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Raman scattering of light from the plane surface of antiferromagnetic chromium is discussed

in terms of conventional second-order time-dependent perturbation theory. The scattering effi-

ciency as a function of frequency and temperature is calculated from the scattering of light by

one-electron, one-hole, and electron-hole pair excitations. It is shown that the unphysical diver-

gence of the scattering cross section for the photon energy transfer equal to twice the antifer-

romagnetic energy gap found by Kwok, Woo, and Jha is removed by taking properly into ac-

count the statistical coherence factors.

I. INTRODUCTION

The electronic Raman scattering was predicted
theoretically by Smekal' already in 1923. In 1956
Khaikin and Bykov' tried to observe the energy gap
in superconducting lead using light-scattering tech-
niques. However, they were not able to observe the
spectral distribution of the scattered light because of
the small amount of scattering associated mainly with
the fact that the skin effect allows the light to pene-
trate only into a very thin surface layer of metal.
The observation can be greatly impaired also by a
background scattering and strong absorption.

Only after the successful scattering experiments in

heavily doped n-type semiconductors' the subject re-
ceived more attention in recent literature. '

Experiments of Raman scattering from the surface
of metals were first reported in 1968 by Feldman,
Parker, and Ashkin6 and the appropriate theory has
been presented by Mills et al. '

%'ith the improved experimental technique, Moora-
dian' observed that many metals exhibit a weak,
broadband electronic luminescence when exposed to
intense laser monochromatic light.

In 1970 Raman-scattering experiments on tungsten
bronzes have been reported by Scott et al. As
pointed out by Tilley, ' these authors studied scatter-
ing at frequency shifts above 200 cm ' so that they
probed the optical-phonon spectrum.

The frequency shifts of interest in superconductivi-
ty are of the order of the energy gap 4, that is, a few
wave numbers. In fact the experiment by Fraas
et al. "has shown that in superconducting N13Sn,
scattering disappeared in the frequency region

laser & ~ & laser
Furthermore, their polarization measurements at

150 cm indicated little intensity change with polari-
zation indicating that the intermediate interband tran-
sitions are important.

In the theoretical work on Raman scattering of

light off a superconductor by Abrikosov and Fal-
kovskii, ' Maradudin and Tong, ' Tilley, '4 Dos Reis
and Luzzi, "only intraband electronic intermediate
transitions in a superconductor were considered.
Their work exhibits a gap in the spectrum, but
disagree completely with the temperature and fre-
quency dependence of the reflected light off a super-
conducting Nb3Sn, found in the experiment by Fraas
et al.

In Ref. 16 Raman scattering of light in pure super-
conductors was discussed. It was demonstrated by
means of standard formulation of Raman scattering
of light that the main contribution to the intensity of
the inelastically scattered light in a superconductor
comes from the electronic interband intermediate
transitions whose energy difference is close to the en-
ergy of the incident light and not from the intermedi-
ate intraband transitions as presented in earlier litera-
ture. For the specific case of Nb3Sn, good agreement
between the theory and experimental work by Fraas,
Porto, and Williams was found.

In Ref. 17, the scattering efficiency was formulated
in terms of Kubo's nonlinear-response theory in a
form suitable for systematic diagrammatic expansion.
It was shown that the main contribution to the inten-
sity of the inelastically scattered light comes from the
unscreened fluctuations in transverse current, and
not from density fluctuations as considered in earlier
work. Frequency and temperature dependence of the
scattering efficiency was obtained for the case of tin.

In Ref. 18 Raman scattering of light off a super-
conducting alloy containing low concentration of
paramagnetic impurities was discussed. For the
specific case of Fe impurities in In films, the scatter-
ing efficiency as a function of frequency and tem-
perature was calculated for various impurity concen-
trations.

The existence of spin-orbit coupling in some sem-
iconductors and insulators renders possible the ine-
lastic scattering of light by spin-density fluctua-
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tions'~ ~0 (SDF), which correspond essentially to the
spin-flip electron-hole pair excitations.

In the presence of electronic coherent states in su-
perconductors and in metals with itinerant antifer-
romagnetic ordering, the scattering of light by excita-
tions of bound Cooper pairs and bound electron-hole
pairs in triplet state, respectively, is possible, even in
the absence of electron spin-orbit coupling.

In Ref. 21 the inelastic scattering of light in antifer-
romagnetic chromium was discussed. At zero tem-
perature the scattering cross section was found diver-
gent for the photon energy transfer equal to twice the
antiferrornagnetic energy gap. This is clearly a non-
physical result, and in this paper we propose to rein-
vestigate the Raman scattering of light in itinerant
antiefrromagnetic chromium.

In Sec. II we give a BCS-like effective Hamiltonian,
describing the static spin-density-wave state, based on
Lomer's two-band model for Cr.

In Sec. III we present a general formalism for the
inelastic scattering of light by electronic excitations
from the plane surface of a metal. In Sec. IV we cal-
culate the scattering efficiency for the scattering of
light by single-electron and -hole excitations which
are thermally excited out of th'e "condensate" and ex-
ist at finite temperature only. In Sec. V we calculate
the scattering efficiency for the scattering of light by
excitations of bound electron-hole pairs in triplet
state. In Sec. VI we give the total scattering efficien-
cy. And finally, in Sec. VII, we compare our results

with those obtained in Ref. 21 and give our conclud-
ing remarks.

II. SYSTEM HAMII. TONIAN

In pure chromium, below the Neel temperature
T~ = 312' K, neutron scattering experiments have
shown the existence of local magnetic moments. The
scattering cross section for the inelastically scattered
neutrons by spin-flip excitations exhibits a monotoni-
cally decreasing temperature-dependent energy gap,
with its maximum value at T =O' K given approxi-
mately by 2g =3.5 k~ T.

Band calculations ' have shown that there is a
large roughly octahedral pocket of electrons at the
center of the zone and a pocket of holes centered at
the point H at the edge of the zone. The shape and
the size of the two bands were found very similar.

At temperatures below the critical Neel tempera-
ture the nearly degenerate conduction electrons and
holes with opposite spins form bound pairs, and as a
result an itinerant antiferromagnetic phase appears.

Following Lomer and Overhouser, let us as-
sume that the antiferromagnetic transition is the
result of attractive interaction between nearly degen-
erate, opposite-spin electron and hole states from two
bands separated by a wave vector of antiferromagnet-
ic ordering Q. In this case, below the Weel tempera-
ture, the system may be well represented by the ap-
proximate Hamiltonian of the form

H = Xe)(p)c, -, c, -, + X 6p(p)c, -, c,-,
p cT p ET

+ ~gyp g yC&~fCQ~+gf + Cp~p+g)C$ +t + CQ ~ tCJ ) +CJ )CQ p~ tJ+ ~ 6~& p JC ~ (2.l)
p N ~~3p&

where s~(p) and sq(p) are the kinetic energies of
conduction electrons in bands 1 and 2, respectively,
and have the property that e~(p) = eq(p+Q) for an
appreciable region in p space near the Fermi surface
in band 1. By inversion symmetry, one has
et(-p) = eq(—p —Q). s„(p) for n ~3 is the energy
of an electron in band n.

In Eq. (2.1) g (p ) represents the amplitude of the
self-consistent spin-density wave (SDW),

«p) =—g~«p ' —p)(lp 'IIp&(2p+Q I2p '+Q&

V(q) is the Fourier transform of the screened
Coulomb interaction and u„(r) is the periodic part
of the Bloch wave function. ( & represents the
usual thermal average,

Tre ~" 1 (2.4)

By assuming a constant effective amplitude of the
self-consistent SD% one can diagonalize the Hamil-
tonian given by Eq. (2.l).

By using the Bogolubov transformation

where

+ V(p —p ') (2p+Q ll p '+Q&

(2 p II p &j (c&-'t g '+qt& ~ (2.2)

cg t
—u a +v P

&r+Qt "v F r v ' (2.5)

(n p I n
'
p '& = Jl u„"-, ( r )u„,( r ) d3 r . (2.3) c& ~t —u ~a ~ +v -~p
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with

+ X e„(p)c„', c„,
n&3p cr

E (p) = —,
' [ei(p) + e2(p+Q) + n(p)]

the Hamiltonian (2.1) can be cast into the simple
form

H = XE (p)at a, + XEa(p) pt p,
p p

+ XE.(—p —Q) n'-, ~ a —,~
p

+ XEf(—p —Q) p'=, ~P=,~
(2.6)

condensate is now composed of bound electron-hole
pairs in triplet state rather than Cooper electron-
electron pairs.

As there always exist a nonmagnetic part of the
Fermi surface, there are of course none of the super-
fluid properties associated with superconductivity.

Based on the Lomer and Overhauser theory and
using a simplified model for the band structure,
Fedders and Martin have calculated specific heat,
longitudinal collective mode, spin susceptibility, and
electromagnetic absorption in Cr.

III. SCATTERING EFFICIENCY

=E.-(-p-Q),

Ep(p) = —', [~i(p)+&2(p+Q) —&(p)l

( p Q)

Q(p) = {[t](p)—t2(p)]'+4g']'",

(2.7)

(2.8)

(2.9)

where E (p) and E&(p) are the energies of the ele-
mentary excitations in an itinerant antiferromagnet,
and g is the temperature-dependent order parameter
determined by the following BCS-like equation:

f(E.(p)) —f(Ep(p))
Ep(p) —E.(p)

(2.10)

V denotes a constant effective Coulomb interaction
and is given by some appropriate average value of

[V(p ' —p) (I p '{Ip) (2p+Q {2p '+Q)

+ V(p —p ') (2p+Q {Ip '+Q) (2p '{1p)] .

Q v f7 ~ and lf p~ are given by

M-,
' = —,

' {I+[~t(p) —~2(p+Q)]i&(p)], (2.11)

v-', = —,
'

{I—[~&(p) —~2(p+Q)]/&(p)], (2.12)

Scattering of light off a metallic surface was con-
sidered by Mills et al. ' The interaction of light with
the electrons responsible for the Raman scattering
takes place within the penetration region of the light
in the metal.

The fact that the fields outside, which are the ones
measured, differ from those inside the metal can be
taken into account by solving the usual boundary-
value problem at the metal surface and introducing
Fresnel correction factors.

We assume the light is reflected from the plane
surface of a metal filling the semi-infinite volume
z &0. See Fig. 1.

The dielectric constant e(rv) of the sample is as-
sumed local and isotropic.

Following the results of Ref. 17 and 28 the scatter-
ing efficiency defined as the ratio between the
number of scattered photons in the frequency inter-
val (co, co+des), solid angle d 0, and volume VD and
the number of incident photons of frequency coo fal-

E7-- =o-
p 0 p

(2.13)

V p~=Q

a' s, P's, a' s, P's, and c's satisfy the usual Fermi an-
ticommutation relations. The critical Neel tempera-
ture can be determined by setting g =0 in the Eq.
(2.10). It is given by

~iv = Tae -1/a (2.14)

where h. = N(0) V, N(0) is the density of states at the
Fermi energy, and k8 T~ is of the order of band ener-
gy-

Mathematically the presented model is equivalent
to the BCS model of superconductivity. Physically,
however, the two models are very different. The

/
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FIG. l. Light generated in the emitter region V& is scat-
tered in the sample, which occupies the half-space z (0,
and reflected light is detected in the detector region VD far
from the sample.
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ling on the surface S in time t can be written in the form'7 2

d @ 4cog cos 8~2 2

e,„e,„D» ( kp, co,)D» ( kp, rp, ) G~ „„r( k, kp) Tp „T&&ep„cot,
$p da) d 0 Spppc cosHp

p, 'v'q' f'

where

G„„„r(k,kp) = $ (fit„„(k, ko) li) (fit e(k. ko) It& "(j' pf) —5(~ IEf--E I) ~

(3.1)

(3.2)

and

1

2
x 5„„—(f In(r~) Ii)5(rt —r2)

(f Ij~(r2) Ii) (il j„(rt)li) (f Ij.(rt) I» «Ij,(r2) li}
E; —EI + p EI El s

(3.3)

From Eq. (3.3) we see that within the framework of an independent-quasiparticle model, only the second term
in the curly bracket contributes to the inelastic scattering of light.

The frequency of the incident light cop, scattered light co„and the transferred frequency co are related to the
corresponding wave vectors kp, k, and q in the usual way,

too =el "ol =«o ~

~=el ql =cq q=ko —k.
The tensor T and the function D(kp, «) in dyadic form are given by"

T = T,5, T()=2(p —sin Hp)' [(e —sin Hp)' '+ ecosHp],

TJ 2 cosHp/[(e —sin'Hp) ' ' +cosHp], T, =2 cosHp/[(e —sin'Hp) ' ' + e cosHp]

D(ku~rcksgnk) =k sgnk, [y,k, (iy, k —y k) '6 u+(ik, —y, ) 'v v —ikp(iy, k —y k) 'z z

+ik, kp(iy, k —y k, ) 'u z —y, kp(iy, k —y k, ) 'z u],

(3.4)

(3.5)

(3.6)

yp = [ (eN p}ko+ kpp] Reyp )0

y, = [ e(ck sgnk, )k +k—]'i, Rey, )0

and

y =—e(ck sgnk, ),
cosHp =- kp, /kp,

cosH, = k, /k,

kp = (kz, k&, 0), kpp = (koan, kp&, 0)

(3.7)

(3.8)

For most metals in the frequency region of in-
terest, i.e., for co &C cup, co, the dielectric constant
e=10. In the limit e)) 1, D(ko, ck) takes the sim-

where T[[, Tj are the components of T parallel and
perpendicular to kpl] respectively, and u, v, and z are
the unit vectors in the Cartesian coordinate system in
which u is taken parallel to k[[ and z to the z axis; the
skin depths yp and y, of the incident and scattered
light are given by

r
pie form

D(k, ,ck) = — —(1 —z z) +—z u
k k]l

ys k,
(3.9)

Ii), I f), Ii) and EI,Ef,Et represent initial, final,
and intermediate electronic-state vectors and energies
of the system. P; and Pf are the thermal weight fac-
tors indicating the probability that at temperature T
the initial and final states are occupied, respectively.

The summation in Eq. (3.2) is over the initial and
final states, and in Eq. (3.3) over the intermediate
states only.

The p, vector component of the electron current
density operator j~(r) and the electron number den-
sity operator n (r) can be written in second quantiza-
tion formalism as

j„(r)= X (n'k+q olj~(r) Ink o.)c„~~ c„-„
nnkqo

(3.10}
n(r) = X (n'k+q o.ln(r) Ink o)c„t~~ c„-„

nn kg~



21 SURFACE RAMAN SCATTERING OF LIGHT IN ANTIFERROMAGNETIC. . . 207

IV. SCATTERING OF LIGHT BY
ONE-PARTICLE EXCITATIONS

%e are primarily interested in the photon energy
transfers in the range 0 & eo & 6g, i.e., in the region
of low-lying electronic excitations where

o
—& &C o g

In the band structure of Cr one can distinguish the
nonmagnetic and the magnetic part of the Fermi sur-
face. Below the Neel temperature the electrons and
holes in the vicinity of the nonmagnetic part of the
Fermi surface retain their normal-metal character.

The "normal-metal" scattering efficiency involves
scattering of light by the electrons near the nonmag-
netic part of the Fermi surface of area A„.

On the other hand, the electrons in the vicinity of
the magnetic part of the Fermi surface in band I of
area A form bound-electron —hole pairs in triplet
state.

At finite temperature, some of the pairs are broken
under the influence of thermal fluctuations forming
the "normal fluid" component of the "condensate".

The normal fluid scattering efficiency thus involves
scattering of light by quasiparticles already present
because of finite temperature. The excitation energy
in this case can be arbitrarily small, as in the normal
metal.

One can distinguish the following four possible
pairs of the initial and final states, corresponding
initial- and final-state excitation energies, and
thermal-weight rate factors:

(I &, I f&) =( -', lo.„&, '-, -lo.„&) . (p-', lo,„&,p-', „-lo,„&),

( '=, -lo.„), -=, --lo.„&), (p'=, -lo;.&, p'=, --lo;.&),

(E;,Eg) =(E (p), E (p+q)), (—Es(p), —Ep(p+q)),

(E (p), E (p+q)), (—Es(p), —Ep(p+q)) .

(P, Pf) =[f(E—(p)) —f(E (p+q))], [f(Ep(p+q)) —f(Ep(p))],

(4.1)

(4.2)

[f(E (p)) —f(E.(p+q))), [f(Es(p+q)) —f(Ep(p)}l,
Io..&=-lo.&lo.&. Io.) -=Io &Io.&. Io.-.) -=Io;&Io.&

(4.3)

where the use of Eqs. (2.7) and (2.8) has been made, and f(E) is the Fermi-Dirac distribution function

f(E)= „,.
e&E+1

The vacuum states lo ) los) lo-) los). and 10„) are defined by

(4.4)

~, lo.&
=0 , p, lo» =0 , ~-, lo.-& =0 . p-, lo;& =o , c„-,.Io„& =o . (4.S)

By using Eqs. (3.3) and (3.10) the transition matrix elements for the inelastic scattering (i W f) corresponding
to the transition a,tlo „) ~t+-, lo,„) and p,tlos„) p~t~los„) can be written

&o.„l,~ r.„n t lo.„& = s-'» Qlll ll2 "01 +g 2
dr~ dr2e

),S2&O

(i p '+q ' o''I j&(~~) lm'p '0.'& (m" p "+q "o"Ij.(r»li" p "o'"&

E (p) —a„(k) +s)0
n~3; I' 1,2; I" 1,2

I

+' (m" p "+q "cr"
I j„(rq) Ii"p "a")(I'p '+q 'a' lj„(r2) Im'p 'o.')

E (p) —e„(k) -o),

(0 Ia ~cl + c~ a Io )(o„lc c kilo„)

&& (o„lc„-„c„,-„„Io„), (4.6)
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and

Ip t ptlo ) g-1/2 t d d e pill 112 p 1 2

I~I I tt~tt~~ll tl

n83. I' 1,2; I" 1,2

&t'p '+q '~'Ij„(r2) lm'ptr'& &m" p" +q "tr"Ij.(r1) lt" p "tr"&

Ett(p) —q„(k) +«tp

+
&m" p "+q "~"

Ij.(rt) li" p "tr"& &t'p +q tr Ij„(r2)lm'p tr
&

Ett(p) —q„(k) —«I,

x &ottl p ~c;, ,+, ,c,„-„„p-lott& &o„lc„-,c -„,1110„&

x &o„lc kpc „-„+q„„lo„& . (4.7)

By using Eqs. (2.5) and (4.5), the anticommutation relations for n's, p's, a' s, p's, c's and summing over the
possible spin configurations in Eqs. (4.6) and (4.7), one finds only the following terms different from zero:

&On I cttt'p 'tt'c„kp I
0 &=ttgnm gk p, g'sa' i',

&otl lcttkpcttt p +tr "tt""Ion"& = gn, ttt"gk, p "~ "gs, tt ~

&Ottl R p~1 p ~ tc1 p tcx lott& = tl tt

&oal~p~~2p +qc2- ~ ~~-1-a, —~~-~g-~—g—~
'tr& 1 p'+2r' 1p "tpplOtt& " +q +q

" '+q' ~

ttlp ~ 2 '+q 2 "+q "+QP'trl N tt tt +q g

At this state we assume that the following approximations are valid:

&m p+q crljp(r) Inplr& = &m p+Q+q crlj„(r)ln p+Q tr& = &cp Ijp(r) Inp), n ~3, m =1,2,
q„(p) = e„(p+g) .

(4.g)

(4.9)

Then with Eqs. (4.8), (4.9), (2.11), and (2.12), and after performing the summations in Eqs. (4.6) and (4.7)
one obtains the following expression for the transiition matrix elements:

&0 „Ict-~ t„„ctt lo „& = Mn„(p, «tp, «I, ;a) l(p, q),

&Ott„ I p-~ t „pt
I Os„& =M„„(p, «tp, «;I)pl (pq), ,

where

(4.10)

(4.11)

arN f~
cvf» yp, o)p, QJg, sky =S u r1u r2e

&cp Ijp(r2) I np & &np Ij.(rl) lcp & &cp Ij.(r1) lnp) &np I jp(r2) lcp)
E (p) —q„(p) +«tp E (p) —q„(p) —«I,

(4.12)

~N l~ ~ —g—1l2 d d OII1 II2 ~0 1 ~ 2,„(p,~p, ~, ,p) = „,r, r, e'
S 1I22

&cp I j„(r2)lnp) &np Ij.(r, ) lcp& &cp Ij.(r1) lnp) &np Ijp(r2) Icp)
tt 3 Ett(p) —q„(p) +«tp Ett(p) —q„(p) —«I,
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and
s l]2e»(p) e»(p+q) +4g'

I(p, q) = u-, u-,~ +ss-, v-,~ = 1+
P P4o P 9+0 y2 E ( )E ( +

(4.14)

is the usual coherence factor and the following abbreviations were introduced:

(4.15)e»(p) —= «(p) —e, (p+Q), E.a(p) —=E,(p) —Ea(p) .

Transitions a -~ I0-„) a -,~ «I0-,„) and P -,~ IOss) 48 -,~ -I0s„) lead to identical transition matrix ele-
ments given by Eqs. (4.10) and (4.11), respectively, i.e.,

I &o.„l~,~ r.„~t Io.„)I
=

I &0.„I ~,~,r„„a',~ lo.„)I,
I &os„lp,~ r,„P, lop„) I

=
I &0;„Ip,~ r,„p',~ lo;„) I .

(4.16)

(4.17)

With Eqs. (4.1)—(4.3), (4.10), (4.11), (4.16), and (4.17) the scattering efficiency for the inelastic scattering of
light by the normal fluid one-particle excitations in antiferromagnetic chromium can be written in the form

1 d2$ 1 d2@ 1 d2$

sIso dosdQ ~ Qo dosdO N Qo dosdQ
(4.18)

where
r

d2 4' cos 8 i

e,„e,„D„„(ko,oss)D„„(ko, oss) Mp'o' (p. Qso, sos', a)
fo d sss & Ssssoc coseo

gg s s

sees

X M„r (p, osO, oss;ss) T„„TrreO„eOrl~(p, q)

x [f(E (p)) —f(E (p+q))]8(os+E (p) —E (p+q)), (4.19)

and

1 d @ 4oss cos f)s
e,„e,„DP„(ko, sss, )D„„(ko,oss)Mp, '„'(p. oso oss'P)

who dosdO z& S«&oc cosHo sg P dies
JJg s s

sos

x M"„t' (p, soo, os, ;P) T„„Trreo„eorl2(p, q)

x [f(E&(p+q)) —f(E&(p))]8(os+Ea(p+q) —E4s(p)) . (4.20)

From Eqs. (4.19) and (4.20) we see that the
scattering can occur only at T AO'K.

The scattering processes which lead to the appear-
ance of coherence factors in Eqs. (4.10) and (4.11)
are shown schematically in Fig. 2. Figures 2(a) and
2(c) are the two configurations entering the wave
function for a state with quasiparticle in lp ]. Figures
2(b) and 2(d) are the two configurations which can
be connected to Figs. 2(a) and 2(c), respectively, by
a spin independent one-body operator. The arrows
indicate how Figs. 2(a) 2(b) and 2(c) 2(d) via in-
termediate interband states n, when electrons couple
to the electromagnetic field which does not flip the
electronic spin.

IP+ 9 0 IP+ iP+24 S 0 iP4

2P+ Q 4 0 0 2P+Q+24 2P+Q40 0 2P+Q~24

iP+24 0 0 iP4

2P+04 2P+Q+P4

iP+24 S 8 iP4
/

/

2P+Q4 0+ 0 2 +Q P4+2

C d

FIG. 2. Schematic representation of the inelastic scatter-
ing of light in antiferromagnetic chromium by one-electron
and one-hole excitations in the temperature interval

Tjy & T )O'K.



210 C. 8. CUDEN AND R. MOTA

V. SCATTERING OF LIGHT BY TAO-PARTICLE EXCITATIONS

21

The "magnetic" scattering cross section involves the breaking of bound-electron —hole pairs in triplet state and
the creation of pairs of quasiparticles with minimum excitaiton energy being 2g. One can distinguish the follow-
ing initial and final states, corresponding initial- and final-state excitation energies and thermal-weight rate factors:

(I/&. If)) = (Io.p.&. o-,'~P-„'Io.p. &) ~ &Io.-„-.&. ~'=,~ -(0 t=,~ Io.-s„&),

(E;,EI) =(O,E (p+q) —E/((p)), (O,E (p+q) —E(((p)),

(I'; —P/) =[f(E (p)) —f(E (p+q))], lf(E (p)) —f(E.(p+q))],
lo.,„&-=Io.&lo» lo„&, lo. ;„)-=lo.&lo;&lo„& .

(5.1)

(5.2)

(5.3)

In above equations the relations given by Eqs. (2.7) and (2.8) were taken into account.
By using Eqs. (3.3) and (3.10) the transition matrix elements for the inelastic scattering (I A f) corresponding

to the transitions lo ((„) o;tp~Ptploa/(„) and lo-((„) n -~ P -~lo-s„) can be written

(0 Ip I Io ) g-(/2 jt dr dr e' 0111 112 "0 ( 2

I~I I II ~o~o o ~

~

I

n~3; I' l, 2; I" 1, 2

(I' p '+q '(r'Ij „(r2) I
m' p '(r') (m" p "(r"jl„(r() I

I"p "o.")
0 —e„(k) +~0

+
(m" p "+q "Ij.(«& I

I"p "~"&&I'p +q ~ Ij,(r2) I
m'p '~'&

'

0- «„(k) -«(,

( aa&~ ~ (' '' ' -c(. "I'oa»"PW p N ty' I P

x &O. I ».-„.»„'-„, Io. & &O. I»„-„,»J-„-~—.„
I 0„)

x

n~~3; m' l, 2; m" l, 2

(m" p "+q"(r"
Ij (r2) I

I"p "o")(I'p '+q ' o.'I j„(r()I m' p '(r')

O —e„(k) +~0

+
&m" p "~"lj.(«)II" p "~"&(I'p '+q '~'Ij, (r2)lm'p '~'&

0 —0„(k)—«(,

(5.5)

By using Eqs. (2.5) and (4.5), the anticommutation relations for n's, P's, a' s, (8's, and c's and summing over
the possible spin configurations in Eqs. (5.4) and (5.5), one finds only the following terms different from zero:

(0„I
c,

p
~ cps I 0„)= 5„5-„„,gp

o„Ic„-„,c „„„„0„)=g„a-.n m p ~ cr

(Oa lp(p(~p~~l p '+0 'tc] "tloa» = v p(( p~~p~ p '~ 'gp p" ~

t
2p'+0 2p "W "+Ql » p& p v+Vp' p, p "N" ~

0-((l(9 ~ o ~~c( tc( tl0-(() =—v ~ tl L+ ~ L
R la(0-((, ~cx~c2~t»2~(, 0-(()=@((~8~5
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With Eqs. (4.9), (5.6), (2.11), and (2.12), and after performing the summations in Eqs. (5.4) and (5.5), one
obtains the following expressions for the transition matrix elements:

&0.p. IP-, -,~ r„.10.p. &
= M„.( p, ~o, ~*',~, P)p (p, q),

&0= f. I P=-o =.-o=. " l0 = p. &
= &0-a I~8-, ,~ r"I0-a.&

where

,p
"

Iltko~~~, -«~(,&+~o~, +v .2l m &cp IJ,(r2) I +P & &+p IJ.(rl) I op &MM (p . P) 5—/2
4 s),F2&0

n ~~3 en p +ooo

&cp IJ.(&i) l~p& &~p IJ„(r2) lcp &

'

-e.(p) -~,

(5.7)

(5.8)

and p(p, q) is the coherence factor, given by

2 '~l2
1 e12(P) e12(p+q) +4g

%+V oW o Jf E ( )E ( + )

(5.9)

(5.10)

With Eqs. (5.1)—(5.3), (5.7), and (5.8) the scattering efficiency for the inelastic scattering of light by the mag-

netic two-particle excitations in antiferromagnetic chromium ca'n be written in the form

e,„e,„D „(ko, co,)D„"„(k((, oo,)M„„(p, roo, 6),;A, p)
fo d dQ S oc cosgo- „

x M„r (p, ooo, ~, '~ P) ~~'o~r'reo~eorp (p q)

"~f(&s(p)) —f(E (p+q)))8( —& (p+q)+Es(p)) . (5.11)

From Eq. (5.11) we see that the scattering is possi-
ble even at T=0'K since Es(p) (0.

The scattering processes which lead to the appear-
ance of p coherence factor in Eq. (5.7) are shown
schematically in Fig. 3. Figures 3(a) and 3(b) are the
only two configurations which can be connected to
that in Fig. 3(c) by a spin-independent one-body
operator. The arrows indicate how Figs. 3(a) 3(c)

and 3(b) 3(c) via intermediate interband states n,

when electrons couple to the electromagnetic field
which does not flip the spin.

VI. TOTAL SCATTERING EFFICIENCY

Clearly, the total scattering efficiency is the sum

1

1 d2$

$o doodQ

IP+tf IP4
1 d'$ 1 d'@ 1

@o
' dcudQ, „@o dmdQ N Qo, d~dQ

ap+oq Q+ 0 zo+e se

io+s~ CI 0 ioo

Ip+at 0 0 ~o&

2o+o~ 0+ 0 ao+o+«

2P+Q+ P$

FIG. 3. Schematic representation of the inelastic scatter-
ing of light in antiferromagnetic chromium by one-electron
pair in triplet state in the temperature interval

T~ p T «O'K.

(6.1)

The normal-metal scattering efficiency can be ob-
tained simply by putting g =0 and substituting
A Afor T) TN, andA A„for T(TN inEq.
(4.18).

From Eqs. (4.12), (4.13), and (5.9) it is clear that
the important intermediate states are the nonconduct-
ing states for which an energy denominator is small.

For further calculations one has to specify the
momentum dependence of band energies and matrix
elements. For simplicity, let us assume that near the
magnetic portion of Fermi surface with area A over
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which the gap forms one can write approximately
1

V-, e2(p+Q)
e12=—el(p) —e2(P+Q) = el(p) 1—

%~el(P)
=apl(p), (6.2)

V'„e2 ( p +Q )
el(p) +e2(p+Q) = el(p) 1+ " = &el(p),

V, el(P)

where a and b represent some appropriate average value of the bracketed quantities.
If the energy band 1 is assumed parabolic, then for conditions of large momentum transfer, i.e.,

QF ~ q ~
)) «lp —oo one can replace the sum over mornenta in Eqs. (4.19), (4.20), and (5.11) according to

2

'lde12 (p) de12 (p+q)
(2m)' (22r)'a'q

E.s(p)E. (/1p+q)

(2 )2a2 g 4 ~P ~/ [E2 ( ) 4 2]1/2[E2 ( + ) 4 2] 1/2„I dE (p) dE /1(p+q) (6.4)

With Eqs. (2.7)—(2.9), (4.14), (5.10), and (6.2) —(6.4) one obtains

dE /l(p) dE s(p +q) ,e„,e. D»( kp«lg)Dyp'(kll ~ «ls)
ltp d«1dQ „S«lpc cdsp(2m) a q

a'v'q f'

x M~„(p, «lp, «1,;a)M~~e ( p, «lp, «lg ,n) T„„Tr'pep„epr

x [f(g (E &(p))) —f(g, (E &(p+q)))]

E. (ps)E. (/p1+)q+4g'
X

[E2 (p) 4g2]l/2[E2 (p +q) 4g2]1/2

x g(«1 —Fj/ (E s(p),E s(p+q))), (6.5)

X J dE Z(p) dE,/2(p+q)e, „e,„D»(ko, «l, )D„„(ko,«1,)
fp d «1 d 0 &s S«lpc cosHp (27K) a

X M~~'(p. O 'P)M~r'(p. «lp. «1 P) T„~Ttrepoept

x [f(g&(E &(p+q))) —f (g&(E &(p)))]

E s(p)E s(p+q) +4g'
X

[E2 ( p ) 4g2)1/2[E2 (p + q ) 4g2]1/2

x 5(«l F///l(E S(p),E S(p—+q))), (6.6)
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1

dE «(p) dE «(p+q)e, ~e, „D»(kur ao, )D„„(kii,ru, )
$p d d 0 ~ So)pc cosHp 2m a q

Ig'v'v] 4'

x M~&„(p, cop, cv, ;a, p)M/P (p, cop, co, ;a) T„„Trrep„epr

x [f(g«(E «(p))) —f(g (E,«(p +q)))]

E.«(p) E.«(p —q) —4g'

[E' (p) —4g']'"[E' (p+q) —4g']'"

x 8(a) —FM(E «(p), E «(p+q))), (6.7)

where

g~(x) = —,'x+ (x' —4g')' '

g«(x) = —'x — (x' —4g') '/',
20

Fj/ (x,y) =-y ——x+ (y —4g )'/'b

2Q

(x2 4g2) 1/2

2a

FN (x,y) = —y ——x — (y —4g~)'/ib

2Q

(x2 4g2) 1/2

20
I

FM(x,y) =-y+ —x+ (y' —4g')'/'
28

(x2 4g2) t/2

2Q

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

In chromium b && a and one can write approxi-
mately

g (E «(p)) =g«(E «(p)) = -,
' E «(p), (6.13)

F»(E «(p), E «(p+q)) =-[E «(p+q) —E «(p)],

(6.15)

F~(E «(p), E,«(p+q)) =-, [E,«(p+q) +E,«(p)] .

(6.16)

If the band structure and the incident frequency 40p

are such that the matrix elements given by Eqs.
(4.12), (4.13), and (5.9) could be assumed constant
then, by using Eqs. (6.12)—(6.15), the integration
over one energy variable in Eqs. (6.5)—(6.7) can be
carried out easily, and one finds

F// (E «(p), E «(p+q)) = —[E.«(p+q) —E.«(p)l,

(6.14)

1 d~@ 4', cos'H, m~

$p, d~d & „Scopc4cosHp (2n)~a~q

x X e,„e,„D»(kii, co,)D„„(k,cu, )(M„"„M",e +M"„«M~) ) T„„Trceo„ep&

E(ao+E) +g'x dE [f(E) f(pp+E)]
(E~ z)»z (

—
)~ &]»z, (6.17)

46&gcos Hg m A~

$o d~d& ~ Sa)pc'cosHp (2n)'a'q A

e»e, „D» (k p, ~,)D„„(kuri, pp, )M~&~«M fr9«T„„Trreo~ep&
p,vga

x dE [1 f(E) f (ru —E)]-—
U g

(6.18)
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It is convenient to relate the scattering efficiency of the antiferromagnetic chromium to that in the normal me-
tal.

For M„"„=M„"„=M~& = M~~ ] =M the relative total scattering efficiency becomes

P [(d P/dayd0)„+(d $/dcudA)11 +(d P/doer d0)M]T(T

Pm [(d'y/d~ d n)„]T& T

(I„+I// + IM) T & T„
for co «2g,I. T&T„

(I„+Is)T(T„
for cu 4 2g,

In T&T

(6.19)

~here
f+ OO

(I„)T & T
——

J dE [f(E) f(02+E)—], (6.20)

For T =O'K Eq. (6.19) can be written in terms of
complete eliptic integrals as

(l„)T&T„= Jl dE [f(E) f(~+E)]—, (6.21)

goo

(I )„,„=2 „„dE[f(E) —f(~+E))

E(01+E)+g'
(E2 g2)1/2 [( +E)2 g2]1/2

(6.22)

~m 2g +OJ 2g —M

«4 M 2g +OP

for g«2g

, 0, for o) (2g .

~m 4g + 2g —op

A OJ 2g +OJ

(6.24)

(IM) T& T„= J~ dE [1 —f(E) —f(01 —E)]

X E (ru —E) —g'
(E2 g2) 1/2 [( E)2 g2] 1/2

(6.23)

The relative scattering efficiency at T = O' K for the
case of chromium (2g =3.5ksT~, TN

——312'K,
A /A =0.5) is shown in Fig. 4.

and VII. DISCUSSION

I.O

0.5

]

I

]
Cuden and Moto

] ———Kwok Woo and Jha
I

\

0.0

2g(0)
FIG. 4. Frequency dependence of relative scattering effi-

ciency for antiferromagnetic chromium at T =O'K.

A =A„+Am .

The integrals Ig and I~ can be solved numerically
only.

The scattering efficiency obtained for the inelastic
scattering of light in antiferromagnetic chromium
shows no divergence at the threshold energy equal to
twice the antiferromagnetic energy gap and exhibits
completely different frequency dependence to that
found in Ref. 21. This is the consequence of proper-
ly treating the coherence effects in our calculation.

In conclusion, let us mention the approximations
made in our calculation and the mechanisms which
could affect the frequency and temperature depen-
dence of the scattering efficiency.

The effective interaction and the energy gap are as-
sumed constant over the magnetic part of the Fermi
surface. Further, we assumed, that in chromium,
there is a good matching of electron-hole pockets.

Interactions between the quasiparticles created in
the scattering are ignored.

Smearing of the Fermi surface and the depairing of
bound-electron —hole pairs by random fluctuating
electric fields, caused by the electron-phonon interac-
tion, is neglected.

In the present calculation of the scattering efficien-
cy the model Hamiltonian that leads to the second-
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order phase transition is used. As is well known,
chromium exhibits first-order phase transition and
therefore one cannot rely on the results of our calcu-
lation in the temperature region close to the critical
temperature, TN.

The calculation of the scattering efficiency based
on the more realistic band model of chromium is in

- progress.
Finally, let us point out that by using the Raman-

scattering technique one can estimate A /A and ob-

tain a better value for the order parameter than by
other indirect methods.
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