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his study sought to determine whether high intestinal cholesterol absorption represents a cardiovascular risk factor
and to link ABCG8 and ABO variants to cardiovascular disease (CVD).
Background P
lant sterol–enriched functional foods are widely used for cholesterol lowering. Their regular intake yields a 2-fold
increase in circulating plant sterol levels that equally represent markers of cholesterol absorption. Variants in ABCG8
and ABO have been associated with circulating plant sterol levels and CVD, thereby suggesting atherogenic effects
of plant sterols or of cholesterol uptake.
Methods T
he cholestanol-to-cholesterol ratio (CR) was used as an estimate of cholesterol absorption because it is
independent of plant sterols. First, we investigated the associations of 6 single nucleotide polymorphisms in ABCG8
and ABO with CR in the LURIC (LUdwisghafen RIsk and Cardiovascular health study) and the YFS (Young Finns
Study) cohorts. Second, we conducted a systematic review and meta-analysis to investigate whether CR might be
related to CVD.
Results In
 LURIC, the minor alleles of rs4245791 and rs4299376 and the major alleles of rs41360247, rs6576629, and
rs4953023 of the ABCG8 gene and the minor allele of rs657152 of the ABO gene were significantly associated with
higher CR. Consistent results were obtained for rs4245791, rs4299376, rs6576629, and rs4953023 in YFS. The
meta-analysis, including 6 studies and 4,362 individuals, found that CR was significantly increased in individuals
with CVD.
Conclusions H
igh cholesterol absorption is associated with risk alleles in ABCG8 and ABO and with CVD. Harm caused by
elevated cholesterol absorption rather than by plant sterols may therefore mediate the relationships of ABCG8 and
ABO variants with CVD. (J Am Coll Cardiol 2013;62:291–9) ª 2013 by the American College of Cardiology
Foundation
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The American Heart Association
has recommended plant sterol–
enriched foods (e.g., margarines)
for cholesterol lowering (1).
Moreover, the European Heart
Association and the European
Atherosclerosis Society have men-
tioned plant sterol-enriched func-
tional foods as cholesterol lowering
agents in their guidelines for
the management of dyslipidemia
(2). The regular intake of plant
sterols reduces low-density lipo-
protein (LDL) cholesterol by
about 13 mg/dl (3) but also raises circulating plant sterols from
about 1 mg/dl (4) by approximately 2-fold (5). Patients with
sitosterolemia, a rare genetic disorder caused by mutations in
the ATP-binding cassette transporters G5 and G8 (ABCG5
and ABCG8) (6), have up to 50-fold increased circulating
plant sterols and may develop early onset cardiovascular
disease (CVD) (7). Hence, it has been suggested that plant
sterols are atherogenic (8–10). These concerns have been
reinforced by the detection of plant sterols in carotid
atherosclerotic plaques (11). In addition, plant sterol intake
was related to increased plant sterol content in aortic valve
cusps (12). Two recent studies have confirmed that
consumption of plant sterols as part of a dietary portfolio and
as an adjunct to treatment with ezetimibe has favorable effects
on the lipid profile (13,14). Nevertheless, in continuance of
the long-lasting safety discussion, these studies also garnered
critical comments (15,16). The debate was further fueled
by a genome-wide association (GWA) study showing that
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common variants in the ABCG8 (major allele of rs41360247
and minor allele of rs4245791) and ABO (minor allele of
rs657152) genes increased both circulating plant sterols and
cardiovascular risk (17). Correlations of variants in ABCG8
(minor allele of rs4299376) and ABOwith CVD subsequently
have been replicated in other large-scale GWA studies (18–
20). However, because circulating plant sterols are markers
for cholesterol uptake (21), the genetic data may also indicate
adverse vascular effects of high cholesterol absorption.

The current study consisted of a genetic analysis and
a meta-analysis; its purpose was to investigate whether high
intestinal cholesterol absorption represents a cardiovascular
risk factor and to link ABCG8 and AB0 variants to CVD.
We used the ratio of circulating cholestanol-to-cholesterol
to estimate levels of intestinal cholesterol absorption inde-
pendently of plant sterol concentrations (22).

Methods

Genetic analyses. STUDY DESIGN AND PARTICIPANTS.

Genetic association studies were performed in the LURIC
(LUdwigshafen RIsk and Cardiovascular health study) and
the YFS (Young Finns Study) (23,24).

LURIC is a cross-sectional and prospective German cohort
study designed to investigate biochemical and genetic cardio-
vascular risk factors. A total of 3,316 participants referred for
coronary angiography were recruited between July 1997 and
January 2000 at the Ludwigshafen Heart Center (23).
Measurements of lathosterol, cholestanol, campesterol, and
sitosterol were completed in 1,257 LURIC participants who
did not receive statins and did not have type 1 diabetes (25).
Individuals in this subgroup with available data on ABCG8
or ABO single nucleotide polymorphisms (SNPs) were
included in the current analyses.

YFS is a Finnish population-based, 27-year follow-up
study on the evolution of cardiovascular risk factors from
childhood to adulthood (24). The first cross-sectional study
was conducted in 1980 at 5 centers and included 3,596
participants in the age groups of 3, 6, 9, 12, 15, and 18 years
who were randomly chosen from the national population
registry. In 2001, a total of 2,620 individuals, who were then
aged 24 to 39 years, were studied. The sterol and lipid
determinations used in the current analysis were taken from
the year 2001 participants. Sterol and genetic data were
available in 434 subjects.

Both studies were approved by the local ethical commit-
tees and performed according to the Declaration of Helsinki.
Informed written consent was obtained from all participants
(23,24). Diabetes mellitus was categorized according to the
2009 criteria of the American Diabetes Association (26).

LABORATORY ANALYSES. All laboratory measurements were
performedon fasting blood samples. InLURIC, cholesterolwas
measured with enzymatic reagents from WAKO (Neuss,
Germany) on a WAKO 30 R or Olympus AU640 analyzer
(Tokyo, Japan) (23).Lipoproteinswere separatedby a combined
ultracentrifugation precipitation method (beta-quantification).
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Apolipoproteins B and E were measured by turbidimetry with
reagents from Greiner (Flacht, Germany). Cholestanol (not
a plant sterol; an intestinal absorptionmarker), campesterol and
sitosterol (the 2 most abundant plant sterols; absorption
markers), and lathosterol (cholesterol precursor; synthesis
marker) were measured by using gas chromatography and mass
spectrometry (25).

In YFS, total and high-density lipoprotein cholesterol
were measured with enzymatic reagents from Olympus
and Roche Diagnostics (Mannheim, Germany), respec-
tively, on an Olympus AU400 analyzer. LDL cholesterol
was calculated according to the Friedewald formula (27).
Apolipoprotein B was analyzed by using turbidimetry
with reagents for Orion Diagnostica (Espoo, Finland).
Noncholesterol sterols were measured with gas-liquid
chromatography (28).

GENOTYPING. Genomic DNA was prepared from peripheral
blood in both cohorts. In LURIC, microarrays (Affymetrix
500k, Affymetrix 6.0, Illumina IBC 50k Cardiochip, and
Illumina 200k Metabochip) were used to genotype the
ABCG8 and ABO SNPs. In YFS, genotyping was performed
by using the custom-built Illumina Human 670k BeadChip.
SNPs were excluded in case of a low genotyping call rate
(<0.95), Hardy-Weinberg-Equilibrium p value <10�6,
minor allele frequency <0.01, heterozygosity, Sequenom
fingerprint discrepancy, duplicated samples, or possible
relatedness (pi-hat > 0.2). Rs4245791 (n ¼ 1,212),
rs4299376 (n ¼ 1,251), rs41360247 (n ¼ 1,157), rs6576629
(n ¼ 1,151), and rs4953023 (n ¼ 1,251) in the ABCG8 gene
and rs657152 (n ¼ 1,202) in the ABO gene were available in
LURIC. Rs4245791 (n ¼ 433), rs4299376 (n ¼ 434),
rs6576629 (n ¼ 434), rs4953023 (n ¼ 434), and rs657152
(n ¼ 434) were available in YFS.

STATISTICAL ANALYSIS. Hardy-Weinberg equilibrium was
examined with the chi-square test. R2 was calculated by using
the Web-tool according to Gaunt et al. (29) in both cohorts.
We examined the distribution of the baseline clinical and
biochemical characteristics across variants of the ABCG8 and
ABO genes. Categorical data are presented as counts and
percentages of subjects in each genotype group. Continuous
data are presented as means � SDs or medians with inter-
quartile ranges. We used analysis of variance for continuous
variables and chi-square tests for categorical variables to
compare the distributions of variables across the genotypes.
Additive genetic models were used for rs4245791, rs4299376,
and rs657152. Because minor allele frequencies were <10%
(resulting in very few study participants who were homozygous
for theminor allele), we used dominantmodels for rs41360247,
rs6576629, and rs4953023. We calculated ratios of the non-
cholesterol sterols to cholesterol to standardize for variation in
cholesterol. Moreover, ratios of the absorption markers to
lathosterol were computed to compare cholesterol absorption
with de novo cholesterol synthesis. Data that were not normally
distributed were transformed logarithmically. Analyzing data
on 3 nonlinked groups of SNPs, we applied Dunn-�Sidák
correction for 3 independent tests. We did not correct for the
tested traits of interest because they were not independent.

All statistical tests were 2-sided. Thus, p values <0.01695
were considered statistically significant. SPSS version 19.0
(IBM SPSS Statistics, IBM Corporation, Armonk, New
York) and R version 2.11.1 (R Foundation for Statistical
Computing, Vienna, Austria) statistical software packages
were used in LURIC and YFS, respectively.

Meta-analysis of cholestanol and CVD. DATA SOURCES,

SEARCH STRATEGY, AND SELECTION CRITERIA. We system-
atically reviewed the published literature according to the
PRISMA (Preferred Reporting Items for Systematic
reviews and Meta-Analyses) statement for the conduct of
meta-analyses of epidemiological studies (30). Relevant
studies were identified by searching in MEDLINE via
PubMed (from 1950 to January 2012). Search terms
including key words and headings were (“cholestanol”) and
(“angiography” or “atherosclerosis” or “atherosclerotic plaque” or
“CVD” or “cardiovascular mortality” or “cardiovascular event”
or “cardiovascular risk” or “cerebrovascular disease” or “coro-
nary artery disease” or “coronary calcium” or “coronary heart
disease” or “mortality” or “myocardial infarction” or “periph-
eral arterial disease” or “stenosis” or “stroke”, or “vascular”).
We included studies with different research designs that
reported on the association of absolute cholestanol
concentration and/or cholestanol-to-cholesterol ratio with
CVD. Because few studies were eligible and because the
authors used heterogeneous endpoints related to CVD, we
defined a composite primary endpoint. The endpoint
comprised different definitions of CVD, including angio-
graphically verified CVD, myocardial infarction, �50%
carotid stenosis (verified by using Doppler analysis), coro-
nary insufficiency, angina pectoris, cerebrovascular accident,
transient ischemic attack, major cardiovascular events, and
cardiovascular mortality.

DATA EXTRACTION. For each study identified, we obtained
the original publications and extracted the following data into
a spreadsheet: author, year of publication, country of origin,
research design, major characteristics of the study population,
descriptive statistics of cholestanol concentrations and/or
cholestanol-to-cholesterol ratios (if provided for CVD cases
and controls separately) or risk ratios (RRs) with respect
to CVD based on cholestanol concentrations and/or
cholestanol-to-cholesterol ratios (odds ratios, incidence rate
ratios, or hazard ratios), the statistical method used for
analysis, and the covariates adjusted included in multivariate
modeling. We transformed absolute sterol concentrations
into micrograms per deciliter and ratios to cholesterol into
micrograms per milligram. For studies that reported circu-
lating cholestanol and/or cholestanol to cholesterol ratio in
CVD cases and controls separately, we calculated standard-
ized mean differences (SMDs). For studies that reported
RRs, we transformed the RRs to compare individuals in the
top one-third versus those in the bottom one-third of the
sterol distribution, as previously described (31). If authors
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reported several estimates of RRs derived from multiple
models using different sets of adjusting variables, we con-
sidered the estimate adjusted for most potential confounding
variables (that have been collected in the particular study) as
the gold standard estimate.

STATISTICAL ANALYSIS. We conducted two meta-analyses
based on: 1) SMDs between CVD cases and controls; and
2) RRs. We examined for potential publication bias by using
Egger’s tests and Begg’s tests as well as funnel plots.
I2 statistics and chi-square tests were used to investigate
whether there was heterogeneity of estimates among studies.
We calculated pooled summary estimates by using fixed
effects (Mantel-Haenszel method) and random effects
(DerSimonian and Laird model) meta-analysis techniques
(32,33). Forest plots were used for visualizing study-specific
estimates and the pooled fixed and random effects estima-
tors. Statistical hypothesis testing was conducted 2-sided,
and p values <0.05 were considered significant. Stata version
12.0 (Stata Corp., College Station, Texas) was used for
analysis.

Results

Genetic studies. All SNPs were in Hardy-Weinberg-
Equilibrium in LURIC and YFS (all p > 0.15). The
minor allele frequencies were 0.33 and 0.22 for rs4245791,
0.33 and 0.22 for rs4299376, 0.06 for rs41360247 (not
available in YFS), 0.06 and 0.08 for rs6576629, 0.06 and
0.08 for rs4953023, and 0.40 and 0.44 for rs657152 in
LURIC and YFS, respectively. Rs4245791 and rs4299376
showed high r2 in both cohorts. Furthermore, rs41360247,
rs6576629, and rs4953023 were strongly correlated (Online
Tables 1 and 2).

Sex, age, body mass index, and type 2 diabetes were not
significantly related to the ABCG8 and ABO variants in
either the LURIC or the YFS cohort (Tables 1 to 3; Online
Tables 3 to 5).

In LURIC, the major alleles of rs41360247 (Online
Table 3), rs6576629 (Table 2), and rs4953023 (Online
Table 5) were associated with increased total cholesterol.
There was also a trend toward an association between the
minor allele of rs4245791 (Table 1) and increased total
cholesterol. Furthermore, we observed a tendency toward
higher LDL cholesterol in carriers of the minor alleles of
rs4245791 (Table 1) and rs4299376 (Online Table 4) and of
the major allele of rs6576629 (Table 2). The major alleles of
rs41360247 (Online Table 3), rs6576629 (Table 2), and
rs4953023 (Online Table 5) were associated with increased
apolipoprotein B and E. A trend toward an association with
apolipoprotein B was observed for rs4245791 (Table 1).

The minor alleles of rs4245791 (Table 1) and rs4299376
(Online Table 4) and the major alleles of rs41360247 (Online
Table 3), rs6576629 (Table 2), and rs4953023 (Online
Table 5) were related to elevated levels of cholestanol,
campesterol, and sitosterol; high absorption marker to choles-
terol ratios; and high absorption marker to lathosterol ratios.
The minor allele of rs657152 (Table 3) was associated with
high circulating campesterol and a high ratio of cholestanol-
to-cholesterol. A decrease in circulating lathosterol and the
lathosterol to cholesterol ratio was observed for the minor
alleles of rs4245791 (Table 1) and rs4299376 (OnlineTable 4).
There was a trend toward a lower lathosterol to cholesterol
ratio in carriers of the major alleles of rs6576629 (Table 2) and
rs4953023 (Online Table 5).

In YFS, there was a trend for an association between the
minor allele of rs657152 (Table 3) and increased LDL
cholesterol concentration. The minor alleles of rs4245791
(Table 1) and rs4299376 (Online Table 4) and the major
alleles of rs6576629 (Table 2) and rs4953023 (Online
Table 5) were associated with elevated cholestanol, cam-
pesterol, and sitosterol levels and high absorption marker to
cholesterol ratios. In addition, rs4245791 (Table 1) and
rs4299376 (Online Table 4) were associated with all ratios of
the absorption markers to lathosterol. Likewise, rs6576629
(Table 2) and rs4953023 (Online Table 5) were associated
with the campesterol and sitosterol to lathosterol ratios.
Meta-analysis. Based on our search terms, we found 84
abstracts in MEDLINE; 9 publications were selected to be
reviewed in full text (4,25,34–40). Among these, 2 studies
were excluded because of imprecise definitions of CVD
(e.g., family history of coronary artery disease [35] and
carotid intima media thickness [39]), 1 study was excluded
because the cross-sectional data on the relationship between
cholestanol and CVD had been retrieved from another
publication in the same cohort (34,38), and 1 study was
excluded because neither data for calculating SMDs nor RRs
were presented (40). We included another study that did not
show up in MEDLINE using our search term but was added
based on personal knowledge (41). Thus, 6 studies (1 case–
control study, 3 cohort studies, 1 cross sectional study, and 1
nested case–control study) with a total of 4,362 participants
were included in the analyses. The studies had a sample size
ranging from 109 to 2,440, and the participants ranged in age
from 53.4 to 80.1 years. We used the fixed effects estimator
because there was no significant heterogeneity among the
studies.

Only 1 study reported on the relationship between
uncorrected circulating cholestanol levels in CVD cases and
controls, and it showed no association. The SMD in circu-
lating cholestanol between cases and controls was 25 (95%
confidence interval [CI]: �0.353 to 0.404; p ¼ 0.895) (34).
No study was retrieved that reported on RRs with regard to
CVD based on uncorrected circulating cholestanol. Four
studies were retrieved reporting on cholestanol-to-cholesterol
ratios in CVD cases and controls separately (4,34,37,40).
Among these, 3 reported higher cholestanol-to-cholesterol
ratios in cases than in controls (4,37,40), and 1 showed no
difference (34). There was neither publication bias (p ¼
0.774) (Online Fig. 1) nor study heterogeneity (p ¼ 0.535).
The pooled SMD between CVD cases and controls was
0.17 (95% CI: 0.09 to 0.25; p < 0.001) (Fig. 1). Two
studies reported on RRs with regard to CVD based on



Table 1
Rs4245791 Frequency in the ABCG8 Gene and Anthropometric Parameters and Plasma Lipids and Sterol Levels in the
LURIC and YFS Cohorts

Alleles TT TC CC p Value*

LURIC

No. of subjects 549 527 136 –

Male 366 � 66.7 351 � 66.6 88 � 64.7 0.904

Age (yrs) 62.2 � 11.1 63.0 � 11.0 63.7 � 10.8 0.293

Body mass index (kg/m2) 27.3 � 3.9 27.2 � 4.3 27.3 � 4.2 0.929

Type 2 diabetes 167 � 30.4 152 � 28.8 41 � 30.1 0.846

Total cholesterol (mg/dl) 199 � 37 203 � 35 206 � 38 0.046

LDL cholesterol (mg/dl) 121 � 31 124 � 32 129 � 32 0.020

HDL cholesterol (mg/dl) 40 � 11 40 � 11 42 � 12 0.144

Apolipoprotein B (mg/dl) 106 � 22 110 � 24 109 � 23 0.018

Apolipoprotein E (mg/dl) 9.2 � 3.4 9.4 � 3.1 9.1 � 2.8 0.629

Campesterol (mg/dl) 223 (152–309) 277 (189–394) 348 (243–483) <0.001

Sitosterol (mg/dl) 122 (86–167) 145 (103–212) 176 (124–251) <0.001

Cholestanol (mg/dl) 256 (205–325) 281 (226–355) 314 (246–390) <0.001

Lathosterol (mg/dl) 315 (214–456) 300 (210–432) 267 (195–414) 0.034

Campesterol/cholesterol (mg/mg) 1.13 (0.81–1.52) 1.36 (0.98–1.90) 1.66 (1.25–2.29) <0.001

Sitosterol/cholesterol (mg/mg) 0.63 (0.46–0.82) 0.73 (0.52–1.02) 0.87 (0.67–1.19) <0.001

Cholestanol/cholesterol (mg/mg) 1.31 (1.06–1.58) 1.40 (1.16–1.71) 1.54 (1.28–1.89) <0.001

Lathosterol/cholesterol (mg/mg) 1.59 (1.10–2.29) 1.53 (1.04–2.09) 1.33 (0.96–2.09) 0.001

Campesterol/lathosterol 0.67 (0.38–1.28) 0.92 (0.55–1.56) 1.26 (0.71–2.14) <0.001

Sitosterol/lathosterol 0.37 (0.21–0.67) 0.48 (0.30–0.82) 0.62 (0.63–1.12) <0.001

Cholestanol/lathosterol 0.80 (0.49–1.34) 0.93 (0.58–1.56) 1.14 (0.67–1.79) <0.001

YFS

No. of subjects 266 146 21 –

Male 266 � 100 146 � 100 21 � 100 1.000

Age (yrs) 36.1 � 2.4 35.4 � 2.5 36.0 � 2.3 0.029

Body mass index (kg/m2) 26.5 � 3.4 26.5 � 3.9 26.7 � 3.5 0.846

Type 2 diabetes 0 � 0 0 � 0 0 � 0 1.000

Total cholesterol (mg/dl) 213 � 39 213 � 38 220 � 38 0.658

LDL cholesterol (mg/dl) 142 � 35 140 � 35 148 � 33 0.867

HDL cholesterol (mg/dl) 45 � 11 44 � 11 48 � 11 0.850

Apolipoprotein B (mg/dl) 121 � 27 121 � 27 122 � 26 0.867

Campesterol (mg/dl) 478 (372–618) 551 (438–677) 759 (548–895) <0.001

Sitosterol (mg/dl) 208 (160–260) 241 (196–304) 336 (260–380) <0.001

Cholestanol (mg/dl) 260 (221–307) 278 (233–315) 294 (251–324) 0.010

Lathosterol (mg/dl) 272 (200–347) 245 (190–322) 213 (186–278) 0.113

Campesterol/cholesterol (mg/mg) 2.63 (2.13–3.41) 3.22 (2.52–3.77) 4.20 (2.95–4.83) <0.001

Sitosterol/cholesterol (mg/mg) 1.17 (0.97–1.50) 1.43 (1.13–1.67) 1.80 (1.41–2.09) <0.001

Cholestanol/cholesterol (mg/mg) 1.40 (1.24–1.58) 1.48 (1.35–1.68) 1.51 (1.45–1.66) 0.001

Lathosterol/cholesterol (mg/mg) 1.48 (1.11–1.79) 1.38 (1.09–1.73) 1.17 (0.92–1.75) 0.077

Campesterol/lathosterol 1.76 (1.17–2.84) 2.26 (1.57–3.22) 3.00 (2.27–4.01) <0.001

Sitosterol/lathosterol 0.75 (0.51–1.18) 0.98 (0.65–1.36) 1.31 (0.91–1.93) <0.001

Cholestanol/lathosterol 0.93 (0.71–1.36) 1.09 (0.81–1.51) 1.25 (0.85–1.84) 0.007

Values are n (%) in cases of categorical data and means � SDs or medians (interquartile ranges) in cases of continuous data. *Calculated with chi-square test for categorical data and with analysis of variance
for continuous data (additive model).
HDL ¼ high-density lipoprotein; LDL ¼ low-density lipoprotein; LURIC ¼ Ludwisghafen Risk and Cardiovascular Health; YFS ¼ Young Finns Study.
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cholestanol-to-cholesterol ratios (25,41). Both studies showed
that high cholestanol-to-cholesterol ratios were associated
with increased cardiovascular risk. There was neither publi-
cation bias (p ¼ 0.317) (Online Fig. 2) nor study heteroge-
neity (p ¼ 0.483). The pooled RR for CVD comparing the
highest versus the lowest tertile of the cholestanol-to-
cholesterol ratio was 1.72 (95% CI: 1.28 to 2.32; p < 0.001)
(Fig. 2). In short, a high cholestanol-to-cholesterol ratio was
significantly related to increased risk for CVD.
Discussion

This study found that high rates of cholesterol absorption, as
reflected by an elevated cholestanol-to-cholesterol ratio, are
associated with risk alleles in ABCG8 and ABO and with
present and future CVD. The LURIC and YFS data confirm
previous GWA studies showing that risk alleles in ABCG8
and ABO are related to increased total and LDL cholesterol
concentrations and the major protein components of LDL



Table 2
Rs6576629 Frequency in the ABCG8 Gene and Anthropometric Parameters
and Plasma Lipids and Sterol Levels in the LURIC and YFS Cohorts

Alleles GG GA þ AA p Value*

LURIC

Number 1,010 138 þ 3 –

Male 669 � 66.2 94 � 66.7 0.920

Age (yrs) 63.8 � 11.1 62.9 � 10.1 0.966

Body mass index (kg/m2) 27.3 � 4.2 26.9 � 3.8 0.392

Type 2 diabetes 298 � 29.5 43 � 30.5 0.809

Total cholesterol (mg/dl) 202 � 36 193 � 36 0.007

LDL cholesterol (mg/dl) 124 � 32 118 � 31 0.041

HDL cholesterol (mg/dl) 40 � 11 40 � 10 0.591

Apolipoprotein B (mg/dl) 109 � 23 103 � 22 0.003

Apolipoprotein E (mg/dl) 9.4 � 3.2 8.6 � 3.0 0.012

Campesterol (mg/dl) 262 (180–386) 202 (135–289) <0.001

Sitosterol (mg/dl) 141 (99–201) 108 (81–154) <0.001

Cholestanol (mg/dl) 277 (220–353) 235 (176–292) <0.001

Lathosterol (mg/dl) 300 (204–433) 316 (237–439) 0.234

Campesterol/cholesterol (mg/mg) 1.31 (0.94–1.85) 1.07 (0.75–1.39) <0.001

Sitosterol/cholesterol (mg/mg) 0.70 (0.51–0.97) 0.59 (0.43–0.77) <0.001

Cholestanol/cholesterol (mg/mg) 1.39 (1.13–1.69) 1.24 (0.98–1.47) <0.001

Lathosterol/cholesterol (mg/mg) 1.50 (1.03–2.12) 1.65 (1.23–2.29) 0.022

Campesterol/lathosterol 0.86 (0.49–1.57) 0.64 (0.38–1.13) <0.001

Sitosterol/lathosterol 0.47 (0.27–0.82) 0.36 (0.20–0.59) <0.001

Cholestanol/lathosterol 0.93 (0.57–1.52) 0.68 (0.48–1.24) <0.001

YFS

No. of subjects 367 62 þ 5 –

Male 367 � 100 67 � 100 1.000

Age (yrs) 35.8 � 2.5 36.4 � 2.3 0.057

Body mass index (kg/m2) 26.6 � 3.9 25.9 � 3.2 0.154

Type 2 diabetes 0 � 0 0 � 0 1.000

Total cholesterol (mg/dl) 214 � 36 211 � 52 0.542

LDL cholesterol (mg/dl) 142 � 33 137 � 45 0.287

HDL cholesterol (mg/dl) 45 � 11 46 � 10 0.570

Apolipoprotein B (mg/dl) 121 � 25 118 � 35 0.450

Campesterol (mg/dl) 530 (413–677) 444 (343–545) <0.001

Sitosterol (mg/dl) 229 (180–286) 193 (148–224) <0.001

Cholestanol (mg/dl) 275 (232–316) 236 (206–282) <0.001

Lathosterol (mg/dl) 258 (194–333) 267 (192–350) 0.433

Campesterol/cholesterol (mg/mg) 2.89 (2.36–3.75) 2.56 (2.01–3.05) 0.001

Sitosterol/cholesterol (mg/mg) 1.31 (1.06–1.62) 1.07 (0.94–1.33) <0.001

Cholestanol/cholesterol (mg/mg) 1.46 (1.33–1.63) 1.33 (1.19–1.46) <0.001

Lathosterol/cholesterol (mg/mg) 1.41 (1.09–1.77) 1.51 (1.12–1.78) 0.322

Campesterol/lathosterol 1.99 (1.32–3.10) 1.61 (1.07–2.54) 0.015

Sitosterol/lathosterol 0.89 (0.58–1.34) 0.72 (0.47–1.01) 0.007

Cholestanol/lathosterol 1.02 (0.77–1.47) 0.87 (0.68–1.25) 0.021

Values are n (%) in cases of categorical data and means � SDs or medians (inter-quartile ranges) in cases of continuous data. *Calculated with chi-
square test for categorical data and with analysis of variance for continuous data (dominant model).
Abbreviations as in Table 1.
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(namely, apolipoproteins B and E) (42–44). Our results
for lathosterol suggest that high absorbers of cholesterol
down-regulate endogenous cholesterol synthesis. However,
this protective mechanism against hypercholesterolemia is
obviously not strong enough. Elevated cholesterol absorption
may thus result in a higher lifetime cholesterol burden and
consequently increased plaque formation.

High rates of cholesterol absorption, rather than elevated
circulating plant sterol levels, seem tomediate the relationship
of risk alleles inABCG8 andABOwithCVD.An animal study
also found that moderately decreased cholesterol absorption
rates were associated with atheroprotection (45). Moreover,
a recent meta-analysis found no evidence of an association
between circulating plant sterols and their ratios to cholesterol
and CVD (46). The discrepancy between the meta-analysis
findings for cholestanol and for plant sterols may reflect the
fact that plant sterols, unlike cholestanol, are also surrogate
markers for dietary vegetable and fruit intake (47).



Table 3
Rs657152 Frequency in the ABO Gene and Anthropometric Parameters and Plasma Lipids and Sterol Levels in the
LURIC and YFS Cohorts

Alleles GG GT TT p Value*

LURIC

No. of subjects 432 570 200 –

Male 285 � 66.0 380 � 66.7 134 � 67.0 0.959

Age (yrs) 63.2 � 10.7 62.6 � 11.5 62.7 � 10.5 0.673

Body mass index (kg/m2) 27.4 � 4.3 27.4 � 4.2 27.0 � 4.0 0.525

Type 2 diabetes 124 � 28.7 168 � 29.5 57 � 28.5 0.949

Total cholesterol (mg/dl) 198 � 37 202 � 35 203 � 36 0.219

LDL cholesterol (mg/dl) 198 � 37 124 � 35 123 � 31 0.426

HDL cholesterol (mg/dl) 40 � 11 40 � 11 41 � 11 0.358

Apolipoprotein B (mg/dl) 107 � 23 108 � 23 107 � 23 0.770

Apolipoprotein E (mg/dl) 9.2 � 2.8 9.2 � 3.2 9.6 � 4.0 0.319

Campesterol (mg/dl) 232 (164–353) 257 (180–376) 282 (176–415) 0.011

Sitosterol (mg/dl) 130 (91–192) 137 (96–192) 150 (103–217) 0.088

Cholestanol (mg/dl) 273 (211–337) 264 (215–338) 285 (225–369) 0.020

Lathosterol (mg/dl) 301 (208–437) 307 (211–439) 297 (191–442) 0.894

Campesterol/cholesterol (mg/mg) 1.22 (0.87–1.77) 1.29 (0.94–1.84) 1.39 (0.92–2.02) 0.031

Sitosterol/cholesterol (mg/mg) 0.67 (0.49–0.92) 0.69 (0.50–0.95) 0.73 (0.51–1.01) 0.152

Cholestanol/cholesterol (mg/mg) 1.38 (1.12–1.64) 1.35 (1.10–1.66) 1.46 (1.18–1.79) 0.0169

Lathosterol/cholesterol (mg/mg) 1.51 (1.04–2.22) 1.54 (1.10–2.12) 1.46 (0.97–2.17) 0.273

Campesterol/lathosterol 0.79 (0.44–1.51) 0.77 (0.49–1.46) 0.97 (0.48–1.73) 0.067

Sitosterol/lathosterol 0.44 (0.24–0.79) 0.42 (0.25–0.75) 051 (0.25–0.88) 0.085

Cholestanol/lathosterol 0.90 (0.54–1.50) 0.87 (0.54–1.39) 1.01 (0.59–1.62) 0.050

YFS

No. of subjects 140 210 84 –

Male 140 � 100 210 � 100 84 � 100 1.000

Age (yrs) 35.9 � 2.4 35.8 � 2.4 36.0 � 2.5 0.689

Body mass index (kg/m2) 26.8 � 3.9 26.4 � 3.8 26.3 � 3.5 0.265

Type 2 diabetes 0 � 0 0 � 0 0 � 0 1.000

Total cholesterol (mg/dl) 209 � 41 214 � 37 220 � 39 0.054

LDL cholesterol (mg/dl) 136 � 35 143 � 34 147 � 37 0.026

HDL cholesterol (mg/dl) 44 � 12 46 � 11 49 � 10 0.733

Apolipoprotein B (mg/dl) 120 � 28 120 � 27 125 � 26 0.244

Campesterol (mg/dl) 473 (369–634) 530 (424–673) 528 (407–647) 0.646

Sitosterol (mg/dl) 206 (160–274) 227 (187–288) 224 (174–268) 0.747

Cholestanol (mg/dl) 252 (220–308) 275 (234–310) 268 (220–316) 0.142

Lathosterol (mg/dl) 256 (203–330) 252 (186–338) 264 (207–341) 0.900

Campesterol/cholesterol (mg/mg) 2.70 (2.23–3.51) 2.93 (2.38–3.68) 2.78 (2.20–3.63) 0.844

Sitosterol/cholesterol (mg/mg) 1.21 (1.00–1.59) 1.32 (1.06–1.62) 1.21 (1.03–1.56) 0.708

Cholestanol/cholesterol (mg/mg) 140 (1.26–1.57) 1.47 (1.32–1.66) 1.43 (1.28–1.58) 0.960

Lathosterol/cholesterol (mg/mg) 1.50 (1.16–1.78) 1.39 (1.05–1.75) 1.39 (1.08–1.80) 0.279

Campesterol/lathosterol 1.76 (1.26–2.75) 2.05 (1.34–3.20) 1.93 (1.20–3.00) 0.404

Sitosterol/lathosterol 0.76 (0.56–1.22) 0.94 (0.60–1.34) 0.84 (0.53–1.26) 0.504

Cholestanol/lathosterol 0.94 (0.72–1.30) 1.05 (0.78–1.53) 1.02 (0.76–1.38) 0.240

Values are numbers (percentages) in cases of categorical data and means � SDs or medians (inter-quartile ranges) in cases of continuous data. *Calculated with chi-square test for categorical data and with
analysis of variance for continuous data (dominant model).
Abbreviations as in Table 1.
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We cannot rule out the possibility that high circulating
cholestanol itself represents a cardiovascular risk factor. In
cerebrotendinous xanthomatosis, a rare lipid storage disease
caused by mutations in the gene encoding sterol 27-
hydroxylase, circulating cholestanol is markedly increased
(48). Patients with this defect often present with dementia,
ataxia, cataracts, and xanthomas in the tendons and in the
nervous system. CVD is prevalent in about 10% of the patients
with cerebrotendinous xanthomatosis. It would stand to
reason that cholestanol directly promotes atherogenesis by
accumulation in the atherosclerotic plaque. However, in an
autopsy study, cholestanol represented just 2.8% of all the
sterols in aortic deposits. Another hypothesis suggests that an
alternative pathway of reverse cholesterol transport may be
impaired in cerebrotendinous xanthomatosis and that high
cholestanol would be indicative of such problems. To sum up,
the intrinsic role of cholestanol in CVD remains to be eluci-
dated and definitely merits further research. Nevertheless, the
“absorption theory” seems robust in at least partly explaining
the observations made in the genetic studies and in the



Figure 1
Forest Plot for the Association of Cholestanol-to-
Cholesterol Ratio With CVD Based on SMDs

CVD ¼ cardiovascular disease; ID ¼ identifier; SMD ¼ standardized mean

difference.
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meta-analysis. More information on sterol 27-hydroxylase,
including original genetic data, are provided in the Online
Text, Online Table 6, and Online Figure 3.

Because high cholesterol absorption is associated with
increased cardiovascular risk, inhibition of cholesterol uptake
represents a promising target in the prevention and treat-
ment of CVD. However, prospective clinical studies clearly
demonstrating that the use of the cholesterol absorption
inhibitor ezetimibe prevents cardiovascular complications are
lacking. Whether plant sterol–enriched functional foods will
reduce not only cholesterol absorption but also hard
endpoints has not yet been investigated. At the same time,
our data may dispel concerns that the modest increase in
circulating plant sterol levels associated with their regular
dietary intake could result in an adverse outcome.
Study limitations. The major strength of the genetic
analysis within LURIC is derived from the fact that it relies
on 1 of the largest studies in which information on
Figure 2
Forest Plot for the Association of Cholestanol-
to-Cholesterol Ratio With CVD Based on RRs

RR ¼ risk ratio; other abbreviations as in Figure 1.
noncholesterol sterols and genetics have been collected
simultaneously. Furthermore, we are able to replicate results
obtained from LURIC in YFS, a cohort with contrasting
patient characteristics. The meta-analysis is limited to a small
number of observational studies, and these studies are
heterogeneous with regard to their design and adjustment for
potential confounding variables. Nevertheless, we have made
the first attempt systematically to collate and analyze
evidence from epidemiological studies that have investigated
the relationships of cholestanol with CVD.

Conclusions

Our data support an atherogenic role for high intestinal
cholesterol absorption. Harm caused by elevated cholesterol
absorption rather than by high circulating plant sterols may,
therefore, mediate the relationships of ABCG8 and ABO
variants with CVD.
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