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Discrete Convolution by Means of Forward and 
Backward Modeling 

MILTON PORSANI AND TAD J .  ULRYCH 

Abstract-The standard methods of performing discrete convolu- 
tion, that is, directly in the time domain or by means of the fast Fourier 
transform in the frequency domain, implicitly assume that the signals 
to be convolved are zero outside the observation intervals. Often this 
assumption produces undesirable end effects which are particularly se- 
vere when the signals are short in duration. This paper presents an 
approach to discrete convolution which obviates the zero assumption. 
The method is structurally similar to the Burg method [l], which es- 
timates the autocorrelation coefficients of a series in a manner which 
does not require a predefinition of the behavior of the signal outside of 
the known interval. The basic principle of the present approach is that 
each term of the convolution is recursively determined from previous 
terms in a manner consistent with the optimal modeling of one signal 
into the other. The recursion uses forward and backward modeling 
together with the Morf et al. [2] algorithm for computation of the pre- 
diction error filter. The method is illustrated by application to the com- 
putation of the analytic signal and the derivative. 

I. INTRODUCTION 
HE mathematical definition of convolution requires T knowledge of the two functions to be convolved from 

-CO to + W .  In the discrete case, the integral represen- 
tation is approximated by an infinite summation and it is 
implicitly assumed that the signals are zero outside of the 
observation interval. Often this assumption is indeed 
valid, for example, in the case of transient signals, but 
frequently the zero extension leads to highly undesirable 
end effects, which are magnified in the case of short data 
sets. A particularly apt example of the deleterious effects 
of the zero extension assumption in the context of this 
paper is the computation of the power spectrum of har- 
monic processes. As is well known, the resolution of the 
periodogram estimate is highly dependent on the data in- 
terval, and for short intervals large frequency shifts oc- 
cur. In order to obviate these effects, Burg [ 11 adapted the 
maximum entropy formalism [ 3 ]  to spectral analysis with 
considerable success. Burg also contributed by develop- 
ing an ingenious approach to the computation of the au- 
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tocorrelation function, which is required in the maximum 
entropy formalism, which is not dependent on the usual 
assumption of a zero extension to the data. 

This paper presents an approach to the computation of 
the discrete convolution of two functions which to a large 
extent minimizes the undesirable end effects caused by the 
constraint of a zero data extension. The convolution is 
formulated as a problem in the least squares modeling of 
one function into another. We show that each term of the 
discrete convolution may be obtained recursively using 
the Levinson [4] scheme by means of forward and back- 
ward modeling. These operators are determined effi- 
ciently using the Morf et al. algorithm [ 2 ]  for computing 
the prediction error operator, PEO, from the covariance 
normal equations. The forward and backward covariance 
scheme for computing autoregressive parameters was in- 
troduced in [5] to obviate the need for a Toeplitz auto- 
covariance matrix in the normal equations which implies 
a zero extension. A previous method which was devel- 
oped to allow bandpass filtering of short data sets [6] used 
an autoregressive modeling of the signal and forward and 
backward prediction. This approach, particularly if the 
series is extended forwards and backwards using the Morf 
et al. [2] algorithm, has much to recommend it especially 
when the signal-to-noise ratio is high. The present ap- 
proach is quite different in spirit in that it does not rely on 
the actual prediction of the time series. 

The algorithm which is developed in this paper is ap- 
plied to two problems which are often encountered in 
practice. These are the computation of the Hilbert trans- 
form, and consequently the analytic signal, and the com- 
putation of the derivative. The analytic signal in particu- 
lar has recently found considerable application in both 
spectral analysis [7] and seismic data processing [8]. 

11. THEORY 
A .  Forward and Backward Modeling 

Initially, we will formulate the problem of obtaining 
the forward and backward shaping operators of order j  + 
1, hj+ I ,  and&+ I ,  respectively, for shaping a signal x, of 
length m points into a desired signal d,. For clarity, we 
first of all assume that x ,  is zero outside of the observation 
interval. With this assumption, the associated autocovar- 
iance matrix is Toeplitz, and we may write the normal 
equations for forward and backward modeling in a com- 
pact form, which we call the expanded form, as follows. 
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The normal equations for forward modeling of order 
j + l  

R/j.j+? 

where 

rh,O &.j+ I 1 [ ] GI/ + I Rx.r. j + I hj + I 

E h , j  + I 

( 1  h y + I )  = (1, h j + ~ , l ,  * * * , h J + l , j + l )  is the forward 

modeling error operator of order j  + 1, 

E h , J  + I = modeling energy associated with the 

forward modeling error operator, 
m + j - 1  

rh,o = d : ,  energy of the desired signal, 

xI + I xJ’+ I ,  Toeplitz autocovariance 

r = o  
111 + j  - I 

r = o  RLr., + I = c 
matrix, 

X,+l  = (4, x/- , ,  . * , x r - J T ,  
m + j - 1  

r x d , j + I  = dfxj.1 = (rxd,O? rxd.13 * * . 3 r x d . j ) T .  
r = O  

( 2 )  
The normal equations for backward modeling of order 
j + l  

where 

( . f f + l  1) = ( J ; + I . j + I ,  . . . , J ; + I , l ,  1 )  is the 

backward modeling error operator 

of order j  + 1, 

Ef,j+ I = modeling energy associated with the 

backward modeling error operator, 
m + i - l  

rf,o = dZPj 
r = o  

We note at this stage that the cross-correlation vectors 
given by (2) and (4) represent, respectively, a dislocation 
to the left and right of the signal d, with respect to the 
signal x,. 

B. Least Squares Modeling and Discrete Convolution 
In this section we show that each coefficient of the se- 

ries which represents the discrete convolution of two sig- 
nals is intimately related to the least squares shaping of 
one of the signals into the other. Let us allow the desired 
signal d,  to represent the time reverse of a particular fil- 
tering operator, which we designate as y,, shifted to po- 
sition k of x,. In other words, dr = y - r + k  and clearly the 
vector rxd,j + now represents j + 1 terms of the convo- 
lution between y ,  and x, situated to the left of the initial 
term rxd,O. On the other hand, in the case of the backward 
modeling operator, the shift between the two signals oc- 
curs in the opposite direction and this implies that the 
cross-correlation vector corresponds to convolution terms 
which are situated to the right of r x d , o .  Let us designate 
by and 2 k + j  those terms of the convolution associated 
with the coefficients rxd,j and rxd, - j ,  respectively. Substi- 
tuting Y - , + ~  f o r d ,  in ( 2 )  and Y - , + ~ - ~  for d , - j  in (4), we 
obtain for order j  + 1 

The vectors expressed in (5) and (6) describe the 2 j  + 1 
terms of the convolution between x, and y ,  which occur to 
the left and right of the central point 2k, respectively, and 
which are expressed by 

2 k P j + I  * * 2 k  - * S k + j - l  tk+j.  

Thus far we have demonstrated the relationship which 
exists between the cross-correlation vector associated with 
the normal equations for the shaping or modeling filter 
and the terms of the discrete convolution of two signals. 
We now show, using the well-known expressions for the 
recursive solution of the normal equations ( 1 )  and ( 3 ) ,  
how the convolution products are related to the prediction 
error operators themselves. 

The Levinson recursions for the forward and backward 
modeling operators of order j  + 1 are 

and 
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where sented below: 

( 1 g,?) = ( 1 ,  g,, * - * , g,,,) , the prediction error backward prediction 

operator of order j ,  

The Toeplitz nature of the autocorrelation matrix im- 
plies that the forward and backward PEO’s are equal. For 
the same reason, the error energies of forward and back- 
ward prediction are also equal and are represented by Eg. 
With this in mind, we can represent the normal equations 
in a compact form, as given in (9) and ( lo) ,  which allow 
the recursive computation of the shaping operators. Der- 
ivation of (9) and (10) is presented in Appendix A. 

In the usual manner, we assume knowledge of the shap- 
ing operators and the respective errors at orderj, and we 
compute the updated coefficients by means of (9), (lo), 
(7), and (8).  The terms Ah,, and Af,, are obtained in terms 
of the cross-correlation vector and the PE0  (Appendix), 
and may be written in terms of the vectors e,,, + and 
e,,, + as follows: 

= ?k-J  -I E&,,JJg,, 

forward prediction 

The above diagram clearly illustrates the principal 
which we use to determine the discrete convolution be- 
tween signals x, and y , .  The big dots @ represent products. 
Each term is determined recursively from terms previ- 
ously calculated or known in a manner which is consistent 
with the least error in shaping one signal into the other. 

C. Discrete Convolution Shaping Algorithm 

In the previous section, we derived expressions for the 
discrete convolution of two signals with the assumption 
that the data could be extended outside of the data interval 
with zeros. In this case, (13) and (14) give equivalent re- 
sults to the conventional approach. In the general case, 
however, the problem is to avoid this restrictive exten- 
sion. Using the above modeling approach, we now insist 
that the forward and backward modeling operators do not 
run off the data. The matrix which now takes part in the 
normal equations is no longer Toeplitz, and the expanded 
normal equations for o r d e r j  + 1 take the form given in 
(15) and (16). 

where 
m - l  ( 12) - 7  

? k + j  = -c@.jg, Af,j,  
c h , j + l  = d:, 

The terms Ah,j and Af,j  may be written in terms of the 
updated coefficients and E,,j obtained from (9) and (lo), m - l  

ce, j+l = Y k - f X j + l  = (Ck,  C k - 1 ,  ’ * 3 C k - J ) T ,  
f = j  

m - I 

C x r . j + l  = xi+ l x ~ + I ~  
!=j 

and we may rewrite (1 1) and (12)  as 

t k - 1  = -e&.,Jjg, - hj+ I . j +  I E g , j ,  

C P + j  = -e&.jg,  - & + I , ; +  1 E g . j .  

(13) 

(14) 

the PEO, the prediction error energy and the coefficients 

to 2 k .  A schematic representation of (1  1) and (12) is pre- 

and 
Equations (13) and (14) show that with knowledge of 

h j + l , j + l  a n d & + l . j + I  for ordersj = 0, 1, * p ,  we can 
recursively determine the 2 p  convolution terms adjacent 

c@,,+I] k+I] = [ O j + l  1 
, 

Ef.j + I @ . j  + I cf,j + I 

( 16) 
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m -  I 

‘ f , J + I  = Y i - t + 2 7  

m - l  

‘ @ , J + I  = ,z Y k - f + 2 X J + l  = ( ‘ k + J ?  ‘ k f J - 1 9  * 3 c k ) T ‘  

We note that all the elements of the matrices in the 
above equations are functions of the model order. Fur- 
ther, C,,J + l corresponds with the matrix in the normal 
equations associated with forward and backward predic- 
tion which, in expanded form, are given by 

or, equivalently, in terms of Ah,J and A , ,  

‘ k - J  = -eg3jb j  - A h . ] ,  (24) 

‘ k + J  - ‘&.Jaj  - ‘f.J’ (25) 
A diagrammatic representation of these relationships is 

shown below: 

backward prediction 

-aj, I A f , j  
- a . .  . . . where J.J 

( 1  af) = ( 1 ,  aj, I ,  - , u ~ , ~ )  the forward PEO, * 
(bf 1) = (bj,j,  , bj , l ,  1 )  the backward PEO, forward prediction 

and where Ea,j and E b , j  correspond, respectively, to the 
forward and backward prediction error energies. 

Once again, using the Levinson relation, we can ex- 
press the shaping filters for order j  + 1 assuming knowl- 
edge of the filters determined for order j  in terms of the 
forward and backward PEO’s, 

In a manner analogous to the one in the previous sec- 
tion, we can write the normal equations in a compact form 
for forward and backward modeling as follows: 

where 

Substituting the terms Ah.j and A f , j  from (20) and (21), 
we obtain the following equations for the desired convo- 
lutional algorithm: 

2 k - j  = ( C e , j  - ce,j)Tbj C k - j ,  (26) 

c ~ + ~  = ( c B , j  - e B , j ) T a j  + ck+j. (27) 

The first term on the right-hand side of (26) and (27) 
represents the inner product of the backward and forward 
PEO’s, respectively, with the vectors which are the result 
of the difference between the j terms of the convolution 
previously calculated, and the j terms of the cross-corre- 
lation vector associated with the normal equations for for- 
ward and backward modeling of order j + 1 .  This first 
term represents the correction by which the coefficients 
C k - j  and C k + j r  which are computed as terms of the co- 
variance matrix of the normal equations of order j + l ,  
must be adjusted in order to obtain the desired convolu- 
tion coefficients. These correction terms are equal to zero 
when the signal x, is zero extended outside of the data 
interval. 

We note that the first j coefficients of C e , j +  I and the 
l a s t j  coefficients of c @ , ~ + ~  in (26) and (27), which are 
used at the j + 1 stage of the process, may be updated 
from the j coefficients determined at the previous stage 
using the expressions 

‘ h , J  = c & , j b J  + ‘ k - J  = - h J + l . J + I E b , J ’  

‘ , J  = c&,JaJ + ‘ k + J  = - J + I . J + l E a , J *  

(20) 

( 2 1 )  
C e J + l  = C a , J  - Y k - J + l ( x J - l ,  x J - 2 ,  ’ * * , xO)T, (28) 

- 
Assuming that the firstj terms of the convolution to the 

left and right of the initial coefficient tk are known, we 
c @ , J + l  - cQ3J - Y - m + k f J ( x m - 1 7  x m - 2 ’  . * . , x m - J ) T .  

(29)  
can (20) and (21) as as ‘J and ’J jnto (11) We remark that the above expressions are structurally 

equivalent to the expressions in ( I  1) and (12), or (13) and 
(14), and are also structurally equivalent to the form de- 

and (12) to obtain 

‘ k - J  = -“,,JbJ - h J + I . J + l E h , J 3  (22) 
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veloped by Burg [ l ]  for the estimation of the autocorre- 
lation function. Using (26) and (27) together with (28) 
and (29), we can recursively determine the 2 j  convolu- 
tion terms which occur to the left and right of the starting 
term 2k and which are free of the usual assumptions of a 
zero extension to the data. The forward and backward 
PEO's which are required are efficiently determined using 
the algorithm developed by Morf et al. [2]. Our algorithm 
requires approximately 6 m multiplications and addi- 
tions. 

111. APPLICATIONS 
We consider the application of our convolution algo- 

rithm to two problems often encountered in practice. 
These are the computation of the Hilbert transform and 
the computation of the derivative. Both these functions 
are commonly determined either in the time domain by 
means of convolution with the appropriate operators or in 
the frequency domain. Results are of course identical if 
care is taken that the frequency domain computation rep- 
resents discrete rather than circular convolution. 

Example l - n e  Discrete Hilbert Transform: In gen- 
eral, the discrete Hilbert transform may be computed 
either by convolution with the Hilbert operator or by the 
90" phase splitter method [9]. For comparison purposes, 
we have adopted the convolutional approach. Fig. l(a) 
shows the input signal which consists of two decaying 
sinusoids each represented as x ( t )  = exp ( - a j t )  sin 
( 2 ? r t / T ,  + 8,) where cyl = 0.004, TI = 40 ms, O 1  = 40", 
and a2 = 0.003, T2 = 75 ms, and 82 = 20". Fig. l(b) 
and (c) shows, respectively, the envelopes of the input 
signal determined by means of the normal approach and 
by means of the algorithm developed in this paper. Fig. 
l(d) and (e) shows the errors between the theoretical en- 
velope and the envelopes shown in (b) and (c). 

Example 2-The Derivative: The second example 
which we consider is that of the computation of the deriv- 
ative of a signal. The input signal which we consider is 
the same as shown in Fig. l(a). Fig. 2(a) and (b) illus- 
trates the derivative computed using the standard convo- 
lutional approach and the recursive least squares ap- 
proach, respectively. Fig. 2(c) and (d) shows the 
respective errors. 

IV. DISCUSSION 
The problem of convolutional end effects is a ubiqui- 

tous one. We have developed an algorithm which, unlike 
the approach presented in [6], does not require the actual 
prediction of the signal. The present technique models the 
input signal into the time reverse of a particular filter op- 
erator. The modeling is performed recursively using for- 
ward and backward modeling operators which are deter- 
mined from the covariance normal equations using the 
efficient Morf et al. [2]  algorithm for computing the 
PEO's. The algorithm is structurally similar to the Burg 
method [ 11 of determining the autocovariance without re- 
quiring the assumption of a zero extension. The initial 
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Fig. 1 .  (a)  Input signal consists of two decaying sinusoids each repre- 
sented as x ( t )  = exp ( - a , r )  sin ( 2 ~ r / T ,  + 0,) where a ,  = 0.004. T ,  
= 40 ms, 6, = 40". cx2 = 0.003. T, = 75 ms. and O 2  = 20".  (b) En- 
velope of the signal in (a) obtained using the normal frequency domain 
approach. (c) Envelope of the signal in (b) obtained using the algorithm 
developed in this paper. (d) Error between the true envelope and that 
shown in (b). (e) Error between the true envelope and that shown in (c). 

L 11 

I 

time(msec) 

Fig. 2. (a) Derivative of the trace shown in Fig. I(a) computed using the 
standard method in the frequency domain. (b) Derivative of the trace 
shown in (a) computed using the algorithm developed in this paper. (c) 
Error between the true derivative and that showsn in (a). (d) Error be- 
tween the true derivative and that shown in (b). 

convolution term, &, plays a fundamental role in the pro- 
cess, and the fidelity of the final result depends on f k  in 
the same manner as Burg's autocovariance estimate de- 
pends on the initial zero lag value. We illustrate various 
examples of the use of our algorithm and, in particular, 
we show the marked improvement in the obtained con- 
volution for the case of various filtering operations in- 
volving decaying harmonics. An interesting aspect of the 
method which we have presented relates to the convolu- 
tion of signals which may be modeled as AR processes 
with zero innovation. In this case, for a particular order 
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j ,  the forward and backward prediction errors, Ea,, and 
respectively, will be zero and the 2 j  + 1 terms pre- 

viously calculated may be extended indefinitely to the 
right and to the left of the computed series. The expres- 
sions for this particular case are immediately obtained 
from (22) and (23). These equations show that the for- 
ward and backward prediction operators, -a, and -b,, 
respectively, which allow the exact prediction of the sig- 
nal for positive and negative times, also allow the exact 
prediction of the convolution to the left and to the right 
of the previous 2 j  + 1 convolution terms. This result 
demonstrates that the convolution of AR signals depends 
only on the forward and backward prediction operators 
and those convolution terms which are used to initialize 

Substituting (A. 1) and (A.2) and simplifying, we ob- 
tain 

(A.4) 
where A,,, is determined from either of the expressions in 

‘h ,J  = ‘rd,, + rFr.jJ~hj, (A.5a) 

(A.5b) 

(‘4.5) 

= rrd.j + r : d , j J J g j t  

with 

rn,, = ( r L r , I ?  rrr.27 * * * > r J .  the process. 
Another interesting aspect to the approach presented 

here occurs when we let the desired signal equal the input 
time series. In this case, the output of the algorithm is the 

Minimizing e h , ,  + I with respect to h, + I , J  + I results in 

autocorrelation of the input and, as before, the filters -U, ( A 4  
and -bJ may be used to extend the autocorrelation func- h , + l , J + I  

tion into positive and negative times to obtain the esti- 
mates r=,, and rLr. -, for order j .  In order to ensure the 
nonnegative definite character of the autocorrelation func- 
tion, these estimates may be averaged in a suitable man- 
ner as suggested in [ lo]. 

Substituting (A.6) into (A.4) results in the minimum 

LEg,, [ 1 E h , j + l .  (A.7) 

error which is given by 

h J + l , J + l  

APPENDIX 
We will assume knowledge of the modeling error op- 

erator of order j ,  ( 1  h f ) ,  and the modeling error en- 
ergy, E,,,j,  which are related in the usual manner shown 
below: 

where the terms in the equation have been defined previ- 

We also assume knowledge of the PE0 and of the pre- 
diction error energy of orderj which are related according 
to 

ously. 

Let eh,; + I represent the quadratic form associated with 
the normal equations of order j  + 1 for forward modeling 

Substituting ( 1 hT+ ,) given by the Levinson recur- 
sion, we obtain for (A.3) [ l l ]  

The union of (A.6) and (A.7) allows the compact rep- 
resentation which we have used in the text 

A derivation of (10) in the text for backward modeling 
proceeds in an analogous manner. 

We emphasize that the procedure for obtaining the 
compact form (A.8) is not dependent on the Toeplitz 
character of the autocovariance matrix. Thus, the solution 
of the normal equations of o r d e r j  + 1 which contain a 
symmetric matrix may be obtained by means of the linear 
combination of solutions which satisfy forward and back- 
ward systems of orderj. We explore this fact in a forth- 
coming paper [ 121. 
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