Enhanced spin susceptibility in phosphorus-doped silicon

A. Ferreira da Silva

Universidade Federal da Bahia, Instituto de Física, Departamento de Física Geral, Rua Caetano Moura, 123 Campus da Federação, 40210 Salvador, Bahia, Brazil

(Received 17 May 1988)

The influence of the many-valley isotropic effect of the conduction band with a variational N_d dependence on the metal-nonmetal transition of doped semiconductors is investigated further in the calculation of spin susceptibility. A previously developed Gutzwiller method for finite temperature is used. Good agreement with experimental findings is found.

Work to date has concentrated much effort on spin susceptibility χ_s around the metal-nonmetal transition critical point N_c in Si:P.¹ Above N_c , there are up to now the data² of Quirt and Marko and the calculation³ of Chao and Berggren (CB) which show clearly the temperature and donor concentration dependence N_D on χ_s .

In recent works⁴ I have shown the influence of the many-valley isotropic effect of the conduction band with a variational N_D dependence of the wave function on the metal-nonmetal transition of doped semiconductors. In this report I show that such a scheme, to some extent,

has a remarkable effect on χ_s of Si:P when it is used in the CB approach, which is an extension of the Gutzwiller method for finite temperature. The χ_s obtained is written as

$$\chi_s(T) = \eta_{\chi}(T)\chi_0(T) , \qquad (1)$$

where η_{χ} is an enhancement factor and χ_0 is the Pauli spin susceptibility.³ CB have used an anisotropic wave function and adjusted the intradonor Coulomb interac-

FIG. 1. χ_s as a function of N_D . Inset for T = 1.1 K; \Box , Ref. 1; +, Ref. 2; \bigcirc , Ref. 12; ----, present work.

38 10 055

tion or correlation energy⁵⁻⁷ U in order to get the experimental N_c . Here the calculation for χ_s is performed, in the wake of the CB approach, but for the experimental U within the former above scheme.^{4,8,9} In Fig. 1 a reasonable fitting with experimental data² found for χ_s is shown as a function of N_D . From the metallic side, metalnonmetal transition takes place when the number of dou-

- ¹D. F. Holcomb, in *Localization and Interaction in Disordered Metals and Doped Semiconductors*, edited by D. M. FinLayson (Scottish Universities Summer School in Physics, Edinburgh, 1986), p. 313.
- ²J. D. Quirt and J. R. Mako, Phys. Rev. B 5, 1716 (1972); 7, 3842 (1973).
- ³K. A. Chao and K.-F. Berggren, Phys. Rev. Lett. **34**, 880 (1975).
- ⁴A. Ferreira da Silva, Phys. Rev. Lett. **59**, 1263 (1987); Phys. Rev. B **37**, 4799 (1988).
- ⁵J. Hubbard, Proc. R. Soc. London, Ser. A **276**, 238 (1963); **281**, 401 (1964).
- ⁶The correlation energy U in the isotropic case of hydrogen donor gives $U \simeq 0.63e^2/\kappa a$, where κ is the dielectric constant

bly occupied sites is zero. I find $N_c = 3.5 \times 10^{18}$ cm⁻³ while the experiment is 3.7×10^{18} cm⁻³.¹⁰ I also show, in the inset, the results of χ_s for 1.1 K, as well as its dependence on U.¹¹ The χ_s shows good agreement when compared to the available experimental data.^{2,12} I expect that such results may motivate in the future a more thorough treatment along the concentration region presented.

and a the donor wave-function radius.

- ⁷See, e.g., J. C. Slater, Quantum Theory of Molecules and Solids (McGraw-Hill, New York, 1968), Vol. I, p. 58.
- ⁸M. Taniguchi and S. Narita, J. Phys. Soc. Jpn. 43, 1262 (1977).
- ⁹The experimental value of U is $U \simeq 0.96E_D$ (E_D being the ionization energy of the system considered). The ratio U/E_D is rather insensitive to mass anisotropic (cf. Ref. 8).
- ¹⁰T. F. Rosenbaum, K. Andres, G. A. Thomas, and R. N. Bhatt, Phys. Rev. Lett. **45**, 1723 (1980).
- ¹¹That is in effect an enhancement of χ_s due to U. The values of U are obtained from Refs. 6 and 9, and a lower value of them is used for the sake of comparison.
- ¹²S. Ikehata and S. Kobayashi, Solid State Commun. 56, 607 (1985).