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Abstract. The Koch curve is used in the problem of evaluating and characterizing the electric
equipotential lines in the infinite semi-space limited by a rough conducting one-dimensional surface.
The solution of Laplace’s equation subject to a constant potential difference between the curve and
a straight line placed at infinity is performed with the help of Liebmann’s method. The fractal
dimension,Df , of the equipotentials is numerically evaluated with a box-counting method. It is
found thatDf decays exponentially with distance, from the valueDf = 1.273 at the Koch curve
to theDf = 1.0 when the equipotentials become flat smooth lines. The method does not depend
on the specific choice of the Koch curve to model the rough substrate.

1. Introduction

Understanding the behaviour of the electric potential and field close to surfaces is necessary
for the interpretation of several phenomena present in a plethora of experimental techniques
which have been used for the last two or three decades (Woodruff and Delchar 1994, Rivière
1990). Field ionization in the field ion microscope and field desorption or evaporation of
atoms and ions in the field desorption microscope and atom probe (Milleret al 1996) are just
two clear examples. As a result of that, potential and field determination at points close to a
structured surface on an atomic scale for even simplified models gives important clues for the
interpretation of such phenomena. In such conditions electric field intensity variation close
to the surface on an atomic scale (a few ångströms) along a direction ‘parallel’ to the surface
can be significant and interfere in the imaging process. On the other hand, a simultaneous
smoothing in its local variation is observed as the distance perpendicular to the sample is
increased. So, the important field variation used for creating contrast in the various imaging
processes occurs in a somewhat narrow zone close to the surface. The determination of the
extension of the zone with a rapid variation of the field becomes then an important issue for
this and other similar problems.

In this paper we address the problem of evaluating and characterizing equipotential
lines close to a rough one-dimensional conductor surface, whose protrusions and cavities
are modelled by the well known Koch fractal. The use of fractal geometry in problems of
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condensed matter physics with scale invariance, as in the case of a rough surface, is now quite
common.

Far away from the Koch curve, a straight line, representing the profile of a metallic plane,
is the opposite limit of the region where the electric potential and field intensities are to be
calculated. They are then numerically determined in this region, bounded by these two ‘metallic
lines’ which in turn are assumed to be at constant but different potentials. The equipotential
lines are calculated and characterized by their fractal dimension, which is evaluated by the
well known box-counting method. The ultimate purpose is to describe the dependence of their
fractal dimension with respect to the potential strength and to the mean distance to the Koch
curve profile. So we can measure the size of the stripe near to the surface where the field
and potential have a strong dependence with position, before reaching the region of constant
field far away from the surface. The solution of Laplace’s equation close to fractal objects is
important also for other problems like DLA, where it describes the growth probability of the
substrate. Hence the techniques explored here can also be applied to other situations. The
choice of the Koch curve to mimic the surface profile has no particular influence on our results.
We will use it for it is a well known object and its fractal dimension is known exactly. We
could have chosen other geometric fractal or any profile obtained by numerical experiments
of surface growth based on simple SOS (solid-on-solid).

The rest of this paper is organized as follows: in section 2 we describe the method used
for the solution of Laplace’s equation. A brief comment on the concepts of fractal geometry
that are used for the determination of the fractal dimension of the equipotentials is provided in
section 3, but we omit the details of the box counting algorithm. In section 4 we present our
results, closing the paper with some remarks in section 5.

2. Solution of the electric potential

Electric field and equipotentials are important quantities in surface imaging techniques.
Frequently the local variation of such quantities on an atomic scale must be determined in
order to properly interpret experimental data. The effect of a single protrusion in a smooth
surface has been modelled in such a way that analytical and or numerical methods can be
used (Homeier and Kingham 1983, Milleret al 1996). However, when the surface presents
irregularities the problem becomes more difficult, and it is necessary to resort exclusively to a
numerical approach for solving Laplace’s equation:

∇2V = 0. (1)

This equation presents an analytical solution just in cases of highly symmetric boundary
conditions (Morse and Feshbach 1953). For solving it numerically in a region limited by two
surfaces with constant but different potentials we have used the so-called Liebmann method
(Gerald and Wheatley 1984). Such a method substitutes the partial derivatives for a ratio of
differences and the following steps are necessary for its implementation:

(1) the domain (the region confined between the two lines/surfaces with constant but different
potentials) is divided into a grid;

(2) initial values for the potential are almost arbitrarily attributed at each one of the grid’s
internal points, obeying the condition that these values are set between the values
previously taken for the potential at the boundaries, in this case the Koch curve and a
far away straight line ‘parallel’ to the first stage of the fractal curve;

(3) the potential at the lateral vertical lines, which also bounds the domain, are also fixed, but
in this case in a linear variation between the values of the potentials at the Koch curve and
at the far away straight line;
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(4) to each point of the domain we associate a property, called state, designed as ‘FIX’ for
points where the potential is kept unaltered, i.e. at the boundaries of the grid, or ‘FREE’
for points where the potential is recalculated by an iterative procedure;

(5) the potential is then calculated at each node. This is done by considering Laplace’s
equation in the form:

∇2V = ∂2V/∂x2 + ∂2V/∂y2 (2)

which leads to:

∇2V [I, J ] = {V [I + 1, J ] + V [I − 1, J ] − 2V [I, J ]}/1x2

+{V [I, J + 1] +V [I, J − 1]− 2V [I, J ]}/1y2. (3)

In the above equation, taking1x = 1y = h we obtain:

∇2V [I, J ] = {V [I + 1, J ] + V [I − 1, J ] + V [I, J + 1] +V [I, J − 1]− 4V [I, J ]}/h2

(4)

where a typical situation for pointsI , I + 1,J andJ + 1 can be seen in figure 1.

j j+1j-1

i

i-1

i+1

h

h

Figure 1. Basic discretized square grid used for the solution of the Laplace equation according
to Liebmann’s method. In an isometric version, the horizontal and vertical distances are different
from each other.

The boundary conditions are then imposed by keeping constant the potential at the points of
the grid’s contour (Koch curve, whereV = 0; straight horizontal line far away from the curve,
whereV = V0 > 0; and the two lateral vertical lines, whereV varies linearly with height
from V = 0 to V = V0), and the process is done iteratively until the maximum difference
in successive iterations, at any point, becomes smaller than a previous adopted value, chosen
as a convergence criterion. In the present work, the adopted convergence criterion was the
maximum percentage change in the local potential between successive iterations, for the set of
points where the potential is allowed to vary. Note that in the current problem we could also
apply lateral periodic boundary conditions, which avoids the necessity of assigning values for
V at the points of the lateral vertical boundaries, but the results are essentially the same.

3. Fractals and fractal dimension

In the last two decades fractal concepts have become well known tools in the analysis of
self-similar objects that are invariant under contractions or dilations (Feder 1988). The exact
geometrical fractals are ideal objects that satisfy true scale invariance at all sizes. Actual
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objects display, in most cases, scale invariance in a restricted region of the length scale and
in a statistical sense only. Nevertheless, we can evaluate with high confidence their various
different dimensions, which are the most important measures within fractal geometry.

One of the most used numerical methods for computingD is based on covering the object
with a grid of boxes that have linear sizeε and on counting the number of boxesN(ε) that
contain at least a point of the fractal. This is done for several values of the scaleN(ε).
The fractal dimension is determined by the slope of a log–log plot based on the following
expression:

Df = −log[N(ε)]/log(ε). (5)

Several highly efficient algorithms are available for the evaluation of the fractal (Df ) and
multi-fractal dimensionsD(q). Usually they require, as input data, the coordinates of the
points of the sets. These coordinates can be obtained after a process of numerical evaluation,
as in the present case, or from the digitization of a picture set. We have used the algorithm
proposed by Blocket al (1990), which has shown to be quite reliable in the analysis of fractal
sets.

4. Calculations and results

Our calculations were performed in a Cray Y-MP computer with 330 mflops and a 6 nsclock,
with a SUN 4/470 as the front-end unit. The successive stages (from first to fourth) of the
Koch curve and other boundary lines of the domain are shown in figure 2. We have used both
a square grid, with 54 200 points (271× 200), and an isometric (rectangular) one, for which
we have used 31 436 (271×116) and also 124 971 points (541×231). This is then the grid of
points for which equation (4) is iteratively solved. The necessary number of iterations for the
assumed convergence (a percental variation) to occur and the used CPU time for each stage
for which the potential was calculated are shown in table 1.

IV

II

I

I

IV

II

Figure 2. The first four stages of construction of the Koch curve. The true fractal is obtained
after an infinite number of iterations. The use of a series of figures based on a finite number of
iterations for the analysis of physical phenomena indicates what features are expected for higher
order iterations.

It was possible to observe the necessity of using an array of points for the grid with a unit
cell that properly matches the geometry of the Koch curve. The use of a grid with a symmetry
compatible with that of the boundary (isometric instead of a square one in our case) is essential
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Table 1. Performance for a maximum error of 10−13% between successive iterations.

Number of Computational time
iterations (CPU) (s) Points Stage Grid

34 426 1042 31 436 2nd Isometric
(271× 116) (rectangular)

30 678 908 31 436 3rd Isometric
(271× 116) (rectangular)

29 825 874 31 436 4th Isometric
(271× 116) (rectangular)

81 571 4171 54 200 3rd Square
(271× 200)

112 845 13 207 12 4971 4tha Isometric
(541× 231) (rectangular)

a Grid with an area four times smaller than others.

Table 2. Intensity of the electric field components (arbitrary units) at points I, II, IV (see figure 2
for the Koch curve) for an isometric grid for several directions.

Point I Point II Point IV

Direction Step 2 Step 3 Step 4 Step 4a Step 3 Step 4 Step 4a Step 3 Step 4 Step 4a

Vertical 4.032 3.796 3.424 4.070 3.272 3.034 3.908 2.593 2.337 2.776
Horizontal 4.336 4.076 3.643 4.362 — — — 2.758 2.466 2.962

right
Horizontal 4.336 4.076 3.643 4.362 9.165 8.219 11.45 2.806 2.505 2.989

left
60 with 4.534 4.265 3.827 4.568 2.083 1.942 2.426 2.891 2.595 3.104

vertical right
60 with 4.534 4.265 3.827 4.568 5.664 5.180 6.955 2.933 2.629 3.128

vertical left

aGrid with an area four times smaller than others.

as a way to assure a really constant potential along the curve and also compatibility with the
lateral boundary. This also reduces the CPU time and the number of necessary iterations for
a chosen convergence parameter to be achieved. At the apex of the Koch curve (point I) the
direction of strongest electric field (considering the potential increment between the value at
the Koch curve and the one at the closest point of the grid) is not the vertical, as shown in table 2.
However, this perhaps is not realistic and just is a result from the discontinuity of the points.
A similar effect is observed in the neighbourhood of other corner sites of the boundary. For
successive steps in the construction of the curve it was observed that the electric field intensity
at a fixed point, provided we use the same grid, is reduced. However, the ratio between field
intensities at equivalent points in successive steps is kept constant. For different steps of the
curve and for an adequate grid (isometric in our case) the CPU time remains essentially the
same. From the third step, it is possible to observe regions (within the cavities increasingly
formed as we go through the successive steps of construction) of almost constant potential,
i.e. points with a very small field intensity, as can be seen in Figures 3(a) and (b), where the
general forms of the equipotentials for the third and fourth stages are represented.

The fractal dimension of the equipotential curves was determined by the already mentioned
efficient box-counting algorithm (Blocket al1990), where the number of operations required to
analyse a set ofN points increases only withN log2(N). Among several tests performed with
the program, we evaluatedDf for the Koch curve. The obtained value,Df = 1.258, agrees
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Figure 3. Equipotentials obtained for the 3rd (a) and 4th (b) stage of construction of the Koch
curve. Note the direction of the most intense field is not along the vertical direction.

with the exact one (log4/log3), with a precision of 0.25%. As expected, the results show that,
when the value of the equipotentials grows, the value of its fractal dimension falls, indicating
that the equipotentials become smoother, with a shape of a regular Euclidean contour.

Besides this, we have also measured the average vertical distanceL from the equipotential
lines to the closest point of the surface substrate (Koch curve) with the same horizontal
coordinate. We express this distance in units of the maximum height of the Koch curve.
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Figure 4. Dependence of the fractal dimensionDf of equipotentials with respect to the value of
the distanceL (a) and potentialV (b).

We have found that, for 0< L < 0.25,L increases withV asL ∼ V 0.82. Later it goes through
a crossover zone until it reaches a linear dependence,L ∼ 0.021V . So it is also possible to
analyse the dependence ofDf with respect to the mean distance of the equipotential to the
boundary. As shown in figure 4, the dependence ofDf onL follows an exponential decay:

Df (L)− 1= A exp(−L/L0) (6)

with L0 = 1.04 at least forL < 0.5. ForL > 0.5,Df decays slower, possibly exponentially,
with L0 = 2.3. As the dependence betweenL andV is roughly linear forV > 10,Df (V )

decays also in an exponential way withV0 = 112.
The above figures characterize the size of the stripe close to the surface where the

equipotentials and electric fields vary in an irregular way. It is seen that forL > 1.0 the
value ofDf is already 1.04, which corresponds to a less than 20% departure of the fractal
dimension of the Koch curve with respect to that of a smooth line.

5. Conclusions

In this work we have investigated the problem of characterizing the electric potential and field
in the region bounded by a Koch curve and a straight line placed far away, with the assumption
that the curve and line are conducting media submitted to a potential difference. The problem
models the actual physical situation where a rough surface of metal is submitted to an external
field, as is the situation of several experimental situations for surface analysis. The problem
was addressed in two steps, both of which require the use of numerical methods. In the first one,
the solution of Laplace’s equation was obtained with Liebmann’s method. The solution gives
the exact picture of the dependence of the potential with respect to the space. In the second
step we could obtain a quantitative dependence of the fractal dimension of the equipotentials
with respect to potential value and mean distance to the Koch curve. We have shown thatDf

decays exponentially to the limit valueD = 1 with respect to both potential strength and mean
distance. This gives a definite value for the width of the stripe near to the Koch curve where
the field varies in a rapid, almost erratic, way.
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As already pointed out in the introduction, the choice for the Koch profile plays no
definitive role. With it we can investigate other configurations, e.g., placing the Koch curve
upside down, mimicking the problem of the field within the cavity of a porous medium. The
use of randomly generated profiles obtained according to a SOS (solid-on-solid) scheme can
also be used. In such a case, however, the profile is no longer an exact fractal, but it displays
self-affinity in an statistical sense. For such situations, the box-counting process used here
for the evaluation of the fractal dimensions should be replaced by an equivalent algorithm for
the evaluation of the rugosity exponent (Feder 1988, Moreiraet al 1994). Work in these two
directions is in progress.
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