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ABSTRACT

On statistical-mechanical grounds, a stochastic optimization technique (generalized
simulated annealing) has been recently proposed which contains both classical simulated
annealing (Kirkpatrick et al., 1983) and fast simulated annealing (Szu, 1986) as particular
cases. This technique can be faster than both in detecting global (and alse local) minima.
Its utility in quantum chemistry is here illustrated, through the use of a semiempirical
quantum method, on molecules of the series CH;—R (C,Hg, CH4;COH, CH,0H), H, X,
(H,0,, H,5,), X,Y; (N,H,, P,H,, N,F,), for double bonds (C,H, and CH,NH), and

finally for H,0O,. - © 1996 John Wiley & Sons, Inc.

Introduction

lt is well known that, in general, a molecular
system can exist in different conformational
geometries, which are three-dimensional arrange-
ments of atoms in a structure. The number of
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conformations increases with the molecule size. In
particular, molecules of biological and pharmaco-
logical interest present thousands of local minima
(or conformations). The great difficulty, in this
subject, is to find global minima and not to get
trapped in one of the many local minima. This fact
has led to the appearance of different theoretical
methods, in quantum chemistry [1], to describe the
molecular conformations as well as to obtain the
optimized geometry.
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In general, theoretical methods are based on the
gradient descent approach. It is known that the
gradient method indistinctly provides both global
and local minima; consequently, to find the global
minimum, the brute-force strategy has been the
usual tool.

Recently, the so-called simulated annealing meth-
ods have demonstrated important successes in the
discussion of a variety of global extremization
problems. Simulated annealing methods have at-
tracted significant attention as suitable for opti-
mization problems of large scale, especially those
where a desired global minimum is hidden among
many local minima. The basic aspect of the simu-
lated annealing method is its analogy with ther-
modynamics, especially with the way that liquids
freeze and crystallize or metals cool and anneal.
The first nontrivial solution along this line was
provided by Kirkpatrick et al. [2,3] for classical
systems and also extended by Ceperely and Alder
[4] for quantum systems. It strictly follows the
quasi-equilibrium Boltzmann—-Gibbs statistics us-
ing a Gaussian visiting distribution and is sometimes
referred to as classical simulated annealing (CSA) or
Boltzmann machine. The next interesting step in this
subject was Szu and Hartley’s proposal [5] to use a
Cauchy-Lorentz wvisiting distribution, instead of a
Gaussian one. This algorithm is referred to as the
fast simulated annealing (Fsa) or Cauchy machine.

In recent years, some authors [6, 7] have applied
the Boltzmann machine to describe molecular con-
formations and the associated global minima.

On the other hand, what has been recently pro-
posed [8] is a generalized simulated annealing (GSA)
approach which closely follows the recently gener-
alized thermostatistics [9, 10]; it contains both
Boltzmann and Cauchy machines as particular
cases, with the supplementary bonus of providing
an algorithm which is even quicker than that of Szu
and Hartley. Recently, this method has been ap-
plied with success in different subjects: genetics
[11], the traveling salesman problem [12], and fit-
ting curves by simulated annealing [13].

We propose in this work the use of this general-
ized algorithm to describe molecular conforma-
tions and to optimize the molecular geometry, To
iltustrate this, we make a coupling between a
semiempirical quantum program (MOPAC package)
[14] and the GSA routine.

In the next section, we discuss the algorithm
used for recovering the global minima. Then, we
present results concerning a variety of molecular
structures followed by conclusions,

Generalized Simulated Annealing
in Quantum Chemistry

Here, we implement the GsA algorithm on a
semiempirical quantum method to calculate the
minimal energy conformational geometry for dif-
ferent molecular structures. This technique can be
indifferently applied on all “ab initio” or semiem-
pirical quantum methods. We have used, in the
present case, a semiempirical one only for compu-
tational convenience.

The ¢sa method is based on the correlation
between the minimization of a cost function
(molecular energy) and the geometries randomly
obtained through a slow cooling. In this technique,
an artificial temperature is introduced and gradu-
ally cooled, in complete analogy with the well-
known annealing technique frequently used in
metallurgy when a molten metal reaches its crys-
talline state (global minimum of the thermody-
namical energy). In our case the temperature is
intended as an external noise.

The procedure consists in comparing the total
semiempirical energies for two random geometries
obtained from the Gsa routine, The artificial tem-
perature (or set of temperatures) acts as a source of
stochasticity extremely convenient for eventually
detrapping from local minima. Near the end of the
process, the system hopefully is inside of the at-
tractive basin of the global minimum (or in one of
the global minima if there is degeneracy). The
challenge is to lower the temperature the quickest
we can but still have the guarantee that no irre-
versible trapping at any local minimum occurs.
More precisely, we search for the quickest anneal-
ing (i.e., in some sense approaching a quenching)
which preserves the probability of ending in a
global minimum of 1.

The present Gsa routine was built using the
same procedure presented in [8]. We apply this
algorithm in order to study a set of molecules
which present one or more different conformations
by rotating dihedral angles (8) around the X-Y
bonds. In summary the whole algorithm for map-
ping the global minimum of the energy function is
as follows:

(i) Fix the parameters (4,, 9y ) (we recall that
(g4, 9y) values of (1,1) and (1,2) corre-
spond to the Boltzmann and Cauchy ma-
chines, respectively). Start, at t =1, with
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an arbitrary value 8, and a high enough
value Tq ; (1) (wisiting temperature) and cool
as follows:

, 291 — |
Tqv(t) = Tqv(l)m; (1)

where t is the discrete time corresponding
to the computer iteration and g 4(qy ) is the
acceptance index (visiting index).

(ii) Then randomly generate 0,,, from 0, by
using the wvisiting distribution probability g,
as

P2T1/(qy — 1) + (D —1)/2]

-1
84 (Ag,) = (E"V ]
y w rMi/(gy - 1) -1/2]

X

with —180 < A# < 180; I' is the gamma func-
tion; D is the number of components of 6.
This procedure assures that the system can
both escape from any local minimum and
explore the entire energy surface,

(iii) Then calculate the total electronic energy
E(0,, ;) by using the MOPAC program:

If E(O,,,) < E(8,), replace 6, by 6, ,.

If E(8,,,) > E(8,), run a random number
re [0, 1]: if r < P, (acceptance probability)
given by

P, (8,8,

1
© 1+ {1+ (g, — DIECO,.,)

~EO)1/TAW) "

(3

with Twi(” = T;:(t), retain 0,; otherwise,
replace 6, by 6, ,.

(iv) Calculate the new temperature Tq‘: using

Eq. (1) and go back to (ii) until the minimum
of E(0) is reached within the desired preci-
sion.

[n short, this computational method is based on
a stochastic dynamics which enables, hopefully
with probability 1, the identification of a global
minimum of the energy hypersurface, which de-

pends on a continuous D-dimensional variable
[in this article ® = (#,,6,) are dihedral angles].
While the number t of computational iterations
increases, it might happen that 0, provisorily sta-
bilizes on a given value and eventually abandons
it running toward the global minimum. This tem-
porary residence can be used, as a bonus of the
present method, to identify some of the local min-
ima. The ordinate (number of cycles) in Figures 1-4
represents the frequency (temporary residence) of
the positive trials when a tested angle appears.

In Figures 1-4 (D = 1 case) we observe some
dihedral angles (noises) which do not represent the

TV ~D/3—qy)
[ ‘i!r'(l)] (2)

{H

1/€qy—D+(D-1)/2

(A6,
Tv(f)] —2/(3—qy)

qv

(g, -1
[

searched local or global minima. They appear with
minor frequency, and to eliminate this noise, it is
convenient to repeat the procedure (i)-(iv) using
different initial conditions. In this case we can also
verify that all degenerate minima will be visited
with the same frequency.

In Figure 6 we present the result obtained for
the molecule H,O, (Fig. 5) with two parameters to
be optimized (D = 2), i.e,, 8 = (8, 6,).

Applications

We have applied the MOPAC-GSA approach with
(gy,q4) = (2,1) to find the possible conformations
of some important molecular systems. We have
also treated the barriers associated with rotations
around double bonds.

The different minima were obtained by consid-
ering the group G fixed and rotating the group R
around the binding G-R axis as a rigid rotor.
Here, all bond lengths and all other angles are
held fixed during the rotation and are assigned
standard or experimental values. We have used,
for simplicity, the (1, 2) machine. If quicker conver-
gence is required, the (1,2.9) machine can be more
appropriate (see [8]).

We recall that MoPAC is a quantum chemistry
program package which contains a variety of
semiempirical approximations (Hamiltonians). In
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FIGURE 1. Profile associated with the possible equilibrium (global minima) conformational geometries of the
molecular structures: (a) C,H, (ethane), (b) CH,COH (acetaldehyde), and (c) CH,OH (methyl alcohol).
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this article, to calculate the energy (heat of forma-
tion), we have used the semiempirical MNDO-PM3
Hamiltonian [15].

CASE ONE-DIMENSIONAL (D = 1)

Series CH,-R

Within the series CH,—R we have studied the
compounds CH,-CH, (ethane), CH,-COH
(acethaldehyde), and CH,-OH (methyl alcohol).
As shown in Figures 1(a)~(c) our method predicts,
for all compounds, the eclipsed conformations as
being the global minimum. The results obtained
using the MOPAC-GSA approach agree with the re-
sults obtained from pure MOPAC calculations. In
this case the fixed group G is the CH, one.

Series HX-R

In the case of the HO-OH (hydrogen peroxide)
and HS-SH (hydrogen persulfide) the eclipsed ge-
ometry corresponds to the equilibrium conforma-
tion, which is in acceptable agreement with the
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expected results from the semiempirical method.
In both cases we have fixed the group HX and
rotated the radical R around the bond HX-R. See
Figures 2(a) and (b)

Series X,Y,

In this series, we have analyzed the compounds
N,H, (hydrazine), P,H, (diphosphine), and N,F,
(tetrafluorohydrazine). Our method, as well as the
pure MOPAC ones, predict that the most stable
conformation for both molecules is the eclipsed
geometry. In all cases we have fixed the group X,Y
and rotated the R one. See Figures 3(a)-(c).

Double Bond

Another interest in this direction is the study of
the barriers to rotation about a double bond. The
examined compounds are the CH,-CH, (ethyl-
ene) and CH,~NH (methyleneimine), which have
cis and trans as the most stable conformations. We
have rotated around the CH,-R. See Figures 4(a)
and (b).
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FIGURE 2. Profile associated with the possible equilibrium (global minima) conformational geometries of the
molecular structures: (a) H,0, (hydrogen peroxide) and (b) H,S, (hydrogen persulfide).
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FIGURE 3. Profile associated with the possible equilibrium (global minima) conformational geometries of the
molecular structures: (a) N,H, (hydrazine), (b) P,H, (diphosphine), and (c) N,F, (tetrafluorohydrazine).
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FIGURE 4. Profile associated with the possible equilibrium (global minima) conformational geometries of the
molecular structures: (a) G,H, (ethylene) and (b} CH,NH (methyleneimine).

CASE TWO-DIMENSIONAL (D= 2)

As an illustration of the D = 2 case, we have
applied the above presented algorithm to map the
energy surface associated with the molecule H,O,
(Fig. 5) in terms of (6,, #,). In this case, we have
rotated, stochastically, the @, and @, angles to
calculate the molecular energy using the MNDO-PM3
Hamiltonian. As shown in Figures 6(a) and (b), for
the compound H,0,, the skew conformation
(0,, 6,) = (68°,68°) has been found as the most
stable.

To obtain the complete mapping of the energy
hypersurface, in this simple case (H,0,), it is nec-
essary to calculate the energy for each pair of
angles (#,, 6,) varying it in the range [0, 360°]. This
method is computationaly expensive.

Sle O b,
H\OX KA

FIGURE 5. Molecule H,05.

Using the present simulated annealing, we have
obtained a good representative mapping of the
energy, as shown in Figure 6, with 320 iterative
cycles only.

Concluding Remarks

We conclude from these preliminary studies
that the MOPAC—GSA approach is a good qualitative
and quantitative indicator of conformational
molecular preference. We would like to emphasize
that the Gsa, differently from the gradient descent
approach, enables us to map out local minima
while the global minimum is searched.

We stress that this technique can be indiffer-
ently applied on all ab initio or semiempirical
quantum methods, since the Gsa routine makes no
interference in the quantum calculus. In particular,
we have used the semiempirical MNDO-PM3 ap-
proximation, only for computational convenience.

The Gsa method converges faster when the pa-
rameter g, increases and has both the csa and the
FsA as particular cases. In this article we have used
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FIGURE 6. D = 2 case. Mapping of the molecular energy hypersurface for the compound H,05. The energy function
(formation heat) is expressed in kilocalories per moles and the angles 6; in degrees. (a) Energy mapping is plotted
through a three-dimensional surface; and (b) top view of (a).
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