Solvent Dependent Conformational Isomerism and Ligand Oxidation of Novel Ru(II) Cyclen Complexes

Kleber Q. Ferreira,†,‡ Luciana N. Cardoso,‡ Sofia Nikolaou,‡ Zênis N. da Rocha,‡ Roberto S. da Silva,†,§ and Elia Tfouni*†

Departamento de Química da Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. dos Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil, Instituto de Química da Universidade Federal da Bahia, Campus Universitário de Ondina, 40170-290, Salvador, BA, Brazil, and Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, cep 14040-903, Ribeirão Preto, SP, Brazil

Received January 3, 2005

The synthesis of cis-[RuII(cyclen)(L)]n+ (cyclen = 1,4,7,10-tetraazaacyclocdecane and L = 2,2′-bipyridine (bpy), phenanthroline (phen)), where oxidation is less likely. The freshly prepared complexes are stable in aprotic solvents and cyclen undergoes oxidative dehydrogenation reaction at high pH. These compounds also present solvent dependent conformational isomerization.

There is a strong relationship between ring size and stereochemistry in tetraazaacrocyclic ruthenium compounds, which affects the thermodynamic, kinetic, and photochemical properties of a [Ru(macrocycle)LL]n+ complex.1–6 In this context, cyclen (cyclen = 1,4,7,10-tetraazaacyclocdecane) complexes are exclusively cis, while with larger macrocycles they may also occur as trans. The reactivity of Co(III) cyclen complexes has been well studied,7,8 and the occurrence of conformational isomerism and pH-dependent isomer interconversion have been reported. For cis-[RuCl(imcyclen)(NO)]2+, we decided to investigate the occurrence of conformational isomerization and ligand oxidation in cis-[Ru(cyclen)(L)]n+ (Figure 1) complexes with ligands less electron-withdrawing than nitrosyl (L = 4-cyanopyridinium (4-NCPyH+), 2,2′-bipyridine (bpy), or phenanthroline (phen)), where oxidation is less likely.

All the novel12,13 complexes are stable in aprotic solvents and in the absence of air, but they gradually decompose in


(12) cis-[Ru(cyclen)(bpy)][BF4]2: η = 65%. IR: νmax/cm−1 (Nujol) = 3232 (NH); 2930 (CH); 1700–1680 (C=O); 1540 (C=C); 1490 (C=N); 1410 (CH); 1348 (NH); 1290 (C=C); 1220 (CH); 1190 (C=N); 1030 (C=O); 760 (C=C).

The Epa of the Ru(II)/(III) couple is more positive
pounds exhibit an anodic wave assigned to Ru(II) oxidation.
4-cyanopyridinium. The cyclic voltammograms of all com-
ination occurs in the nitrosyl complex even in acidic medium
H
[55x53]and also agree with the infrared spectra of those
35
and imine carbon signals (169.7, 169.9, and
173.9 ppm for L = bpy, phen, and 4-NCpy, respectively),
can be noticed. These results are consistent with a cyclen
oxidative dehydrogenation reaction, forming cis-[Ru(imcy-
lagen)(NO)][PF6]2.9 The cyclen oxidative dehydroge-
nation occurs in the nitrosyl complex even in acidic medium
(0.1 mol L−1 HFPe), while for the present complexes, it
occurs in pH > 6. This probably happens because the metal
center behaves essentially as Ru(III) in the presence of NO.10
However, without the assistance of the NO+ group, such
cyclen complexes require higher pH values (pH > 6) to lose
an amine hydrogen. Similar observations were also reported
for other substituted cyclam ruthenium(III) compounds,13 but
to the best of our knowledge, such unsaturation was not
earlier reported for other hexacoordinated Ru(II) cyclen
complexes, except for the nitrosyl one mentioned above.

The electronic spectral and electrochemical data of the
complexes reported therein are summarized in Table 1 and
refer to the complexes without separation of the conforma-
tional isomers. On the basis of energy and intensities, and
by comparison with related complexes,1d,14 the observed
lower-energy bands were assigned to metal-to-ligand charge
transfer (MLCT) transitions. Similarly, the bands below 300
nm were ascribed as internal ligand (IL) π → π* transitions.
cis-[Ru(cyclen)(4-NCpyH+)]2+ can be deprotonated to cis-
[RU(cyclen)(4-NCpy)]2+; thus, their pH-dependent spectra
allowed the determination of a pKa = 2.6 for the coordinated
4-cyanopyridinium. The cyclic voltammograms of all com-
pounds exhibit an anodic wave assigned to Ru(II) oxidation.
The Epa of the Ru(II)/(III) (Table 1) couple is more positive
than that of the corresponding cis-[Ru(cyclam)L]2+ species
(0.65 and 0.63 V for L = bpy and phen, respectively),15
consistent with a decrease in the macrocyclic ring size when
compared to cyclam.1d,2c

Figure 2 shows selected regions of the 1H spectrum of the
[Ru(cyclen)(bpy)]2+ species in different solvents. It is known16
that the cyclen ligand may generate three isomers
when coordinated to a metal center: the syn, syn (both
equatorial NH protons pointing toward the cis ligand) and
anti, anti (both equatorial NH protons pointing toward the
solution), as well as the less symmetric syn, anti isomer. The
former two should present a pattern of two equivalent 1H
signals for the axial and equatorial syn NH groups, while the
latter should present three signals, corresponding to two axial
NH protons, and one syn and one anti equatorial NH proton.
The following analysis for the bpy complex also holds for
the phen species, for which the same spectral pattern was
observed. There are indeed three NH signals observed;
however, the integrals do not match the expected values for
the exclusive presence of the syn, anti isomer.

Moreover, from the analysis of the aromatic region of the
1H spectrum (Figure 2), one can observe that there is a
mixture of two species in solution, which were labeled as
isomer a and isomer b. Taking the signal integrated value,
I, of 0.75 (DMSO-d6 solution) for one NH proton of isomer
b (present in the mixture as the minor component), we could
assign the signal at 5.28 ppm as the anti proton of the syn,
anti isomer b and the signals at 5.06 and 5.96 ppm as the
equatorial syn protons (3H) and the axial protons (4H) of
both isomers, respectively. On the basis of literature data,16
we assume that the more symmetric isomer present in the
mixture is the syn, syn (a). We observed a value of I = 1
for each NH proton of the syn, syn isomer. Thus, we could
estimate a relative proportion of 57% of the syn, syn and
43% of the syn, anti isomers. NOESY experiments were
performed for the phen and 4-NCpy compounds, and in the
former case, the syn NH protons were easily identified, as
they show an NOE correlation with proton 6 of the aromatic
ligand (see Figure 1 for labels). Consequently, we did not
observe such a correlation for the amphiphilic 4-NCpy ligand
complex, corroborating the coordination of this ligand to the
metal center via the nitrile group instead of the nitrogen
pyridine.

The 1H spectrum also features a multiplet ranging from
2.5 to 3.5 ppm, I = 28.14; this signal could be assigned to
the carbon-chain protons of the cyclen ligands of both
isomers. The calculated I value for the mixture is 28.16,
which is in very good agreement with the observed one. On
the basis of the bpy protons signals intensities, we also
noticed that the relative ratio of the two isomers, i.e., syn,
syn and syn, anti, is solvent dependent (Figure 2) (Supporting
Information). The interconversion between the syn, syn and
syn, anti isomers was previously reported for Co(III)
analouges in aqueous media.8 In that case, the interconversion
depends on base hydrolysis since the abstraction of an NH
proton occurs prior to the inversion of the isolated electron
pair of the nitrogen. There are no data available for this
equilibrium in organic solvents or for ruthenium compounds.
Our data show that, in the case of ruthenium, there is no
necesary for base hydrolysis to assist isomer interconversion.
This is possible because the equatorial NH protons are
weakly bound, i.e., the Ru(II) ion is more acidic, displaying
a more pronounced inductive effect on these hydrogens.

Although cyclen oxidation happens in basic media (to our knowledge, it was not observed for the Co(III) compounds), it requires the loss of one NH and one CH proton, and it might be an indirect measure of the more acidic nature of the Ru(II) ion.

Contrasting with the behavior of the bpy and phen complexes, which are isolated as a mixture of the syn, syn and syn, anti isomers, the 4-NCpyH⁺ complex is isolated as a “pure” fraction of the syn, syn isomer, which undergoes slow isomerization in DMSO-d₆ solution, converging to an equilibrium mixture of isomers a and b after 21 days (Figure 3). The absence of isomer syn, anti (b) in the crude material isolated from the synthesis might mean that the isomerization is less favored in this case. Actually, it has been shown for a number of Co(III) complexes,⁸ that the coordination of π-acidic ligands renders the inversion of the isolated electron pair of the nitrogen more difficult, presumably because it is less available due to the withdrawing effect of the ligand through the metal center. The absence of isomerization in the 4-NCpyH⁺ complex species is consistent with its higher π-acceptor ability compared to that of bpy or phen, as far as reduction potentials of the complexes are concerned (Table 1). Thus, our data suggest that the Ru complexes may be behaving similarly to the Co(III) ones with respect to the influence of π-acidic ligand.

In this work, the synthesis and characterization of three novel ruthenium–cyclen complexes were described. The compounds displayed spectral and electrochemical patterns that reflect the effect of the smaller cyclen macrocycle when compared to analogous cyclam complexes. The oxidation process centered on the cyclen ligand, had only been previously observed for the analogue cis-[RuCl(imcyclen)(NO)]²⁺ even in an acidic medium (0.1 mol L⁻¹ HPF₆), but it occurs only at pH > 6 in the present cases. The NMR studies showed the presence of the syn,syn and syn,anti isomers and that their relative proportion in solution is solvent dependent. Along with photochemical and chemical properties of the individual conformational isomers, a more refined NMR study of the three complexes and their solvent dependence is currently under way in our laboratories in an attempt to elucidate the isomerization mechanism of the coordinated cyclen ligand in organic media.

Acknowledgment. The authors thank the Brazilian agencies CNPq, FAPESP, and CAPES for financial support, and Ms. Cynthia M. C. Prado for help in the English revision.

Supporting Information Available: Details on synthesis, experimental conditions, and isomer ratio in different solvents. This material is available free of charge via the Internet at http://pubs.acs.org.

Table 1. Electronic Absorption and Electrochemical Data Obtained for the Compounds cis-[Ru(cyclen)(L)ₓ]ⁿ⁺

<table>
<thead>
<tr>
<th>compound</th>
<th>λmax/nm (log ε/mol⁻¹ dm³⁻¹ cm⁻¹)</th>
<th>Ep/a/Vb</th>
<th>Ru²⁺/³⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>cis-[Ru(cyclen)(bpy)]²⁺</td>
<td>516(3.43) 380(3.56) 344(3.56)</td>
<td>292(4.29) 243(3.98)</td>
<td>0.91</td>
</tr>
<tr>
<td>cis-[Ru(cyclen)(phen)]²⁺</td>
<td>513(3.63) 442(3.59) 335(3.45)</td>
<td>267(4.12) 223(4.08)</td>
<td>0.89</td>
</tr>
<tr>
<td>cis-[Ru(cyclen)(4-NCpyH⁺)₂⁺]²⁺</td>
<td>462(4.02)</td>
<td>254(4.15) 216(4.29)</td>
<td>1.19</td>
</tr>
<tr>
<td>cis-[Ru(cyclen)(4-NCpy)₂⁺]²⁺</td>
<td>380(3.94)</td>
<td>254(4.12) 211(4.24)</td>
<td>1.19</td>
</tr>
</tbody>
</table>

* Data collected from aqueous solutions. * Ep = anodic peak potential; the E values are reported vs SHE. * MLCT = metal to ligand charge transfer. * LF = ligand field. * IL = internal ligand. / pH = 1. * pH = 6.

Figure 2. ¹H spectra of aromatic region of cis-[Ru(cyclen)(bpy)]²⁺.

Figure 3. Evolution of the ¹H spectra (DMSO-d₆ solution) of cis-[Ru(cyclen)(4-NCpyH⁺)]²⁺ with time.