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Abstract. Complex network theory is used to investigate the structure of meaningful concepts in written
texts of individual authors. Networks have been constructed after a two phase filtering, where words with
less meaning contents are eliminated and all remaining words are set to their canonical form, without any
number, gender or time flexion. Each sentence in the text is added to the network as a clique. A large
number of written texts have been scrutinised, and it is found that texts have small-world as well as scale-
free structures. The growth process of these networks has also been investigated, and a universal evolution
of network quantifiers have been found among the set of texts written by distinct authors. Further analyses,
based on shuffling procedures taken either on the texts or on the constructed networks, provide hints on
the role played by the word frequency and sentence length distributions to the network structure.

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.Hc Networks and genealogical
trees – 02.10.Ox Combinatorics; graph theory

1 Introduction

Concepts of complex networks have proven to be powerful
tools in the analysis of complex systems [1–5]. They have
been applied to modelling purposes as well as to search for
properties that naturally emerge in actual systems due to
their large-scale structure. Unlike random graphs, com-
plex networks reveals ordering principles related to their
topological structure. This way, if complex systems are
mapped onto networks, it is possible to use their concep-
tual framework to identify and even to explain features
that seem to have universal character. Several complex
networks have been proposed in the scientific literature
associated with real systems: the biological food web [6],
technological communication networks as the Internet, in-
formation networks as the World Wide Web [7], social net-
works defined by friendship relations among individuals,
etc. [8].

Word networks have been used to address complex as-
pects of human language. In such studies, words are con-
nected according either to semantic associations [11–13] or
even by nearness in the text [14–17], i.e., based on what
is commonly called word window with a fixed number of
words. Those works intend to establish the structure of a
given language as a whole. Because of this, they deal with
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a huge amount of texts, independently of their authors,
what is called corpora.

As a product of brain activity, language and language
networks can be brought in connection to neuronal net-
works revealed by direct physiological measurements [18]:
functional magnetic resonance of human brains estab-
lished networks whose vertices are regions of the cerebral
cortex activated by external stimuli according to a tem-
poral correlation of activity.

In this work, we investigate the relations between the
concepts in individual written texts, by using them as
starting point to construct significant networks. Project-
ing both the concepts present in the text, as well as the
way they are related among them, onto a network gives
the opportunity to use the tools and concepts developed
within the network framework to characterise, in a quan-
titative way, how the concepts in a written text appear,
how ordered and connected they are, how close to each
other they are within the text, and so on.

2 Text network construction

An undirected network is defined by a set of elements,
called vertices or nodes, represented graphically by points,
some of which are joined together by an edge, represented
by a line between these points. The topological structure
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Fig. 1. The filtering treatment and the growth process of the network for a small poem.

of many networks displays a large-scale organization, with
some typical properties like: highly sparse connectivity,
small minimal paths between vertices and high local clus-
tering.

To analyse a network, a number of indices (or quan-
tifiers) have been proposed, which allow for a quantifi-
cation of many of the properties quoted above. In this
work we shall use the most important of them: number
of vertices N , number of edges M , average connectivity
〈k〉, average minimal path length �, diameter L, degree
distribution p(k) , and the Watts and Strogatz cluster-
ing coefficient C (for a thorough discussion of these in-
dices see, e.g., [5]). If the node degree distributions follow
power laws, p(k) ∼ k−γ , the exponent γ becomes an im-
portant index for the network characterisation. Two im-
portant network scenarios associated, respectively, to the
small-world [9] and scale-free structures [10], have been
identified in several complex networks, including those re-
lated to the subject of this work, namely in the quoted
corpora and of brain activity.

To map the texts onto networks that reflect the struc-
ture of meaning concepts within it, we have preserved only
the words with an intrinsic meaning, eliminating words
which have a merely grammatical function, as to arrange
the syntactical structure of sentences in the text (articles,
pronouns, prepositions, conjunctions, abbreviations, and
interjections). Afterwards, we have reduced the remaining
words to their canonical forms, i.e., we have disregarded
all inflections as plural forms, gender variations, and verb
forms. Such procedures are common in studies on lan-
guage [19]. In order to perform a computer implementa-
tion, we have used some routines, dictionaries, and gram-
matical rules from UNITEX package [20]. Unknown words
to the program were preserved in their original forms. Af-
ter this filtering treatment, we have constructed a network
for each individual text. The construction is based on the
concept of sentence, which is considered as the smallest

significant unit of the discourse. To be more precise, in
this work sentence is defined as a string of words limited
by two full stops, indicated by any of these graphic signs:
period, colon, question mark, exclamation point, ellipses.
In the network, each distinct word corresponds to a sin-
gle vertex, and any two words are connected if they are
concomitantly present in one (or more) same sentence.
Sentences are incorporated into the network as a com-
plete subgraph, that is, a clique of mutually connected
words. Sentences with common words are connected by
the shared words. The method we propose offers a natural
way to analyse the growth process of the network evolu-
tion. We have investigated both the network behavior in
this step-by-step evolving process, what we call dynamical
analysis, as well as the behavior of the entire network in
its final form, corresponding to the entire text, called the
static analysis. Both methods reveal important properties
and they shall be discussed further on. In Figure 1, we
show an example of a text filter process together with the
evolving process of network construction for a well known
jingle.

In order to guarantee an uniform and comprehensive
sample, we have chosen a collection of 312 texts [21], which
can be cast into different classes as: genre (59% technical,
41% literary), language (53% in Portuguese, 47% in En-
glish), gender (72% male authors, 28% female authors).
Finally we have also classified the texts according to their
size (55% with less than 1000 sentences, 45% with more
than 1 000). The smallest text has 169 and the largest one,
276 425 words; in the average, the texts have 32 691 words.

3 Results

3.1 Text analysis

The texts were individually analysed, based on the eval-
uation of the indices quoted in the previous section: N ,
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Table 1. Average values for the indices. Filtered texts were
used as standard subjects, and shuffling operations were car-
ried out on networks generated by them. Original means text
without filtering, used just for the purpose of comparison.

Text L � C

Filtered 5 ± 1 2.3 ± 0.2 0.77 ± 0.05

SA 4 ± 1 2.2 ± 0.2 0.77 ± 0.04

SB 4 ± 1 2.4 ± 0.3 0.74 ± 0.05

SC 4 ± 1 2.2 ± 0.3 0.40 ± 0.20

SD 3 ± 1 2.2 ± 0.3 0.05 ± 0.06

Original 4 ± 1 2.0 ± 0.1 0.82 ± 0.03

M , 〈k〉, �, C, L, and degree distribution p(k), which we
have found to obey a power law p(k) ∼ k−γ . We have also
followed how the number and size of independent clusters
varies in the growth process. Computed average values
of such indices based on all investigated texts are shown
in Table 1. The analysed networks are very sparse, with
average connection index 2M/[N(N − 1)] < 0.1 for the
networks with N ≥ 100.

We have verified that the degree distributions, for all
analysed texts, exhibit an early maximum around k = 10,
which is followed by crossover to a long tail, approxi-
mating a power law distribution with average exponent
〈γ〉 = 1.6 ± 0.2. We have found no evidence of correlation
between γ and the length of the analysed text. These fea-
tures are illustrated in Figure 2, where we show p(k) versus
k for a very large text and the smallest one we analysed.

In Figure 3a, we indicate by squares the value of clus-
tering coefficient for the 312 analysed texts as function of
the text size. The obtained values are always large, lying in
the interval [0.68, 0.9]. We also see that texts with smaller
number of vertices have, in general, higher C values in
comparison to those with larger number of vertices. The
dynamical analysis of the evolution of C reveals interest-
ing results that may help understand this behaviour. For
the purpose of comparison, we superimpose in Figure 3a
a sequence of values of C, evaluated as the construction
of the network evolves, for two different very large texts.
We clearly see that C goes through a maximum, and then
decreases to a text dependent value C0,i which, for the
two examples, are ∼0.75. So, the dynamical dependence
of C on the text length for a single text follows the average
trend observed for an set of texts.

A similar behaviour for C is exhibited when we plot its
value as function of the number of sentences s in 13 differ-
ent texts, as shown in Figure 3b. There we draw C −C0,i

as function of the number s of sentences in the text in
linear logarithmic scale, what indicates that as C ≈ C0,i

exp(−s/σ).
The investigation of the cluster structure of the net-

work during its growth has shown that texts evolve mostly
in the form of a very large single cluster, which is formed
since the very beginning of the network evolution. New
words are likely to adhere to it rather than starting other
significant clusters, what leads to the presence of a single

giant cluster for the entire text. Another aspect we have
analysed was the evolution of the indices in the network
growth process with respect to the same text in different
languages. As an example we compare, in Figure 4, the
evolution of C and � for the network associated to James
Joyce’s Ulysses, in the original English version and in its
translation to Portuguese.

The results we have obtained to this point indicate that
the networks we analysed have highly sparse connectivity,
small D and �, but high C, what constitute evidences of
a small-word network scenario. Besides, since p(k) decay
according to power laws, we conclude they also behave as
scale-free networks. It is important to emphasize that the
filtering treatment does not modify the network general
behavior. In order to verify this fact, we have also per-
formed the same measurements for the networks obtained
from the original texts, without any kind of treatment. We
have verified that, notwithstanding to the fact that we ob-
tain different values for the same indices (see Tab. 1), the
very frequent presence of articles, prepositions and other
words does not alter the small-world and scale-free char-
acter of the text networks! The small-world behavior is
characterized by a great compactness and by the presence
of some vertices with high local clustering. Such aspect in
these networks means that they have words that are often
used along the text. That fact explains the small values of
D and �. The scale-free behavior results from the presence
of nodes with high connectivity degree in a much greater
amount in comparison to that of a random graph. This
aspect is obviously expected in a written text, due to the
presence of an organization principle which controls the
construction of the text. The most connected words are
associated with recurrent concepts around which the text
is constructed.

3.2 Shuffling procedures

There are several agents that contribute to determine the
measured indices in the analysed networks. For example,
since each sentence is added to the network as a com-
plete subgraph, their lengths may interfere in the clus-
tering coefficient. In the same way, the own structure of
the sentences and the frequency of the words along the
whole text affects C and other indices as well. In order
to evaluate the role of these main agents in the deter-
mination of the indices, we have re-analysed the filtered
texts after submitting them to four shuffling processes,
which are so characterized: (SA) The beginning and the
end of sentences are kept fixed, while the position of the
words in the whole text is randomly changed. It breaks
the structure of concepts in the sentences, but sentence
lengths and word frequencies are kept unchanged. (SB)
The original sequence of the words along the text remains
unchanged, but all sentences are forced to have the same
average length, obtained from the unperturbed text. (SC)
The beginning and the end of sentences are kept fixed, and
words are randomly chosen from the same vocabulary of
the text. All the words have the same choice probability.
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Fig. 2. Degree distributions p(k) for a very large and the smallest text.
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Fig. 3. (a) Behavior of C as function of the number of vertices for 312 texts compared with the evolution of two large texts:
Dan Brown’s The da Vinci Code (hollow circles) and Tolstoi’s Anna Karenina (hollow triangles). (b) C − C0,i as function of
the number of sentences, where i labels the 13 texts.

Fig. 4. Clustering coefficient C (a) and average shortest path � (b) evolution, according to the number of sentences in James
Joyce’s Ulysses, in the original English version (full squares) and in a Portuguese translation (hollow circles).

(SD) Erdös-Renyi network with the same number of nodes
and links as in the filtered text networks.

A summary of results is also included in Table 1. They
show that the networks are affected in different ways but,
as expected, for all but the SD procedure, they are very far
from random networks. The indices for SA and SB are not
significantly altered. In the first case it shows that, with-
out changing the structural aspects of sentence sizes and

word frequencies, the network is not essentially affected.
In the second one, breaking sentence sizes but keeping
words in their original places is not sufficient to alter, in
a meaningful way, the network structure. This behavior is
shown in Figure 5, where 4 cumulative degree distribution

P (k) =
1
k

∫ ∞

k

p(k′)dk′, (1)
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Fig. 5. Cumulative degree distributions P (k) obtained with
one single text (Bio-informatics for Geneticists, by Barnes and
Gray) for the filtered version (solid), and the shuffle procedures
SA (dashed), SB (dotted), and SC (dash-dotted).

for a given text and three shuffled versions of it are drawn.
We realize that the scale-free character, expressed by a
linear decay in the k interval [10, 300] for P (k) remains
almost unchanged. These results remind us of Zipf’s uni-
versal result about distribution frequency of words in texts
since, when Zipf’s law is not followed, e.g., SC and SD, the
network structure is broken. Indeed, not only the power
law for P (k) is lost, but also the indices in Table 1 have
been altered. Nevertheless we emphasise the fact that, de-
spite the change in word frequency caused by SC sets up
a deep modification in the text, its value for C is much
higher than that one for SD. This indicates that the un-
changed distribution of sequence sizes still keeps the SC
network far away from the Erdös-Renyi scenario.

3.3 Addition of new words

To conclude this section let us discuss the dependence of
the rate at which new words are added to the text as
it is being written. As expected, the measured probabil-
ity P (w; L) that a new word w is added decreases while
the length L of the text increases. We have estimated this
probability by simply counting the average number of new
words in the sentences, as shown in Figure 6. There, we
draw P (w; L) for two texts where this general feature is
explicitly shown. The first three entries of the series stay
for the the first sentences of any text, and correspond to
title, name of the author and title of the first chapter.
After a short transient phase due to the first sentences,
which actually is devoid of statistical significance, we al-
ways find a decreasing behaviour that can be described by
a power law

P (w; L) ∼ L−ζ, (2)

where ζ ∈ (0.25, 0.4) for the texts we analysed.

4 A model for network growth

The results of the dynamical analysis call our atten-
tion to general aspects of network growth. Barabási and

Fig. 6. Evolution for the average number of new words for
sentence in two texts (Ulysses (by Joyce) — squares; and Ge-
netic Nature/Culture: Anthropology and Science Beyond the
Two-Culture Divide (by Goodman et al.) — circles.)

Albert [10] observed that the scale-free behavior may be
explained by a special kind of growth process, known as
preferential attachment. They proposed a model that cap-
tures such behavior: vertices are added to the network,
systematically, by connecting them to some just existing
vertices, which are selected in accordance with a prob-
ability distribution that depends on their degrees. How-
ever, the values obtained for C are much lower than those
in small-world networks. On the other hand, the Watts
and Strogatz small-world, obtained by randomly rewiring
a regular network, does not reproduce the scale-free fea-
ture [9]. Our results suggest that the growth process we
employ here is essential to capture both quoted behav-
iors. This process is characterised by the addition of a
new sentence, i.e., a complete subgraph or clique in each
step. Due to the frequency distribution of words along
the text, the attachment of these complete subgraphs is
still preferential, but the new vertices are highly clustered,
what contributes to the coexistence of both small-world
and scale-free network scenario.

A simple model was set up to help us understand the
general features of the results obtained from the analysed
texts. It has some common features with Barabasi’s model
of preferential attachment. However, an essential differ-
ence refers to the fact that the network grows by attach-
ment of new cliques, not individual vertices. New added
cliques, which have a characteristic mean length, are in-
tended to describe the inclusion of a new full sentence.
Another important difference refers to the fact that new
cliques are composed of new and old vertices (words). This
is necessary in order to keep pace with corresponding fea-
ture observed in the growth of the text networks. To ac-
count for the relative presence of new to old words in the
added sentences, as discussed in the previous section, we
let the average ratio of new to old vertices in the cliques
decreases as the construction of the network proceeds, ac-
cording to the law expressed in equation (2).

Our model depends on three parameters: the total
number Q of cliques (sentences), the largest number M
of words in a sentence, and the exponent that describes
the inclusion of new vertices ζ. The sizes of new clique
added to the network are randomly chosen in the interval
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Fig. 7. An example of the model for six sentences with maxi-
mum size of ten words and ζ = 1/4.

Fig. 8. Distribution degree for tree simulated networks with
1000 sentences, ζ = 1/4 and with different values of maximum
sentences sizes. The lines represent linear regression fitting in
the straight line region.

[1, M ]. The number of new and old vertices in each added
clique is chosen according to (2), while the choice of the
old vertices included is made on the basis of the prefer-
ential attachment mechanism, i.e., hubs are more likely
to be included in the cliques than nodes with only a few
connections. This procedure simulates the growth of our
text based networks. In Figure 7 we illustrate the growth
of a network for Q = 6, M = 10 and ζ = 1/4.

Figure 8 shows how the probability of degree distribu-
tion P (k) for different values of M . They are very similar
to those in Figure 2 obtained for actual texts. P (k) goes
through a maximum and then decreases according to a
power law. We note that M is directly related to position
of the maximum value, otherwise it has little influence on
the value of the exponent γ. On the other hand, the model
indicates that this maximum is due to the fact that net-
works grow by inclusion of cliques, with a characteristic
size. This evolution dynamics favors the presence of nodes
with a number of neighbors roughly given by maximal size
of the cliques. In Figure 9 we indicate how the exponents γ
and ζ are related. When ζ → 0, γ → 2.7, being thus quite

Fig. 9. Dependence of γ for different input values of ζ.

Fig. 10. Dependence of C as function of the number of sen-
tences for two distinct values of M . The curves are exponential
decay fits to the scattered points.

close to Barabasi’s model. On the other hand, γ decreases
when ζ increases and, for values ∼ 0.25, it agrees quanti-
tatively with the values obtained in the text analyses. For
still larger values ζ ≥ 0.5 the scale-free behaviour is lost.

In Table 2 we indicate how the different indices used
for network characterisation depend on M . The large val-
ues for the clustering coefficient (although actual texts
have still larger values) indicates that this evolution model
gives rise to networks with both small-world and scale-
free features. In Figure 10 we show how C evolves with
the number of cliques for different values M = 10 and 20,
for networks with the same number of cliques Q = 1000.
As in Figure 3, the points can be reasonably fitted by an
exponential decay to an asymptotic value C0,i.

It is clear that the limiting value of C depends on both
Q and M , and we must take care in extrapolating results
to the infinite limit. We call the attention that, with an
average 60 000 words vocabulary, a much larger number
of edges ∼1010 would be necessary to be in the situation
of a complete graph. The average number of sentences in
the text and model we analysed is much smaller than this
limiting value, so that we are safely working in the sparse
graph limit.
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Table 2. Values of some networks indices for three simulated
texts with 1000 sentences, ζ = 0.25 and different maximum
sentence sizes.

M � C 〈k〉 γ k at p(k)max

10 3.58 1 0.65 2.30 1.61 9

20 3.08 1 0.67 2.30 1.54 17

40 2.83 1 0.68 2.22 1.65 38

5 Conclusions

In this work we pursued the construction and analysis of
networks the nodes of which are words with an intrinsic
meaning in written texts. Edges were drawn among words
that are present in complete sentences. The results ob-
tained indicate that the networks have very robust prop-
erties, and the values for the network indices point to the
presence of both small-world and scale-free features. This
analysis differs from other previous works, in the sense
that both words and sentences play an important role in
the architecture of the network. We also characterized im-
portant aspects observed as the text grows, and studied
the influence of distinct shuffling procedures of words and
sentence size distribution.

The text investigation motivated us to investigate a
model for network growth that was able to reproduce
many of the features in the actual text networks. This
model takes into account preferential attachment, addi-
tion of whole cliques (and not individual vertices) to the
network, and a decrease of the probability of new words
being in sentences that are added in latter stages of the
network construction. With this ingredients, we did find
results that are characteristic to scale-free networks, but
with rather small values for the decaying exponent γ, as
well as large values of the clustering coefficient C.

To conclude, we have briefly mentioned some efforts
concerning the construction and analyses of networks that
represent the relations between neurons in brain cor-
tex [18]. On the other hand, analysed networks result from
intense intellectual activity required to produce texts. The
fact that networks present similar properties, e.g., both
satisfy small-world and scale-free scenarios, may be of sig-
nificance to bridge brain patterns to mind products, shed-
ding light into the deeper problem of how the human mind
works.

The authors would like to thank Fernanda Regebe, Gesiane
Teixeira and Charles Santana for helpful discussions and assis-
tance by code programming.
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