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Raman scattering of hght off a superconducting alloy containing paramagnetic impurities
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Raman scattering of light off a superconductor doped with a small concentration of paramagnetic impurities
is discussed without recourse to the quasiparticle approximation. The scattering efficiency defined in terms of
Kubo's nonlinear response theory in a form suitable for systematic diagrammatic expansion is used as the
starting point. This is examined in the four-component Eliashberg-Gorkov space for the case of constant
transition-matrix elements, in the limit of small momentum transfer (London limit), and in the Eliashberg
approximation of neglecting the momentum dependence of the electronic self-energy. For the specific case of
Fe impurities in quenched In films numerical calculations have been made for the ratio of the scattering
efficiency in the superconducting and normal states as a function of the reduced frequency and temperature
for different impurity concentrations.

I. INTRODUCTION

In recent literature Raman scattering of light in

pure superconductors was discussed. In Ref. I it
was demonstrated by means of the standard formu-
lation of Raman scattering of light that the main
contribution to the intensity of the inelastically
scattered light in a superconductor comes from
the electronic interband intermediate transitions
whose energy difference is close to the energy of
the incident light. At finite temperatures such
transitions are possible for the electrons in the
normal and superfluid component.

In Ref. 2 the scattering efficiency was formu-
lated using Kubo's nonlinear response theory in a
form suitable for systematic diagrammatic ex-
pansion. The effects of the sample surface were
taken into account by solving the proper boundary-
value problem at the metal surface and introducing
Fresnel correction factors. It was shown that the
main contribution to the intensity of the inelasti-,
cally scattered light comes from the unscreened
fluctuations in transverse current, and not from
density fluctuations as considered in earlier liter-
ature.

In this work we calculate the scattering efficien-
cy for the scattering of light off a superconducting
alloy in the case of low concentration of randomly
distributed paramagnetic impurities and weak con-

ductionn-

electron-magnetic-impurity interaction.
The physical situation when the orbital momentum
of the impurity is quenched is considered only. In
this case the electron scattering by the impurity
is isotropie.

In Sec. II we give the system Hamiltonian. In
Sec. III we represent the equilibrium one-particle
Green's functions representing superconducting
and nonconducting alloy states. In Sec. IV we dis-
cuss a general formalism for the inelastic scat-

tering of light off a supercondueting alloy surface
and calculate the scattering efficiency in the limit
of weak momentum transfer for various concen-
trations and temperatures. And finally, in Sec. V,
we give our concluding remarks.

II. SYSTEM HAMILTONIAN

%e take the Hamiltonian of the system to have
the following form

H = d'~ yt(r)e, (p)y„(r)

d'y y„(r)ys(r)(8(r)g„(r)

P

+ d3r „„re„p „„r,
n

p=-iv, e,(p)=p'/2m, —p. .
The first term represents the kinetic energy of

the electrons in a conduction band measured from
the chemical potential p. . The second term repre-
sents the usual phonon-induced attraction between
the electrons introduced by Gor'kov, ' the third
term represents the interaction of an electron with
a paramagnetic impurity of spin S at the position
H, , and the fourth term represents the energy of
the electrons in the nonconducting bands. The
short-ranged potential V„s(r) is taken to be of the
form

where u is the Pauii spin matrix vector, and V,(r)
and V,(r) are the strengths of the potential and ex-
change interaction, respectively.
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III. EQUILIBRIUM ONE-PARTICLE GREEN'S FUNCTIONS

We assume that the magnetic impurities are
randomly distributed in a superconductor, and
that their concentration is low enough so that im-
purity-impurity interaction can be neglected. The
effects of the exchange interaction, which lead to
large changes in order parameter and the attrac-
tive electron-electron interaction can. be taken into
account simultaneously by using four-component
space introduced by Eliashberg. ~ Namely, the
Green's function 4x 4 matrix characterizing the
equilibrium properties of the supereonducting al-
loy can be defined in this case as

9,(x„x,) = -i(T [q(x,)q'(x, )j)
where the four-component annihilation and creation
operators are given by

&l&, (x)

( )
$((x)

&l&, (x)
(4)

&l&, (x)

where ~(T, 0) is the temperature-dependent' order
parameter of pure superconductor, and 7 ' and
v

' are the scattering lifetimes due to the direct
potential and exchange scattering, respectively,
and depend on the concentration of impurities n;,
the density of the normal single-particle states at
the Fermi surface N(0), the spin of the impurity
S, and on the interaction strengths V, and V,.
Namely,

+-,'s(s+1)l v.(p, e)l'1, (6)

„,=a~~nio&J il&, i»„1&i'

—ls(s+1)I v (P, ())I'1.

1

(1 ~u 2)1/2 (10)

Defining a new auxiliary parameter u, by u, =K;/&,
Eqs. (6) and (7) reduce to the single equation

y" (x) =[0', (x)g', (x)q&(x)g)(x)l,

x—= r, t

and ( ) denotes the thermal average as well as
the average over the possible impurity positions
and spin configurations.

In the energy-momentum representation the re-
normalized single-particle Green's function 4 &&4

matrix of the superconducting alloy, 9,(p, ic, ) av-
eraged over the positions and the spin orientations
of the impurities, can be written conveniently in
the form

9,(P, ie, )= i~, (1x 1) —c,(P)(1 2 x1)+E,(T, xc2)

e, = (2l + 1)&(/P, l = 0, +1, +2, +

P —= 1/k/&T,

where 1 is unit 2x2 matrix, v; and 0, are Pauli
matrices operating on the space composed of the
electron and hole states and on the ordinary spin
states, respectively, and e,(p) is the single-parti-
cle energy measured from the chemical potential
~.(p) =P'/2~. —

)

In the first Born approximation, the renormal-
ized frequency e, and order parameter 2, are
given by the following set of coupled equations'

where

1 1 1 1 1
7- 6 ' 7-, 2 7&» v. ~'&

For further discussion we need to define at this
stage also the single-particle Green's function ma-
trix 9„(p, ie, ), representing nonconducting alloy
states

9„(p, ie, )= . ), e, =(21+1)&(/P,
1x]

~n p

l =0, al, a2, c ~ ~ ~ . (12)

IV. SCATTERING EFFICIENCY

We are primarily interested in the photon ener-
gy transfers in the range 0&~~ 64, i.e. , in the
region of low-lying electronic excitations where
(d ()Op (Jo +~ (dp (Jo The frequeneies of the incident
light xp, scattered light v„and the transferred
frequency (d, are related to the corresponding wave
vectors %„R, and q in the usual way,

(d =c-I k
I
=cl'2„cv, =el&I =cd,

~ =cl ql =cq, q=i .-i
1 1 1

1 1 2 ~i (2) g2 +~2)1/2
r

T(1) T(2) (~2 +g2)1/2

(6) Following the results and notation of Ref. 2 one can
write the scattering efficiency of the superconduet-
ing alloy containing paramagnetic impurities in the
form
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d'y 4~, cos'H
'4 ~ e„e8T„~~T88~G+&8~y~&&(K&K0)Dyty(R((, ck)D&r&(k((, ck)eyeq,

(po d(d dQ SQ)pc cos Hp Qy$ryrgr

where

dq, 1
w )yo+ys-iq I g 0+

g lim Im I"'„&yq(k„, k„,q„' i&@„ice„ i&u3)
~0+ ' ~0

$ Q)2~ Q)o+ k 6p

(14)

(15)

Im I'„8,(k„k„q;i&a„i~„i~,) = lim LI' Byq(%„R„q;i~„iv„i&@,= e+ie)
~~ p+

'„eye( i~ ~~ (5 i&i~ s(was iu)~ (u ie)] '

k2

m, p+ k
I

C, P

g
~&n, p —k2

C, p+'q

k —q
I

k2+ q

P+k
I

C, P

///

k2

)( n, p-k2

FIG 1 Diagramatic
representation of the
twelve topologic ally diff-
erent averaged four-ver-
tex parts representing the
scattering of light by elec-
tronic excitations in a super-
conducting alloy containing
paramagnetic impurities.

p+q C,P+

k2+ q

41
, lt
1~
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I"'„8&q is the jth topologically different four-
vertex part averaged over different possible con-
figurations of paramagnetic impurities, and de-
scribe the scattering of light by one- and two-
particle excitations in a superconducting alloy. It
is convenient to write the above averaged four-
vertex parts in terms of averaged single-particle
Green's functions and corresponding vertex cor-
rections. In fact it can be shown that the major
effect of the vertex corrections is to replace the
inverse collision time by the correct transport
value &tr

~

In the lowest order, i.e., fourth order in elec-
tronic charge e, one can construct twelve topo-
logically different averaged four-vertex parts
shown in Fig. 1, External photon lines are at-
tached to each four-vertex part for clarity of ex-
position. Double lines correspond to the Green's
function matrix 9, of a superconducting alloy given
by Eqs. (5)-(V). Single lines denote the Green's

function matrix Q„representing intermediate non-
conducting states. Open sma, ll circle denote par-
tial vertex part y connected to one external photon
line only and is given in the long-wave-limit ap-
proximation by the expression

y(n; c, p;n, p+q) =(e/m, )(cp I p„l np),

P=-p e

where (cp I p„l np) is the matrix element of momen-
tum between conducting and nonconducting states,
and nz0 is the bare electron mass.

In the construction of each averaged four-vertex
part shown in Fig. 1 the fact that the average of
the product of Green's functions is not equal to the
product of the averaged Green's functions is taken
into account by the shaded partial square vertex

part C. In the ladder approximation 4 satisfies
the following integral equation

4 (p, ie„'p+q, ie, +i&a„p'+q, ic,'+i~„p', ie,')

=
I &(p-P)l'+ —g .»[I l'(5-p')I'

4P, ,; (»)'
xQ, (p"+q, id,'+ its)C (p", ie f;p" + q, id,'+iur„p'+ q, ii,'+i&os; p', ic,')Q, (p", ice)].

Diagrammatic representation of the above integral equation is shown in Fig. 2.
The analytical expression for the four-vertex parts corresponding to the first and seventh diagram of

Fig. 1 are

d p1'„8&q(x„k„q;iv„ iu&„ i&us) =— (,, M(me c, cpn, cym, n5c; p)2P)
m, n&c

x +Tr[g, (p, ie, )g„(p+R„ie, +i+,)g,(p+q, ie, +its)g (p-k„ ie, —its)],

f & Qyp(K» ksp qp iur» i~» iu&s) =—
J( ( )3 (

( )s M(m ac, cpn, cym, n5c; p, p')
Sl,ff &C

Tr[g, (p, ic, )g„(p+%„ic, +i&a, )g, (p+q, ie, +its)
kf)k fg

x@(p, ie„' p+ q, ie, +icos; p' +q, ze,'+i+» p', ie,')

xg, (p' +q, i~', +i4)s)g. (p' -~s, ill -i(ds)g, (p', it) )],
(20)

M(mac, cPn, cym, n5c; p)

mp P cp gp p&~p
0

x&cb I p, l mp& &nB I p& I cp& (21)

M(mac, cPn, cym, n5c; p, p')
4

&m p I p, I cp& (cP'I ps I
np'&

0
x(cp I p& Imp& (np'I ps I cp') . (22)

An over-all factor of -,' in Eqs. (19) and (20) and

the factor g in the second term of Eq. (18) come
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P+q P+q

P

~ ~P-V')
X
I

I
I

P+0

Schematic repre-
sentation of the integral
equation for the shaded
partial quark vertex part
4.

g, (P, 2~ 2) = g.'(P, 2~2 ) + g.(P, 2~2), (23)

from the redundancy of the four-component oper-
ators given by Eq. (4).

In what follows, however, we shall neglect the
partial vertex corrections. The important contri-
bution to the scattering efficiency will come then
from the first six diagrams shown in Fig. 1 only.
This will limit the reliability of our results to low

impurity concentrations.
As a matter of convenience let us devide the

spectral representation of the Green's function
matrix g, (p, ie, ) into two parts characterizing the
positive and negative energy spectrum of a super-
conducting alloy in the following manner:

where

,(, )
du) a, (p, (u)
222 26

2
—(d

(
.

)
d(u a, (p, —cu)

27I' 262+ '(d

(24)

(25)

and the spectral density matrix a, (p, tu) is defined
by

a, (p, (u) =2 Img, (p, (u —i0')

=i[g,(p, (u+i0')- g, '(p, (u —i0')]. (26)

By the use of Eq. (23) the four-vertex part I'zz2
given by Eq. (19) can be split into four parts a.s
follows:

I'„8 ~(k„k„q;i&@„i&a„i&@,) =—
(

)2M(mo.'c, cpn, cpm, n5c; p)
rg, n &c

x Q Tr[g,'(p, i'd&)g„(p+k2& ie, +i(d, )g,'(p+q&iE2 +2(u, )g (P -%2&it& —iv), )

+ g~(p& 262)g„(p +k&& 262 + 2(d&)g~(p +q, 2E'2 +2(d2) g~(p —k2, 262 —2(d2)

+ g~(p &E2)2g( p+%»E22+48&)gc(p+q& 262 +Wd2)gm(p . k2& 262 2&2)

+ g, (p, ic )g2„(p k+„ ic& +i&a, )g, (p +q, i&2 +is),)g (p —k„ i'd&
—i(u, )].

(27)

The first two and the last two terms in Eq. (27) determine the Stokes and anti-Stokes part of the scatter-
inI. efficiency, respectively. In what follows we shall be conside."ing the Stokes part of the spectrum only.
Then after combining Eqs. (12), (24), (25), and (27) one obtains the following expression for the four-
vertex part

I SII ~By2(%2& k2& q; i&d2& i(u2& icu3) = I"„gag(k2& k2& q;i u) 2& i&2& i(u2) + I'„By2&(k2& k2& q; i(ar,
& i(u2& i(u2) (28)

where

p3
I' zzq(k„k„q; ie„i&a„i&3) =—g (,,M(mo. c, cPn, cpm, n5c;p)

211')
m, n&c

x ' Tr [a,(p, c,)(1x l)a, (p+q, e, )(1 x 1)]
27T 2F

1 1
X .

2E'2 —E& 262 +2td& —E„(P+Q&)

1 1
X .

262 +2(ds —E2 262 —2I'u2 —E'~(p —k2)
(29)
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pI'~z ~(k„%„q;i&u„ i&a„ i&u, ) =—p )3M(mo. c, cpn, cpm, n5c;p)
m, n &c

x ' 'Tr[a, (p, —e,)(1x1)a,(p+q, c,)(1x1))2r 27r

1 - 1
X

~ ~

iE'( +6~ iE) +iM~ —E„(p +Q~)
$El

1 1
'LE.

~ +i(d& —62 iC~ —Z(d2 —E'~(p —Q2)
(30)

The frequency sums in Eqs. (29) and (30) can now be easily performed, and one obtains

x Tr [a,(p, e,)(1x1)a,(p+q, c,)(1x1)],

r„'»,(%„%„q;i~„i~„ i~, ) = —— ',
~
3g„',,,(p, &u ) ~' tanh +tanh

2 (d3 6 I C2

xTr [a, (p, —c,)(1 xl)a, (p+q, e,)(1x1)],

where %"r& z and sr8 z are defined in the following manner:

(33)

In Eqs. (33) and (34) the dependence of the energy denominators on k„k„and q is neglected. As the im-
portant intermediate states are far from the Fermi surface, the contributions to the frequency sum from
the poles of the nonconducting Green's functions in Eqs. (31) and (32) were neglected as well.

The imaginary parts of I „"8&q and I'„z~q can now be easily found to be of the form

Imi"„8&q(R„Tc„q;i&a„iu„ia ) =—,—
~
II 8&q(p, e, )~ tanh -tanh—

x Tr [a,(p, e)(1x 1)a,(p+q, e +u&)(1 xl)J,

lmi'„&„&(K» k» q; ie» ie» uos) = ——
~

—~%'„8 z(p, &uo) ~' tanh +tanh—

x Tr[a, (p, —c)(1x1)a,(p+q, e+w)(1 x 1)]. (37)

By using Eqs. (5), (10), (16), and (26) and performing the trace in Eqs. (36) and (37) leads to the following
form for the four-vertex part:
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da(h)t"„'ata((t, n )I (tanh
+ —tant —

)

(t-n')'" (t-a'*)'a ~™(t-n')"* (t -n'*)'")

+
2

«i K„az(;(p, &uo)i2 tanh +tanh-
d'P 2( - . P(~+~) P~

W c

(t - n*) n (t -a")' n ™
(t - a')'I' ™(t - a")"*)

for &u & &u, (38)

I mF„() (/k„k„(;lite„ie„iv )2= 2 «IÃ 8&(;(p, &u, )~2 tanh -tanh—

(t — ')'I' ™(t — ")'I' ~™(t-n*)"* (I- '*)"*) '

for (u&(ud (39)

where u =u(p, e) and u' =u'(p+(I, e +v).
In the above expressions co is related to real

frequencies by

EO ].
(t -a')'") (40)

hand ~, is defined as the maximum value of v in the
region 0&u&1, i.e.,

=1-g(I -u')-'" =0
Bu (41)

which leads to

a (I - g'")2" for g & I,
0 for g&1. (42)

The two limiting cases of interest can now be
distinguished: (a) Pippard limit or extreme anom-
alous skin effect region of large momentum trans-
fer. In this case I/T, «vzq, and one can neglect
I/1;. Then the effect of the impurities dissappears

I

and one can treat the superconductor as a pure
metal. Obviously one then gets the results of
Cuden. ' (b) London limit, or the normal skin ef-
fect region of small momentum transfer where
1/7, » v~q. One can then neglect q dependence in
Egs. (38) and (39). This is the case we are inter-
ested in,

The remaining integral over the energy and mo-
menta, E(ls. (38) and (39), is still rather intrac-
table. It requires the detailed knowledge of the
band structure. For simplicity, we shall assume
that the frequency of the incident and reflected
light, and the band structure are such that no
resonant scattering can occur. In the frequency
interval of interest, the matrix elements SR"'zzz
and Sit'~'8&z are then slowly varying functions of the
energy and momenta, and can be assumed con-
stant. Further, if we make the weak momentum
approximation introduced by Eliashberg, that is,
if we neglect the momentum dependence of u and
u', the integration over momenta can be easily
carried out and one obtains

tmt'„'at, (%„%,, tt;ttn„ itn„ttn, ) =
I
ttt"'I'iV(O) fda (tanh

+ —tanh-—).

(1 u2)1/2 (] u'2)1/2 ™(1 u2)1/2 (1 u'2)1/2

a(h((a'~ ht(0) J da tanh +tanh-P(~ +~) Pe
2 2

(t -a')'" (t -a")'" (t -n')'" (t - t)")'n)

for (t) & (u, (43)
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Inc t'„' tcr(1 R„n;, inc„ irn„ inc) =
I
nn I'nr(D) f dt (tnnh -tnnh —

)

(t-n')'" (t-n")'" (t-n')'c' ™(t-n")'")
for (o & (ud (44)

where u =u(il~, c) and u'=u'(p~, e+&u).
Similar calculations can be done for the remain-

ing five square vertex parts. Within the approxima- '

tions that led to Eqs. (48) and (44) one can write

lml'(XBy3(~1)~2) qd i(d)1) 3(t)2) 3(d)$)

(~„~) for )&1,
(a, f) =

(0, ~) for g& 1;
((t)3, cu - (u3) for g & 1,

(c]cd) =

(0, (t)) for g& 1.

(51)

(52)

VI

1 R()y3(kl) ~2) qd i(t) I) (d)2) (t)3)~
~ ~ ~

Making use of the expression for u, one can dis-
tinguish the following different cases for (d close
to the threshold

and for

vr

Sj+lml'„Sy3(k„k„q; i(d)„i(t)2, i+3)

VI

(45)

(46)

/ (2)l/Rg-2/3(1 g2/3)1/4[(~ ~ )//cl]1/2

for )&1,(d ~(d~, (d =(d~

Im . »&2 = 3 4 2(d 6''- —2(d 6'.'
for (=1, rd ~0

L), (d'/p/d(t)dQ)3 + (d 2/p/d(d)dQ)//

(p„(d2(p/d(o dn)„

(I„+I,)/I „ for &u & &u,

I„/I„ for &u & u&, , (47)

the relative scattering efficiency can be expressed
in the following form

and

r. '(1 —
K ')~/&

for.& 1, (d -0 (53)

(2 )1/2 g-2/3(1 )2/3)1/4[(~ (g )//rh]1/2

fOr g & ip (d ~~ (dg~ (d —(dg

where

I = de tanh -tanh—P(& + &) P&
N

Im —

g
= 3 2 24) 6 2(d

r

for f= le&0

u u

(t —n')'c' ™(t- ")'")
1 1
u2 &/2 1 u'2 &i'2

I = de tanh P(~ +(t)) P~
S 2 2

+tanh—

u u

(t — *)'" (t —n')'")
1 1
u2 &i'2 1

(48)

~for f ~ 1, (d ~ 0. (54)

1 1 (d Imu
(1 —u')'" g n, (Reu)'+ (Imu)'.

~m ~
~

2
~ I I2

~~ ~ ~
2 ~ 2

for p&1, u» 0, (55)

where

Finally, in the extreme gapless region where 4
is a small parameter u is very large, and one can
solve Eq. (40) expanding in inverse powers of u
and obtain

I„= de tanh P (E + (t) ) Pt
2 2

—tanh—

(49)

(50)

Depending on the parameter g the integration
limits in Eqs. (48) and (49) assume the following
values:

1
2 (~2 4. g2g2)2

fQ (d2 $3+3

2(+2 4. gRg2)2

(56)

(5'I)
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I.O

T—= 0.0
Cp

0.5

0.0 l.O 2.0 5.0 4.0

I.O

0.5

T—:0.5
Tc p

FIG. 3. Scattering effi-
ciency (relative to its
value in a pure material)
for In films (T&—- 3.37 K)
containing Fe impurities as
a function of reduced fre-
quency (relative to the or-
der parameter of a pure
metal at T=O'K) for differ-
ent temperatures and con-
centrations.

0.0 l.o 2.0 3.0

T—:0.9
Tc p

I.O

0.5
O.O
O. I

0,5
I.O
l. 5

0.0 l.O 2.0 3.0 4.0
4U

2 Zi {0,0}
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3 co~-6$'6 co'+g~b 5v —10$'6 (d'+g 4
Im 2 =1+— +—( 2Q 2

(1 lp)l/2 2 ((d2 + g2g2)2 2 4 (~2 ~ ~2~2)5 (~2 + ~2~2)5

for g& 1 (() & 0 (58)

Order parameter b, (T, r) for a paramagnetic alloy (relative to its value in a pure metal at T = O'K)

as a function of the reduced temperature (relative( to the critical temperature of a pure material T,~)
was given by Ambegaokar and Griffin. ' For low temperatures they found

n. (0 g) —(-')()'"((d'"/t2 "~'")(k,T)'"(1 --'2g) 'e 5"2' for g&1

~(T C) = ~(0 C) (2-2"/3'")[(k.T)'"in2"](1 '~)-'1 (~)t( ')(1--2-") «r r. =l

&(0, K)'- gv'(1 —f ')'"[1--',(1 —f 2)'+ —2garcsing '] '(keT)2/b, for g&1, g. =1

where 6(0, g) is the order parameter at T = 0'K of a superconducting alloy determined by the following
equation':

6 (0, f) -5l(g fox; r ~~ 1
~(0, 0) -arccosg —2[& arcsing ' —(1 —

& ')'"] for g &1.

(59)

(60)

On the other hand for temperatures close to the critical temperature the concentration and temperature-
dependent order parameter is given by the expression"

T ' ' ~ (2)+1+p, ) (2)+)+p,) ~ (2)+(+p, )' (pl+)+p, ) (Rl+)+p.)')' (61)

where

p():) =p ( )
—p(-', ), (harkp Tp

with P(x) being the well known digamma function.
Equation (61) takes the simple form in the high-

and low-concentration limit, namely,

8m'~ T'
7g(3} T,

for p5, =—(vk~T, 7,) '«1 (62}

62(T, g) =2m2[(keT, )2- (keT p] for p2, »1. (63)

Combining the results for the order parameter
&(T, g) of Refs. 5 and 6 with Eqs. (47)-(58) the
frequency dependence of the relative scattering
efficiency was obtained numerically for various
values of temperatures and concentrations of Fe
impurities in quenched In films. In numerical cal-
culations the BCS expression for the order param-
eter ~(0, 0) was used, namely, &(0, 0) =1.76kBT,2
where T,~ is the transition temperature for In at
q; =0. The results are plotted in Figs. 3(a}, 3(b),
and 3(c).

V. DISCUSSION

It is evident from our results that for tempera. -
tures and concentrations low enough there exists
a sharp threshold in the spectrum of the scattered
light at 2~~. In fact, this is the consequence of

treating the self-energy resulting from the elec-
tron-impurity interaction in the first Born approx-
imation. ' By means of the inelastic scattering of

light one can thus check directly the well-known
fact that with increasing concentration of para-
magnetic impurities the energy gap is decreased
relative to the energy gap of pure superconductors
and may even vanish at high enough concentration
of impurities. "

It would be interesting to compare the energy
gap obtained from the scattering experiments with

the gap deduced from the tunneling measurements
for Fe-In alloys by Reif and Woolf. '

Measurements of the transition temperature as
a function of impurity concentration, for impurity
concentration close to the critical concentration
indicate systematic deviation from the theory. ' "
The origin of this discrepancy is not clear at pres-
ent although it may be partially due to the onset of
a ferromagnetic or antiferromagnetic order among
the impurity spins.

In this work we do not consider the effect of the
indirect impurity spin interaction brought about by
the polarization effect of conduction electrons,
which may lead to magnetic phase at sufficiently
high impurity concentrations. " " The complete
theory should discuss the dynamics of the impurity
spins coupled with the conduction electrons. More-
over, at higher concentrations the proper averag-
ing procedure over the different impurity configu-
rations taken into account by- the partial square ver-
tex part 4 should lead to significant corrections. .

All that one may expect is that the qualitative fea-
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tures of the presented theoretical calculation
should agree reasonably well with the experimen-
tal results at low conceritrations of paramagnetic
impurities.
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