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Abstract
The hydrogen atom confined by an infinite spherical potential barrier is studied
employing a variational procedure based on the p-version of the finite element
method. In such a procedure, the spherical spatial confinement is imposed
straightforwardly by removing a local basis function. The calculations have
been performed for estimating the energy spectrum, the dipole polarizability
and the effective pressure for various confinement radii. The effect of the
spatial confinement on these quantities is analysed. The results obtained are
compared with those previously published in the literature and the efficiency
of the finite element method to treat confined quantum systems is discussed.

1. Introduction

The study of spatially confined quantum systems has increased considerably during the last few
years (see [1] and references therein). Many physical phenomena occur in environments which
could be considered cavities such as atoms and molecules under high pressure, and chemical
reactions inside zeolite molecular sieves or fullerenes. Moreover, the arrival of modern
experimental techniques has allowed the fabrication of semiconductors nanostructures, such
as quantum wells and quantum dots, which has permitted us to explore the limits of dimension
and confinement [2].

A simple but interesting example of a confined quantum system is the hydrogen atom
limited by a spherical barrier of infinite potential. This model of a compressed atom was first
proposed by Michels et al [3] to simulate the effect of pressure on an atom, while Sommerfeld
and Welker [4] recognized the importance of the model for astrophysics. Furthermore, several
articles have studied this system lately (see [5] and references therein) including its recent use
in the understanding of the interiors of planets Jupiter and Saturn [6] and of atoms embedded
in neutral media (e.g., neutral plasma or liquid helium; see [7, 8], for instance).

Several methods have been employed for the study of the confined hydrogen atom. For
example, Goldman and Joslin [9] as well as De Groot and Ten Seldam [10] utilized the exact
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solution of the problem, Aquino [11] applied a power series to solve the Schrödinger equation,
while Laughlin et al [12, 13] employed algebraic methods and perturbation theory to derive
the wavefunctions. However, methods based on variational principle are among the most
employed in the literature such as, for example, the procedures that utilize trial wavefunction
with nonlinear variational parameters [14–16] or that expand the wavefunction in a set of
finite basis functions [17–19], that solve the Kohn–Sham equations [20, 21] and that use the
configuration interaction model [22]. Particularly, we propose in the present paper a novel
numerical variational methodology to solve the time-independent Schrödinger equation of
confined quantum systems.

The procedure implemented for us is based on the variational formalism and the p-version
of the finite element method (p-FEM) for expanding the wavefunction in a finite basis set. The
finite element method (FEM) is a general nomenclature for a set of different procedures [23]
which are based on the technique of space discretization into elements and on the use of local
polynomial basis functions defined on these elements. The FEM has been utilized in molecular
dynamics and electronic structure for bound states [24–26] and scattering problems [27, 28].
In particular, the p-version of the FEM employs linear interpolants and shape functions as basis
functions and allows one to use different degrees of polynomials in different elements [25, 26,
28]. The present work is, to our knowledge, the first application of the p-FEM to treat confined
quantum systems. In order to test the efficiency of our methodology we apply it to calculate
the energy spectrum, dipole polarizability and effective pressure on the compressed hydrogen
atom. This permits us to analyse the quality of the eigenvalues and eigenfunctions generated
by using the p-FEM. The results are then compared with the ones previously published in the
literature that use some approximative or exact methods.

This paper is organized as follows. In section 2 we apply the variational formalism and
the one-dimensional p-FEM for solving the Schrödinger equation associated with the problem
of the confined hydrogen atom. In section 3 we present the results for energy spectrum, dipole
polarizability and effective pressure obtained by the p-FEM and other methods for various
confinement radii. Finally, in section 4 we discuss the results and present our concluding
remarks.

2. Methodology

2.1. Variational formalism

The centre of mass motion cannot be separated exactly from the relative one because of the
spatial confinement. However, assuming an infinite mass for the nucleus and putting it on
the centre of the hard sphere with radius rc, the Hamiltonian of the confined system assumes
the same form as the free one, except the potential energy, where it becomes (in atomic units)

V (r) =

−1

r
, r < rc,

∞, r � rc,

(1)

where an impenetrable spherical barrier at r = rc is included.
From the variational principle, the problem of solving the non-relativistic time-

independent Schrödinger equation is equivalent to finding stationary solutions of a functional
of energy,

J [�] =
∫

�∗(r) {H − E} �(r) dr, (2)

with H being the Hamiltonian of the system.
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Expanding the wavefunction in spherical harmonics,

�(r) =
∑

l

al

χl(r)

r
Ylm(θ, φ), (3)

and using their orthonormalization relations, functional (2) can be written in terms of χl(r) as
follows:

J [�] =
∑

l

|al|2Jl[χl],

where l is the total angular momentum, the functional J [χl] is expressed as

Jl[χl] =
∫ rc

0
dr

{
h̄2

2µ

dχ∗
l

dr

dχl

dr
+ χ∗

l

[
V ef

l (r) − E
]
χl

}
(4)

and V ef
l (r) = V (r) + [h̄2l(l + 1)/2µr2]. Note that to obtain equation (4) we have utilized the

Dirichlet’s boundary conditions. The eigenstates and eigenvalues solutions of Jl[χl] are found
expanding the wavefunction in a finite basis set

{
f l

j

}
χl(r) =

p∑
j=1

cl
j f

l
j (r), (5)

with
{
cl
j

}
being the coefficients of expansion, and imposing the stationarity condition on

functional (4) under consideration. Thus, the variational solutions are obtained solving the
generalized eigenvalue–eigenvector problem

Hlc = EOlc, (6)

where c is the coefficient vector. In such an equation, the Hamiltonian and overlap matrix
elements are given by

{Hl}ij =
∫ rc

0
dr

{
h̄2

2µ

df l∗
i

dr

df l
j

dr
+ f l∗

i V ef
l (r)f l

j

}
(7)

and

{Ol}ij =
∫ rc

0
dr f l∗

i (r)f l
j (r). (8)

The number of basis functions requires a computational effort to calculate the integrals
(7) and (8) so as to solve equation (6). Therefore, the efficiency of the numerical calculation
depends on the choice of the finite basis set utilized to expand the wavefunction χl .

2.2. The p-version of the finite element method (p-FEM)

The one-dimensional p-FEM with an equidistant discretization is utilized for us to expand the
wavefunction χl(r) (see [25, 26, 28] and references therein). This method consists in dividing
the integration interval [0, rc] into Ne elements, where the ith element has the range of ri−1 to
ri with r0 = 0 and rNe = rc, and expanding the wavefunction as follows:

χl(r) =
Ne∑
i=1

ki∑
j=0

c
l,i
j di

j (r), (9)

with ki being the highest order of the basis functions associated with the ith element, di
j is the

j th basis function of the same element and c
l,i
j is the related expansion coefficient. The basis

functions
{
di

j

}
satisfy the following property:∫ rc

0
dr di∗

j (r)di ′
j ′(r) = 0, ∀i �= i ′. (10)
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Figure 1. Example of a p-FEM basis functions set with Ne = 3 and k = 2 used to expand the
wavefunction.

The p-FEM utilizes as basis functions two linear interpolant functions defined by

di
0(r) = ri − r

ri − ri−1
, di

ki
(r) = r − ri

ri − ri−1
, r ∈ [ri−1, ri], (11)

and ki − 1 shape functions defined by

di
j (r) = (4j + 2)−

1
2 [Pj+1(y

i) − Pj−1(y
i)], j = 1, . . . , ki − 1, (12)

where yi = 2di
0(r) − 1 and Pj are the Legendre polynomials1. The

{
di

j (r)
}

basis set satisfies
the following relations:

di
0(ri−1) = 1 = di

ki
(ri),

di
0(ri) = 0 = di

ki
(ri−1), (13)

di
j (ri−1) = 0 = di

j (ri), j = 1, . . . , ki−1.

The imposition of the continuity of the wavefunction on the border of elements leads to the
condition ci

ki
= ci+1

0 and di
ki
(r) + di+1

0 (r) being only one function actuating in two elements.
Due to these properties, Hamiltonian and overlap matrices are symmetric and sparses, and
they have a useful block structure.

As an example, we display pictorically in figure 1 the
{
di

j (r)
}

basis set for Ne = 3 and
ki = 2. In such a case, the expansion of χl(r) is given by

χl(r) =
3∑

i=1

2∑
j=0

c
l,i
j di

j (r). (14)

However, if we consider the continuity condition on the
{
c
l,i
j

}
coefficients, the expansion (14)

becomes

χl(r) = a1d
1
0 (r) + a2d

1
1 (r) + a3

[
d1

2 (r) + d2
0 (r)

]
+ a4d

2
1 (r)

+ a5
[
d2

2 (r) + d3
0 (r)

]
+ a6d

3
1 (r) + a7d

3
2 (r), (15)

where ak = c
l,i
j ⇐⇒ k = (i − 1)ki + j + 1 are new coefficients.

Observe that for the confined hydrogen atom we have to impose that χl (r = 0) = 0 and
χl (r = rc) = 0. The first one is due to the continuity of the wavefunction (equation (3)) on
the origin, while the second is due to the spherical spatial confinement. Both conditions are
straightforwardly implemented with the p-FEM imposing c

l,1
0 = c

l,Ne
ki

= 0 in expansion (9)
(or, for the previous example, imposing a1 = a7 = 0 at expression (15)). Note that the H and
O matrix dimensions in such a case will be (Ne × ki − 1) × (Ne × ki − 1).

1 Note that equation (12) appears in [25, 26, 28] with a signal misprint.
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3. Results

In this section results for eigenenergies, dipole polarizability and effective pressure of
the confined hydrogen atom for various confinement radii have been calculated using a
computational implementation (in FORTRAN 77) based on the p-FEM shown in section 2.
In all calculations, atomic units were employed and the element mesh was built using
equidistant discretization and polynomials of the same order for all elements (ki = k,∀i).

3.1. Energy spectrum

We compute the energies for 1s, 2s, 2p, 3s, 3p and 3d states of the confined hydrogen atom
using different basis sets and for various confinement radii. Our results are compared, when
possible, with the very accurate results obtained previously by Aquino [11] and Goldman and
Joslin [9]. In particular, Aquino employed a numerical method, proposed initially by Palma
and Campoy [29] to solve free quantum systems, that uses the Taylor series approximation
of the wavefunction. On the other hand, Goldman and Joslin [9] utilized a general analytical
solution of the radial part of the Schröinger equation for a hydrogen atom (where it depends on
the confluent hypergeometric function) and, for each l and rc fixed, they searched numerically
the zeros of such a function. The energy eigenvalues calculated by Aquino have a precision
of 10–11 figures [11], while Goldman and Joslin found results that have at least an accuracy
of 7 figures [9].

Initially, we analyse the convergence process of the p-FEM eigenenergies, when Ne and
k are increased, by considering the following convergence factor:

�E(Ne, k) = |E(Ne, k) − E(Ne, k − 1)|, (16)

where E(Ne, k) is the p-FEM energy calculated using Ne elements and polynomials of order
up to k. In tables 1 and 2, the energy eigenvalue and convergence factor results as a function
of basis definition (Ne and k) are presented for 1s, 2p and 3d states for rc = 2.0a0 and
rc = 10.0a0, respectively. The accurate energies obtained by Aquino [11] are also presented
for comparison. We can note that the �E(Ne, k) factor indicates the number of precision
figures of the energy E(Ne, k) and, hence, we can observe how the p-FEM eigenvalue of a
particular state reaches the convergence, i.e., �E(Ne, k) � 10−11.

We point out that in tables 1 and 2 if Ne is fixed, the error decreases rapidly when k
increases. On the other hand, if k is fixed, the error also decreases when Ne increases, but
more slowly. For example, with rc = 2.0a0 and Ne = 2, the p-FEM leads to a reasonable result
(up to a precision of six figures) for k = 5 (matrix dimension of 9 × 9), while for k = 2 (two
linear interpolant and one shape functions) the p-FEM does not give an acceptable result. This
suggests that the eigenfunctions for the confined hydrogen atom are more well approximated
by high-order polynomials (for k = 6, the p-FEM provides reasonable values of energy for
Ne � 3). In this way, it should have a compromise between the number of elements and the
polynomial order to reach a good convergence of the results. This justify the use of Ne = 5
for all p-FEM calculations of this subsection while k is chosen to reach an accuracy of at least
11 figures for the energy. We point out that a similar analysis was done in [28] for scattering
problems.

Next, in tables 3–5, the p-FEM energies for 1s, 2p and 3d states for various confinement
radii are, respectively, presented and compared with the ones calculated by a variational
method proposed by Marin and Cruz [14] and by a modification of the Marin–Cruz approach
proposed by Varshni [15]. Moreover, in tables 3 and 4, the energies calculated by the other
variational method utilizing the Gaussian basis set proposed by Zicovich-Wilson et al [17]
(with basis set B1 and approach A3 presented in [17] which totalled 20 basis functions) and
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Table 1. Energy eigenvalue and convergence factor (�E(Ne, k) = |E(Ne, k) − E(Ne, k − 1)|) results as a function of basis definition (Ne and k) for rc = 2.0a0. The Aquino’s values
of energy [11] are presented for comparison; energies and convergence factors in Hartree.

E and �

State Ne k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 Aquino

1s 2 −0.1 −0.12 −0.125 00 −0.125 0000 −0.125 000 0000 −0.125 000 000 00 −0.125 000 000 00
0.4 0.01 0.000 09 0.000 0003 0.000 000 0004 <1.0 (− 11)

3 −0.1 −0.125 −0.125 000 −0.125 000 00 −0.125 000 000 00 −0.125 000 000 00
0.2 0.003 0.000 009 0.000 000 01 <1.0 (− 11)

5 −0.12 −0.1250 −0.125 0000 −0.125 000 0000 −0.125 000 000 00 −0.125 000 000 00
0.09 0.0004 0.000 0004 0.000 000 0002 <1.0 (− 11)

7 −0.12 −0.1250 −0.125 000 00 −0.125 000 000 00 −0.125 000 000 00
0.05 0.0001 0.000 000 06 0.000 000 000 01

2p 2 1.7 1.6 1.5760 1.576 02 1.576 0188 1.576 018 786 1.576 018 785 61 1.576 018 785 60
0.5 0.1 0.0008 0.000 03 0.000 0001 0.000 000 002 <1.0 (− 11)

3 1.6 1.58 1.576 02 1.576 019 1.576 018 786 1.576 018 785 61 1.576 018 785 61 1.576 018 785 60
0.4 0.02 0.000 09 0.000 001 0.000 000 002 0.000 000 000 01 <1.0 (− 11)

5 1.6 1.576 1.576 019 1.576 018 79 1.576 018 785 61 1.576 018 785 61 1.576 018 785 60
0.1 0.002 0.000 005 0.000 000 02 0.000 000 000 02 <1.0

7 1.58 1.5760 1.576 0188 1.576 018 786 1.576 018 785 61 1.576 018 785 60
0.07 0.0005 0.000 0007 0.000 000 001 <1.0

3d 2 3.346 3.33 3.327 52 3.327 50 3.327 509 16 3.327 509 156
0.007 0.02 0.000 03 0.000 01 0.000 000 02 0.000 000 001

3 3.3 3.33 3.328 3.327 509 3.327 5091 3.327 509 1565 3.327 509 156 50
0.6 0.02 0.001 0.000 008 0.000 0002 0.000 000 0004 <1.0 (− 11)

5 3.3 3.328 3.327 51 3.327 5092 3.327 509 1565 3.327 509 156 50
0.2 0.004 0.000 05 0.000 0002 0.000 000 0008 <1.0 (− 11)

7 3.33 3.328 3.327 509 3.327 509 16 3.327 509 156 50 3.327 509 156 50
0.08 0.001 0.000 006 0.000 000 01 0.000 000 000 03 <1.0 (− 11)
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Table 2. Energy eigenvalue and convergence factor (�E(Ne, k) = |E(Ne, k) − E(Ne, k − 1)|) results as a function of basis definition (Ne and k) for rc = 10.0a0. The Aquino’s values
of energy [11] are presented for comparison; energies and convergence factors in Hartree.

E and �

State Ne k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 Aquino

1s 2 −0.3 −0.4 −0.49 −0.50 −0.500 −0.499 99 −0.499 999 −0.499 999 263 28
0.1 0.1 0.05 0.01 0.001 0.000 09 0.000 004

3 −0.4 −0.48 −0.50 −0.500 −0.500 00 −0.499 999 −0.499 999 26 −0.499 999 263 28
0.2 0.09 0.02 0.002 0.000 09 0.000 003 0.000 000 05

5 −0.5 −0.50 −0.500 0.500 00 −0.499 999 −0.499 999 26 −0.499 999 2633 −0.499 999 263 28
0.1 0.04 0.003 0.000 09 0.000 001 0.000 000 01 0.000 000 0001

7 −0.5 −0.50 −0.5000 −0.499 999 −0.499 999 26 −0.499 999 2633 −0.499 999 263 28 −0.499 999 263 28
0.1 0.02 0.0006 0.000 008 0.000 000 07 0.000 000 0004 <1.0 (− 11)

2p 2 −0.103 −0.11 −0.118 −0.1188 −0.118 86 −0.118 8595 −0.118 859 545 −0.118 859 544 85
0.006 0.01 0.004 0.0004 0.000 02 0.000 0004 0.000 000 007

3 −0.110 −0.118 −0.119 −0.118 86 −0.118 8595 −0.118 859 545 −0.118 859 544 85 −0.118 859 544 85
0.004 0.007 0.001 0.000 04 0.000 0007 0.000 000 007 0.000 000 000 04

5 −0.116 −0.119 −0.118 86 −0.118 860 −0.118 859 545 −0.118 859 544 85 −0.118 859 544 85 −0.118 859 544 85
0.009 0.002 0.000 09 0.000 001 0.000 000 006 0.000 000 000 02 <1.0 (− 11)

7 −0.118 −0.1188 −0.118 86 −0.118 859 54 −0.118 859 5449 −0.118 859 544 85 −0.118 859 544 85
0.007 0.0008 0.000 01 0.000 000 08 0.000 000 0002 <1.0 (− 11)

3d 2 −0.002 −0.006 −0.0070 −0.007 09 −0.007 093 −0.007 092 78 −7.092 7840 −0.007 092 783 97
0.051 0.004 0.0003 0.000 09 0.000 003 0.000 000 03 0.000 0001

3 −0.006 −0.0069 −0.0071 −0.007 093 −0.007 092 78 −7.092 7840 −0.007 092 783 97 −0.007 092 783 97
0.028 0.0003 0.0001 0.000 007 0.000 000 07 0.000 0003 <1.0 (− 11)

5 −0.006 −0.0071 −0.007 09 −0.007 0928 −0.007 092 7840 −0.007 092 783 97 −0.007 092 783 97
0.007 0.0001 0.000 01 0.000 0001 0.000 000 0005 <1.0 (− 11)

7 −0.006 −0.007 09 −0.007 093 −0.007 092 78 −0.007 092 783 97 −0.007 092 783 970 −0.007 092 783 97
0.003 0.000 05 0.000 002 0.000 000 01 0.000 000 000 02 <1.0 (− 11)
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Table 3. Energy eigenvalue (in Hartree) for 1s state for a compressed hydrogen atom as a function
of confinement radius (in Bohr); the p-FEM results are calculated using Ne = 5.

Marin Zicovich- Saha Goldman
rc and Cruza Varshnib Wilson et alc et ald and Josline p-FEMf Aquinog

0.1 474.902 469.427 468.9930 468.993 038 659
0.5 14.897 14.758 14.747 97 14.747 970 0303
0.81 4.391 641 570 91 4.391 641 570 90
1.0 2.3906 2.3749 2.381 87 2.373 991 2.373 990 866 10
1.3 0.9218 0.9173 0.917 037 080 68
1.6 0.272 33 0.271 35 0.271 312 312 64
2.0 −0.125 00 −0.125 00 −0.122 10 −0.125 0000 −0.125 000 000 00 −0.125 000 000 00
3.0 −0.422 55 −0.422 55 −0.423 949 −0.423 967 287 73
4.086 71 −0.485 330 855 11 −0.485 330 855 11
5.0 −0.4947h −0.496 275 −0.492 40 −0.496 417 006 59
7.0 −0.4993h −0.499 794 −0.498 71 −0.499 862 577 55 −0.499 862 577 55

10.0 −0.499 981 −0.499 810 −0.499 9993 −0.499 999 263 28 −0.499 999 263 28
14.0 −0.499 999 999 50 0.499 999 999 49

a Reference [14].
b Reference [15].
c Reference [17].
d Reference [8].
e Reference [9].
f Present results.
g Reference [11].
h From Dutt et al [16].

Table 4. Energy eigenvalue (in Hartree) for 2p state for a compressed hydrogen atom as a function
of confinement radius (in Bohr); the p-FEM results are calculated using Ne = 5.

Marin Zicovich- Saha Goldman
rc and Cruza Varshnib Wilson et alc et ald and Josline p-FEMf Aquinog

0.1 991.0076 991.007 589 441
0.4 58.523h 58.448 123 7200
0.6 25.201 24.968 24.936 947 0365
1.0 8.306 8.232 8.223 25 8.223 138 8.223 138 316 16
1.4 3.8429 3.8107 3.806 884 767 19
2.0 1.5896 1.5774 1.576 02 1.576 019 1.576 018 785 61 1.576 018 785 60
2.5 0.853h 0.851 978 460 99 0.851 978 460 99
3.0 0.484 70 0.481 55 0.486 314 0.481 250 312 53 0.481 250 312 52
5.0 0.007 733 0.007 601 0.134 479 0.007 59 0.007 593 920 47 0.007 593 920 46
7.0 −0.087 41 −0.087 41 0.121 634 −0.087 49 −0.087 479 017 93
8.0 −0.104 450 066 41 −0.104 450 066 40

10.0 0.121 471 −0.118 87 −0.118 8595 −0.118 859 544 85 −0.118 859 544 85
14.0 −0.124 540 597 99 −0.124 540 597 99
20.0 −0.124 994 606 65 −0.124 994 606 64

a Reference [14].
b Reference [15].
c Reference [17].
d Reference [8].
e Reference [9].
f Present results.
g Reference [11].
h From Dutt et al [16].
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Table 5. Energy eigenvalue (in Hartree) for 3d state for a compressed hydrogen atom as a function
of confinement radius (in Bohr); the p-FEM results are calculated using Ne = 5.

Marin Goldman
rc and Cruza Varshnib and Joslinc p-FEMd Aquinoe

0.1 1644.530 1644.529 922 40
0.5 63.160 18 63.160 184 4674
1.0 15.117 14.990 14.967 46 14.967 464 0862
1.5 6.346 6.294 6.284 819 435 32
2.0 3.3591 3.3320 3.327 509 3.327 509 156 50
3.0 1.3044 1.2944 1.292 803 271 99
4.0 0.6266 0.6220 0.651 3558 0.621 355 776 18
5.0 0.331 74 0.329 43 0.329 117 142 97
7.0 0.097 29 0.096 66 0.096 589 640 90 0.096 589 640 89
8.0 0.046 058 247 38 0.046 058 247 37

10.0 −0.007 04 −0.007 09 −0.007 092 784 −0.007 092 783 97 −0.007 092 783 97
14.0 −0.043 113 470 41 −0.043 113 470 41
20.0 −0.053 967 564 42 −0.053 967 564 42

a Reference [14].
b Reference [15].
c Reference [9].
d Present results.
e Reference [11].

the energies obtained by a time-dependent variation perturbation calculation performed by
Saha et al [8] are shown for comparison, too.

We can note in these tables that the p-FEM results and the ones obtained by Aquino and
by Goldman and Joslin agree in all figures evaluated for any energy state independently of
the confinement radius. To obtain this precision, the value of highest order of polynomial
basis functions associated with an element varied between k = 4 and k = 9 for small and
large confinement radii, respectively. These values for k represent H and O matrices with
dimensions between 19 × 19 and 44 × 44. The total number of basis functions employed
here is relatively smaller than the ones used in other variational procedures if we analyse the
precision reached in the calculations. For example, Zicovich-Wilson et al employ a basis set
with 20 functions and obtain a poor result for 2s and 2p states. We can also point out that the
p-FEM basis are local functions and, consequently, the integration is not performed over all
region of space. Moreover, when compared with the other results shown in tables 3–5, the
p-FEM is the one that presents the best results.

For 2s, 3s and 3p states, the results obtained with the p-FEM are displayed in tables 6–8,
respectively, and then are compared with the very precise ones calculated by Aquino [11] and
Goldman and Joslin [9] for various values of rc. Moreover, in table 6, the values tabulated
by De Groot and Ten Seldan [10], Goodfriend [18] and Zicovich-Wilson et al [17] for larger
confinement radii are also shown for comparison. Again the results obtained using the p-FEM
within the 11 figures with those of Aquino and the 7 figures with those of Goldman and Joslin,
demonstrate the excellent precision of the present method to obtain eigenenergies of confined
hydrogen atom for ground and excited states for different values of l, even using a small
number of basis sets.

An interesting effect to be shown is the splitting of the degeneracy observed in the free
hydrogen atom for the levels nl, with 0 �= l � n−1, due to isotropic compression. For this we
plot in figure 2 the energy levels of 2s, 2p, 3s, 3p and 3d states as a function of the confinement
radius, rc. In this figure, we can easily note that the difference between the energy levels nl
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Table 6. Energy eigenvalue (in Hartree) for 2s state for a compressed hydrogen atom as a function
of confinement radius (in Bohr); the p-FEM results are calculated using Ne = 5.

De Groot and Zicovich- Goldman
rc Ten Seldama Goodfriendb Wilson et alc and Joslind p-FEMe Aquinof

0.1 1942.720 1942.720 354 55
0.5 72.672 04 72.672 039 1905
1.0 16.570 26 16.570 256 0935
2.0 3.327 509 3.327 509 156 50 3.327 509 156 49
4.0 0.420 525 0.420 2356 0.420 235 631 71
7.0 −0.0974 −0.0513 −0.021 059 −0.051 260 393 61 −0.051 260 393 61
8.0 −0.084 738 721 36 −0.084 738 721 35

10.0 −0.1162 −0.1120 −0.052 848 −0.112 8062 −0.112 806 210 30 −0.112 806 210 29
14.0 −0.124 015 029 43 −0.124 015 029 43
17.0 −0.124 877 921 06 −0.124 877 921 05
20.0 −0.124 99 −0.125 00 −0.124 987 114 31

a Reference [10].
b Reference [18].
c Reference [17].
d Reference [9].
e Present results.
f Reference [11].

Table 7. Energy eigenvalue (in Hartree) for 3s state for a compressed hydrogen atom as a function
of confinement radius (in Bohr); the p-FEM results are calculated using Ne = 5.

Goldman
rc and Joslina p-FEMb Aquinoc

0.5 170.5852 170.585 164 188
1.0 40.863 12 40.863 124 6010
2.0 9.314 150 9.314 150 435 40 9.314 150 435 51
4.0 1.872 702 1.872 702 065 62
7.0 0.392 241 143 11 0.392 241 143 11
8.0 0.246 491 976 99 0.246 491 976 99

10.0 0.091 422 32 0.091 422 322 41 0.091 422 322 40
14.0 −0.016 065 576 45 −0.016 065 576 44
17.0 −0.040 456 745 64 −0.040 456 745 63
20.0 −0.049 918 047 60

a Reference [9].
b Present results.
c Reference [11].

increases when rc goes to zero. Another important aspect is that the confinement may cause
accidental degeneracies between levels with different principal quantum number n and the
inversion of the energy values. This can be observed with the 2s and 3d states when rc = 2.0
in both figure 2 and tables 5 and 6. The inversion of the electronic occurs because the influence
of the confinement is more noticeable for states with a large number of nodes in the radial
direction due their wavefunction extension. These phenomena can also be seen as a hidden
symmetry which is described by the Lenz vector formalism [30]. Moreover, Connerade et al
have shown that this inversion between the ns and nd energy levels is a general behaviour of
many compressed multi-electron atoms, where the s–p competition disappears with increasing
confinement pressure (see [31] for details).
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Figure 2. Energy values (in Hartree) as a function of confinement radius (in Bohr) for 2s, 2p, 3s,
3p and 3d states of the compressed hydrogen atom. The p-FEM results are calculated with Ne = 5
and k = 5.

Table 8. Energy eigenvalue (in Hartree) for 3p state for a compressed hydrogen atom as a function
of confinement radius (in Bohr); the p-FEM results are calculated using Ne = 5.

Goldman
rc and Joslina p-FEMb

0.5 114.6436 114.643 552 519
1.0 27.474 00 27.473 995 3025
2.0 6.269 003 6.269 002 791 99
4.0 1.261 521 1.261 521 214 88
7.0 0.257 800 616 93
8.0 0.157 368 197 44

10.0 0.049 190 76 0.049 190 760 59
14.0 −0.027 268 482 49
20.0 −0.051 611 419 76

a Reference [9].
b Present results.

3.2. Other properties

It is well known that not always a useful method for computing the energy spectrum is able
to reproduce other electronic properties. In order to examine the efficiency of the p-FEM
method for the calculation of such properties, we determine the dipole polarizability (α) and
the effective pressure (P) for the confined hydrogen atom in the 1s state. Dipole polarizability
is an important quantity in the description of interatomic interactions and electron–atom
scattering (see [16, 32] and references cited therein). To obtain accurate values of α, it is
necessary to know the behaviour of the wavefunction of excited states over the entire confined
space. On the other hand, the evaluation of the effective pressure for a given confinement
radius is important to understand the interior of planets such as Jupiter and Saturn [6]. In
both cases, Ne = 6 and k = 6 have been utilized in the p-FEM calculation while for the
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Table 9. Polarizability α (in atomic units) for the 1s state as a function of confinement radius rc.
The p-FEM results are calculated using Ne = 6 and k = 6.

Dutt Banerjee Saha
rc et ala et alb et alc Laughlind Laughline p-FEMf

0.4 0.000 85 0.000 853 148 792
1.0 0.028 68 0.03 0.0291 0.028 792 0226
1.4 0.098 57 0.099 091 2992
2.0 0.340 16 0.35 0.3344 0.342 558 0.342 558 0.342 558 109
2.5 0.694 90 0.700 675 176
3.0 1.024 32 1.20 1.191 706 06
4.0 2.357 82 2.39 2.336 311 498 2.377 982 333 2.377 982 33
5.0 3.402 94 3.43 3.2176 3.402 946 464 3.422 454 224 3.422 454 22
7.0 3.512 98 4.35 3.8079 4.346 176 702 4.347 638 027 4.347 638 03
9.0 4.49 4.487 342 421 4.487 413 391 4.487 413 38

12.0 4.499 827 685 4.499 828 228 4.499 828 19

a Reference [16].
b Reference [21].
c Reference [8].
d Approximate values from [13].
e Precise numerical values from [13].
f Present results.

calculation of the effective pressure also Ne = 10 and k = 10 have been used to investigate
the convergence of the results. These p-FEM basis definitions assure an excellent precision of
our results.

The dipole polarizability describes the second-order response of a system to an external
electric field. It can be calculated by using the perturbation method from its second-order
term. The dipole polarizability of the 1s state assumes then the following expression [33]:

α = 2
∑
n�2

|〈�np(r)|r cos θ |�1s(r)〉|2
(Enp − E1s)

, (17)

where the summation is over all electronic states with l = 1.
In table 9 and figure 3, we show the p-FEM results of α for various confinement radii.

They are compared in table 9 with the values computed by Dutt et al [16], obtained from
an approximate formula suggested by Buckingham [34] using a numerical exact calculation,
with the values calculated by Banerjee et al [21] who utilized the variational perturbation
procedure, with the values calculated by Saha et al [8] who also utilized variation perturbation
calculations, with those from Laughlin [13] who utilized a method followed by Dalgarno and
Lewis [35], and with the precise numerical values extracted from the same Laughlin’s paper.
Note that our results are identical to the precise numerical values of Laughlin, which indicates
that the wavefunction obtained within the p-version of the finite element method is accurate
enough.

We also calculated as the last test of the p-FEM, effective pressure (P) for the 1s state
of the confined hydrogen atom. The effective pressure is proportional to the variation of the
energy as a function of the confinement radius, as can be seen in the following expression [3]:

P(rc) = − 1

4πr2
c

dE1s

drc
, (18)
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Figure 3. Polarization (in atomic units) of the 1s state of a compressed hydrogen atom as a function
of confinement radius (in Bohr). The p-FEM results are calculated with Ne = 6 and k = 6.

Table 10. Effective pressure P (in 108 atm) for the 1s state as a function of confinement radius
(in Bohr).

Banerjee p-FEMb p-FEMb p-FEMc

rc et ala (h = 10−2) (h = 10−5) (h = 10−5)

1.0 5.926 2368 × 10−1 5.927 6127 × 10−1 5.926 2356 × 10−1 5.926 2358 × 10−1

2.0 1.278 3740 × 10−2 1.278 4664 × 10−2 1.278 3740 × 10−2 1.278 3740 × 10−2

3.0 1.025 9727 × 10−3 1.026 0178 × 10−3 1.025 9727 × 10−3 1.025 9728 × 10−3

4.0 1.263 271 × 10−4 1.263 318 × 10−4 1.263 271 × 10−4 1.263 2707 × 10−4

5.0 1.790 01 × 10−5 1.790 02 × 10−5 1.790 01 × 10−5 1.790 0090 × 10−5

6.0 2.6079 × 10−6 2.6072 × 10−6 2.6071 × 10−6 2.607 0534 × 10−6

7.0 3.763 × 10−7 3.763 × 10−7 3.763 × 10−7 3.762 9083 × 10−7

a Reference [21].
b Present results with Ne = 6 and k = 6.
c Present results with Ne = 10 and k = 10.

where E1s is the energy of the 1s state. Since we do not have an analytical expression for E1s,
it is necessary to evaluate equation (18) by using the following approximate formula:

P(rc) ≈ − 1

4πr2
c

E1s(rc + h) − E1s(rc − h)

2h
. (19)

In table 10 are displayed three sets of the p-FEM results for P: first with Ne = 6, k = 6
and h = 10−2; second with Ne = 6, k = 6 and h = 10−5; and the last with Ne = 10, k = 10
and h = 10−5. Moreover, the results obtained by Banerjee et al [21] are also shown for
comparison. We can note that the p-FEM results with Ne = 6 and k = 6 are sensible when
there is a change of h = 10−2 to h = 10−5. The last ones are very close to the values obtained
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by Banerjee et al for P, while the first ones differ a little, mainly for small values of rc. Thus,
it is our expectation that the p-FEM results with the basis Ne = 10 and k = 10 are the most
accurate values for the effective pressure.

4. Conclusion

In this paper we have proposed a novel numerical methodology to determine the energy
spectrum and other properties of a hydrogen atom confined by an infinite spherical barrier.
This procedure is based on the variational principle and utilized the p-version of the finite
element method as a finite basis set to expand the radial wavefunction. We point out that
the imposition of the confinement boundary conditions within the p-FEM is straightforward,
being sufficient to remove a local basis function of the wavefunction expansion. Moreover, we
observe that our results are in close agreement with the more precise ones previously published
in the literature.

We point out some important aspects regarding the results of section 3: (i) we can see
that the present methodology provides all energy states (within an infinite basis limit), while
some of the usual methods are restricted to few states; for example, the methods proposed by
Marin–Cruz [14] and Varshni [15] are restricted to the states with wavefunction holding no
node between the origin and the confinement radius (viz 1s, 2p, 3d, etc); (ii) the variational
p-FEM procedure is sufficiently accurate for the whole range of the confinement radius; for
example, the method proposed by Laughlin [13] to obtain the polarizability is only satisfactory
for large values of the confinement radius; and (iii) the number of basis functions necessary
to converge the results is small; for example, with the basis set Ne = 5 and k up to 9 (where
it represents up to 44 basis functions), the results are close to those of Aquino [11] for all
confinement radii and electronic states studied.

Another remark is that many methods use trial basis functions modelled to describe specific
problems and such modelled functions would have to be modified if we study a different or
more complex systems. On the other hand, the p-FEM can be applied to a variety of systems
without the need of new trial basis functions. Moreover, the p-FEM can be employed to solve
multi-dimensional problems [24, 27, 25].

Finally, we accentuate that although the computational effort was very little, the matrices
generated by using the p-FEM are sparses and concentrated on the diagonal and we utilize
optimized computational routine to calculate the integrals of Legendre polynomials. We can
improve the computational time employing, for example, a non-uniformly discretized mesh
to obtain more faster convergence [26]. The possibility of using non-uniform meshes, beyond
the previous applications of the finite element method for multi-electronic systems, indicates
that the FEM can be applied to systems with larger nuclear charges. Moreover, as our basis
expansion is exact (in the sense of an infinite basis set), the finite element method can be used
to fill the Coulomb cusp properly. Consequently, the present methodology can be a useful tool
in the area of confined quantum systems. Works in these directions are in progress and will
be published elsewhere. In particular, we are conducting a study of the two-electron confined
systems with a three-dimensional anisotropic harmonic confinement potential [36] by using
the present methodology.
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