs. 2 to 4. The value of M* is 206 a.u. [6].

Equations (16) to (18) of amplitudons are completly new, due to the contribution of
the sixth order term in those expressions. The phason expressions, given by Eqs. (19)
and (20) are the two hydrodynamic modes obtained by other authors [6,10]. When we
consider the case of q perpendicular to Q1 we get the following new expressions for the
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Fig. 2. Normal modes of the hexago-
nal incommensurate CDW, with
~w �M*1=2w; ~q � ~a1=2

07 Q1q; T � 112:7 K
and ~a06 � 1. The curves correspond to
(1) E1u, (2) E1u, (3) B1u, (4) E2g,
(5) E2g, and (6) A1g



three amplitudons (E2g, E2g, A1g) and three phasons (E1u, E1u, B1u), respectively:

M*w2 � 1
2 3~a03w0 ÿ

ÿ
1
2 3~a04 � 2~a09

�
w2

0 ÿ 1
4 75~a06w

4
0 � 1

4

ÿ
3~a07 � ~a08

�
Q2

1q2 . . . �E2g� ; �22�
M*w2 � 1

2 3~a03w0 ÿ
ÿ

1
2 3~a04 � 2~a09

�
w2

0 ÿ 1
4 75~a06w

4
0 � 1

4

ÿ
~a07 � 3~a08

�
Q2

1q2 . . . �E2g� ; �23�
M*w2 � ÿ 1

4 3~a03w0�
ÿ

1
2 15~a04 � 4~a09

�
w2

0 � 1
4 465~a06w

4
0� 1

2

ÿ
~a07 � ~a08

�
Q2

1q2 . . . �A1g� ; �24�
M*w2 � 1

4

ÿ
3~a07 � ~a08

�
Q2

1q2 . . . �E1u�; �25�
M*w2 � 1

4

ÿ
~a07 � 3~a08

�
Q2

1q2 . . . �E1u�; �26�
M*w2 � 1

4 9~a03w0 � 1
2

ÿ
~a07 � ~a08

�
Q2

1q2 . . . �B1u� : �27�
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Fig. 3. Normal modes of the hexago-
nal incommensurate CDW, with
~w �M*1=2w; ~q � ~a1=2

07 Q1q; T�117:9K
and ~a06 � 1. The curves correspond to
(1) E1u, (2) E1u, (3) B1u, (4) E2g,
(5) E2g, and (6) A1g

Fig. 4. Normal modes of the hexago-
nal incommensurate CDW, with
~w�M*1=2w; ~q � ~a1=2

07 Q1q; T � 121:5 K
and ~a06 � 1. The curves correspond to
(1) E1u, (2) E1u, (3) B1u, (4) E2g,
(5) E2g, and (6) A1g



4. Numerical Results

In this section we present the results of numerical calculations of normal mode frequen-
cies (phasons and amplitudons) for the triple charge-density-wave hexagonal incom-
mensurate superlattice of a single layer of the compound 2H-TaSe2. We have obtained
the mode frequencies in terms of the wave-vector q, as well as the behaviour of these
modes for different values of temperature in the range of 112 to 122 K, for ~a06 � 1.
Figs. 2 to 4 give the pictures when we consider the case ~a06 � 1 and temperatures T of
112.7, 117.9 and 121.5 K. We have used the same values introduced by other authors
[10,11] for the phenomenological parameters, that is, we have taken ~a03 � 4

30, ~a04 � 8
3

and ~a09 � ÿ3:9, by virtue of the new generalized free-energy expression (9). These fig-
ures are sketched from the Eqs. (16) to (21) with ~a08 � 0 and the coordinates expressed
by ~w � M*1=2w and ~q � ~a1=2

07 Q1q. In this numerical illustration we have used the Landau
parameter [9] ~a020 � 2:35� 10ÿ4 (SI). We can observe that the acoustic phasons are
similar to those obtained by other authors [6,10] indicating that the inclusion of the
sixth-order term in the homogeneous part of the free-energy potential changes only the
expressions of the optical amplitudons.

5. Conclusions

The calculations that describe excitations of the lattice below a phase transformation
from a normal structure to an incommensurate phase is not straightforward due to the
loss of the translational symmetry. In spite of this evidence, it is necessary to get infor-
mation about incommensurate compounds like 2H-TaSe2. Our numerical work has con-
centrated in simulating this material, using the generalized expression of the Landau-
Lifshitz free energy [9], assuming phenomenological parameters in order to get some
pictures of normal-mode frequencies of the hexagonal incommensurate phase as the
temperature changes. The Lagrangian mechanics background has been used in order to
get our analytical expressions. We must stress that the parameter values used in this
work are in good agreement with experimental data [12]. The eigenmodes frequencies
are calculated using the above mentioned free energy, where we have considered con-
tributions up to sixth-order term in the homogeneous part of the termodynamical po-
tential, such that we have got new results, which are consistent with those obtained by
other authors [6,10] when we consider ~a06 � 0. It is worth to emphasize that only pha-
sons expressions remain the same despite the inclusion of mentioned sixth-order term.
We have considered only intralayer contributions in the free-energy expression; and in
the case of the hexagonal incommensurate phase, the cubic (``lock-inº) term in the gen-
eralized Landau-Lifshitz free energy drops out. In order to compute the eigenmode
frequency expressions, we have considered two possibilities for the q-directions: parallel
and perpendicular to Q1. McMillan (1975) [6] has shown that phason modes involve
long-wavelength distortions of the charge-density-lattice. The comparison of these re-
sults with those of other authors, despite different contributions from our new equa-
tions, maintain the fundamental characteristics of the pictures involving the phasons
and amplitudons, that is, we can clearly observe variations of the energy gaps for the
optical modes (E2g, A1g, and B1u). From analytical expressions and Figs. 2 to 4, we see
that four modes are optical, where three are amplitudons and one is phason, and the
two other are acoustic phasons.
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