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We analyse the Poincare� gauge structure proposed by D. Cangemi and R. Jackiw (CJ)
(Ann. Phys. (N.Y.) 225, 229), in association with general Lie algebras and, in particular, with
Galilean symmetries. In this context, the CJ method is formulated as an embedding scheme
of metric spaces, and aspects of Galilean covariance are then used to analyse: (i) the non-
relativistic limits of the electromagnetic field; (ii) a Galilean counterpart of the CJ theory;
(iii) geometrical common structures of Lorentzian and Galilean physics; and (iv) a covariant
formalism for classical mechanics. � 1999 Academic Press

I. INTRODUCTION

Recently, Cangemi and Jackiw (CJ) [1�3] described (1+1)-dimensional gravity
as a gauge theory in which the gauge group is a central extension of the (1+1)-
dimensional Poincare� group

[P, H]=I, [K, H]=P, [K, P]=H, (1)

where, as usual, we denote the space translations generator by P, the time translations
by H, and the boosts (or space-time rotations) by K. The symbol I stands for the
central charge. In this way, gravity�matter interaction is constructed in a manifestly
(gauge) tensor form. Cangemi and Jackiw have noticed that the algebra (1) (here-
after denoted ``CJ algebra'') induces a general non-degenerate symmetric bilinear
invariant metric,
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The CJ algebra, as well as the metric ', was used by Nappi and Witten [5] to
construct a conformal field theory describing a homogeneous four dimensional
Minkowski space-time based on an ordinary Wess�Zumino�Witten (WZW) action
on the non-semisimple algebra (1). The resulting model can be seen as a four
dimensional monochromatic plane wave. Shortly after, other authors (see, for
instance, [6, 7]) generalized the CJ algebra to construct classes of exact conformal
field theories where the Virasoro central charge is an integer (equal to four in the
Nappi�Witten model). This charge is independent of the levels of the corre-
sponding affine Lie algebra and is thus equal to the dimension of the group
manifold.

Despite the success of such geometrical approaches in describing different
models, the intriguing occurrence of ', as pointed out to us by Jackiw [4], remains
mysterious. Another intriguing aspect mentioned in [3] is that, when diagonalized,
the metric (2) gives diag(1, &1, 1, &1), for which the isotropy group is SO(2, 2),
the conformal group in (1+1) dimensions. The adjoint representation of the CJ
group carries a representation for a subgroup of SO(2, 2). One purpose here is to
analyse the general association of ' with Lie algebras. The most obvious way to do
so is to find Lie algebras that admit ' as a symmetric bilinear invariant form (of
which the Killing form is a particular case). We show that the CJ algebra is not the
only algebra for which this is so: the other non-trivial possibility is su(1, 1)�u(1).
This result may be of interest in extending the CJ method to other gauge groups
with metric '. On the other hand, we analyse ' in association with the notion of
embedding of metric spaces. Along these lines, we proceed further to explore some
aspects of the Galilean symmetries.

In Galilean theories, the metric (2) has been used in various situations in which
the space-time is extended to five dimensions. For instance, Ku� nzle et al. [8�11]
investigated geometrical aspects of the gravitational Newton�Cartan theory using a
five dimensional metric space with a metric tensor of type '. Then the non-trivially
extended Galilei group appears as a subgroup of the affine de Sitter group in
(4+1) dimensions. Another instance is that, motivated by the nature of the spon-
taneous breaking of symmetries in Galilean quantum field theory, Takahashi et al.
[12�14] associated a tensor structure with the Galilean transformations, resulting
in a geometrical space-time also characterized by ' in five dimensions. Lie algebraic
aspects of such manifolds have been developed in connection with the Lie algebra
of the (4+1) de Sitter group and the nature of the embedding of the Galilean
R3_R manifold in the (4+1) de Sitter space has been considered [15]. Hereafter,
we denote by G such a five dimensional space (described in Subsection III.A) in
which the usual three dimensional Euclidean space is embedded. Besides, in this five
dimensional Galilean formalism, attempts have been made to treat the relativistic
and Newtonian structures in a unified geometrical way [11, 14]. This goal has been
achieved for relativistic theories by taking a=c2 in (2).

However, in this five dimensional formalism, many aspects remain to be explored
(for theoretical and practical purposes) that can shed some light on inscrutable
non-relativistic processes of condensed matter physics such as, for instance, the
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symmetry breaking in superfluids. For example, phonons, the excitations of the
Galilean Schro� dinger field, satisfy a wave equation that is invariant under a
Lorentz-like set of transformations, where the speed of light is replaced with the
speed of sound. On the other hand, despite some attempts, the two non-relativistic
limits of the electromagnetic field, such as those derived by Le Bellac and Le� vy-
Leblond [16, 17], and classical mechanics are not fully accommodated in the five
dimensional Galilean formalism. These aspects are important if one anticipates, for
instance, the improvement of non-abelian Galilean approaches. In this work, we
present an answer for such tasks and, in this scenario, we suggest a Newtonian
formulation for the Cangemi�Jackiw gravitation theory. Moreover, aspects of a
combined description of the relativistic and non-relativistic theories on a geo-
metrical basis are considered in a new formalism, which in turn rests exclusively
on the notion of the embedding of metric spaces. Another aspect we explore here
is the development of classical mechanics in a Galilean covariant fashion. One of
our results is to derive the gauge structure of classical mechanics, which was
pointed out by E� lie Cartan and more recently developed by Ghaboussi [18], but
proceeding further by including a manifestly Galilean covariant structure.

This article is organized as follows. In Section 2, we set forth the notation and
identify the Lie algebras that admit some '-like metrics as bilinear invariant forms.
In Section 3, the Galilei group is revisited under the perspective of the Galilean
metric space with metric tensor '. In Section 4, the electromagnetic tensor is
explicitly written in five dimensions and different embeddings are used to derive the
two non-relativistic limits of the electromagnetic field. A Galilean non-abelian
gauge formalism is also discussed briefly. In Section 5, the aspects of a unified
Newtonian and Lorentzian formalism, with the five dimensional space G used as a
starting point, are treated. In Section 6, we present the developments for classical
mechanics. Final conclusions and remarks are summarized in Section 7.

II. BILINEAR FORMS, LIE ALGEBRAS, AND CENTRAL CHARGES

Let l=[X1 , ..., Xn ; [Xa , Xb]= f c
abXc] be a real n dimensional Lie algebra,

corresponding to the Lie group L, where f c
ab are its structure constants. A

symmetric bilinear invariant form of l is a bilinear mapping 0: l_l � R, which is
symmetric

0(X, Y )=0(Y, X ), (3)

and invariant under L, which means that 0(8X8&1, 8Y8&1)=0(X, Y ), where
8=exp(iX ) # L, for some X # l (see, for instance, Refs. [19]). This condition can
be brought to the form

0(X, [Z, Y ])+0(Y, [Z, X ])=0. (4)
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With a basis [X1 , X2 , ...] for l, the conditions given by (3) and (4) become, respec-
tively,

0a, b=0b, a , (5)

where 0a, b #0(Xa , Xb), and

f d
ab0cd+ f d

ac 0bd=0. (6)

Therefore, given the structure constants f c
ab of a Lie algebra l, we can find its

symmetric bilinear invariant forms by solving (5) and (6) for 0ab . Conversely, we
can consider the problem of finding the Lie algebras that correspond to a given
bilinear form. Then one must solve Eq. (6) and the Jacobi identities for the
structure constants f c

ab , knowing 0ab .
Let us first analyse the Lie algebras that admit the three dimensional metric given

by

1 0 0

0#'=\0 0 &1+ , (7)

0 &1 0

as a symmetric bilinear invariant form. Such a metric would describe a Galilean
covariant theory in a (1+1) space-time. The possible Lie algebras are three dimen-
sional. Let us then denote the basis of the Lie algebras as [X1 , X2 , X3]. The
bilinear form 0ab #0(Xa , Xb) satisfies Eq. (6) with a, b, c=1, 2, 3 and the non-zero
elements given by

011=1, 023=032=&1.

Solving Eq. (6) for f c
ab we find

f 3
13= f 1

23=&f 2
12 ,

so that

[X1 , X2]=:X2 , [X1 , X3]=&:X3 , [X2 , X3]=&:X1 .

Obviously the solution with :=0 leads to the three dimensional abelian algebra,
whereas :{0 corresponds to su(1, 1), or A3, 8 according to [20].

Now we analyse the CJ algebra (1), looking for the list of Lie algebras that admit
the four dimensional metric (obtained from (2) by setting a equal to zero):

0#'=\
1
0
0
0

0
1
0
0

0
0
0

&1

0
0

&1
0 + . (8)
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Therefore, the possible Lie algebras are four dimensional, such that a basis can be
denoted by [X1 , X2 , X3 , X4]. In our formalism, the metric (8) would describe a
Galilean covariant theory in a (2+1) space-time. Solving Eq. (6) for f c

ab , with the
bilinear form 0ab #0(Xa , Xb) given by Eq. (8), we find that f 1

a1 , f 2
a2 , f 4

a3 , and f 3
a4

are all equal to zero, and

f 2
a1=& f 1

a2 , f 4
a1=&f 1

a3 , f 3
a1=&f 1

a4 ,

f 4
a2=& f 2

a3 , f 3
a2=&f 2

a4 , f 3
a3=&f 4

a4 ,

for any value of a=1, 2, 3, 4. This brings the number of independant structure
constants down to four, so that one can write the general commutation relations as

[X1 , X2]=:X3+;X4 , [X2 , X3]=&;X1+$X3 ,

[X1 , X3]=;X2+#X3 , [X2 , X4]=&:X1&$X4 , (9)

[X1 , X4]=:X2&#X4 , [X3 , X4]=&#X1&$X2 .

The corresponding Lie algebras are:

(i) the four dimensional abelian Lie algebra, when :=;=#=$=0;

(ii) the CJ algebra, when :{0 and ;=#=$=0; and

(iii) su(1, 1)�u(1), for all the other possibilities.

Let us mention that in terms of the classification in [20], the CJ algebra is
denoted A4, 10 and su(1, 1)�u(1) is denoted A3, 8 �A1 . That reference might be of
interest whenever one needs to consider their subalgebras. Also, let us notice the
existence of a central charge in both Lie algebras, CJ and su(1, 1)�u(1).

These results point out the possibility of using not only the CJ group as a gauge
group but also the su(1, 1)�u(1), keeping the same metric structure given by '. In
this sense, the CJ Poincare� gauge theory can be generalized for other gauge group
generators.

III. THE METRIC ' AND GALILEAN COVARIANCE

In this section we use ' given by

hij 0 0

'=\ 0 0 &1+ , (10)

0 &1 0

where hij is the three dimensional Euclidean metric (hij)=diag(1, 1, 1), in order to
analyse the vector space induced by ' as metric tensor, following the lines and
generalizing the earlier results [15]. In particular, we will analyse inhomogeneous
isometric transformations and the nature of different embeddings in G.
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A. The Tensor Structure of the Manifold G

Let G be a five dimensional metric space, with an arbitrary vector denoted by
x=(x1, x2, x3, x4, x5) = (x, x4, x5). The inner product in G is then defined by

(x | y)='+&x +y&

= :
n=3

i=1

x iyi&x4y5&x5y4, (11)

where x, y # G and '+& is in (10).
Let [e+]=[e1 , ..., e5] be a basis of G, such that x=x+e+ and y= y+e+ . Then,

from Eq. (11) it follows that (e+ | e&)='+&='&+ . The dual space G* is defined by
the following 1-forms: e+ : x [ x +, e+(x)=x +, (x # G). Therefore, for w # G*, we
have w=w+e+ (where w+=w(e+)) and [e+] is a basis of G*.

As a result, Eq. (11) can be written as (x | y)=x+y+=x+ y+, such that

ei (x)=xi=xi , i=1, 2, 3,

e4(x)=x4=&x5 ,

e5(x)=x5=&x4 ,

where we use '+& to raise and lower the indices.
A tensor of type (n, k) is defined by the mapping

{=: G_ } } } _G

n

_G*_ } } } _G*

k

[ R,

such that {={+&..._
:;...# ' :;...#

+&..._ , where {+&..._
:;...# ={(e+, e&, ..., e_, e: , e; , ..., e#), and

' :;...#
+&..._ =e+ �e& � } } } �e_ �e: �e;� } } } �e#

is a basis for the (n, k) tensor space.

B. Group of Linear Transformations in G

The set of linear transformations in G of type x� +=G+
&x&+a+ (which leaves

(dx | dy) invariant), such that |G|=1, with G+
&=$+

&+=+
& , admits 15 generators of

transformations. Using the definition

K:=i
�x� +

�: } :=0

�
�x+ , (12)

where K: is the generator associated with the group parameter : (which also labels
the group generators), we have
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J3=&i( x1�2& x2�1), (13)

J1=&i( x2�3& x3�2), (14)

J2=&i( x3�1& x1�3), (15)

Gi = i( x4�i+ xi�5), (16)

Ci = i( x5�i+ xi�4), (17)

D= i( x4�4& x5�5), (18)

P+= i�+ , (19)

where i=1, 2, 3 and +=1, 2, ..., 5. These generators satisfy the commutation
relations

[M+& , M\_]= &i['&\M+_&'+\ M&_+'+_ M&\&'&_M+\], (20)

[P+ , M\_]= &i['+\P_&'+_ P\], (21)

[P+ , P&]=0, (22)

where M:; (:, ;=1, ..., 5) are defined by

Mij= &Mji==ijk Jk , (23)

M5i= &Mi5=Gi , (24)

M4i= &Mi4=Ci , (25)

M54= &M45=D. (26)

The commutation relations (20)�(22) define an inhomogeneous Lorentz algebra in
(4+1) dimensions, which is therefore analogous to the Poincare� algebra. We
denote this algebra by g.

A particular subalgebra of g is given by

[Li , Lj]=i=ijkLk , [Li , P j]=i=ijkPk , [Li , Bj]=i= ijkBk ,
(27)

[Bi , P4]=iPi , [Bi , Pj]=iP5$ij .

These Lie brackets are just the Galilei�Lie algebra with the usual central charge P5 .
This suggests that we have embedded the Euclidean space E in the five dimensional G.

It is well known that the subset of the Poincare� transformations that leave a
light-like vector invariant forms a Galilean subgroup. This is analogous to our
de Sitter space and the non-homogeneous group transformations. But if we consider
only the Poincare� group, and its isometric underlying space��the Minkowski
space��we will not derive the full covariance that we have derived. Actually, in our
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approach, if we start with the Poincare� group (or the Minkowski space) we can
derive no more than a two dimensional Galilean physics.

C. Embeddings of E in G

In the present section, we consider three possible embeddings of E in G, useful
for our purposes.

(i) The first embedding is [12]

J1 : A [ A=\A, A4 ,
A2

2A4+ , where A=(A1, A2, A3) # E, A # G . (28)

It follows that A is null-like, since

(A | A)='+& A+A&,

= :
3

i=1

AiAi&2A4A5=0.

That is, according to J1 , each vector in E is in homomorphic correspondence with
null-like vectors in G. An example of this type of vector is given by x=
(x, kt, x2�2kt), where k is some constant with units of velocity. Under the group
defined by the generators of the Lie algebra given by Eq. (27) (considering a non-
unitary representation), that is,

Ki=e&v iBi, Rij=e=ijk Lk, Ti=eaiPi, T4=ebH,

where a5=0, H=P4, the vector x=(x, kt, x2�2kt) is transformed as

x� i =R i
j x

j&vix4+a, (29)

x� 4=x4+b, (30)

x� 5=x5&vi (L i
jx

j)+ 1
2v2x4. (31)

(ii) A second embedding is

I2 : A [ A=(A, A4 , 0).

Then A is no longer a null-like vector, for (A | A)=A2. An example is the vector
x=(x, x4, 0), x4=kt.

(iii) A third possible embedding is

I3 : A [ A=\A,
A4

- 2
,

A4

- 2+ . (32)

Then we have (A | A)=A2&(A4)2. Therefore, the embedding is a Minkowskian
plane in G.
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IV. G-COVARIANCE AND THE ELECTROMAGNETIC FIELD

Let us assume that in G we have the following set of Maxwell's equations,

dF=0, (33)

d*F=*j, (34)

where *F=1�2|(F ), *j=|( j), |=dx1 7 dx2 7 dx3 7 dx4 7 dx5 is a volume form,
such that F=dA, where A is the gauge potential. Let us write F in terms of its
components as the antisymmetric matrix

0 b3 &b2 c1 d1

&b3 0 b1 c2 d2

(F+&)=_ b2 &b1 0 c3 d3& , (35)
&c1 &c2 &c3 0 0

&d1 &d2 &d3 0 0

and j=(j, j4 , j5), a five dimensional current. From (33) and (34), we obtain

{ } b=0, {_b&2�4d=j,

{_c+�4b=0, { } d= j4, (36)

{_d+�5b=0, { } c= j5,

where c=(c1 , c2 , c3) and d=(d1 , d2 , d3). In this section, we interpret the elements
of the antisymetric tensor in (35) to be b � B, the magnetic field; c=0; d � E, the
electric field; and 5-vector j � (J, \, 0), where J is the electric-current vector and \
is the charge distribution (a different interpretation is considered in the following
section). However, in order to derive some physics, one must also specify the
embedding of the space-time in G ; and, as we saw in the last section, different
possibilities are available. Two of them are analysed in the following, resulting in
the two non-relativistic limits for the electromagnetic field.

A. Magnetic Non-relativistic Limit of Maxwell 's Equations

In this section, using the present covariant formalism, we derive the non-
relativistic limit of the Maxwell equations called the ``magnetic limit.'' Let us
proceed then by assuming the embedding I : x � x=(x, x4, x5)=(x, 0, ct) (in
order to adjust the units of the embedded vector in G, we have used the speed of
light in the coordinate x5=ct), such that, under the Galilean boost, characterized
by v, we have

x� =x, x� 4=0, t� =t+
v
c2 } x. (37)
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Under these conditions, we derive from (36)

{ } E=\, { } B=0 (38)

{_E+�t B=0, {_B=J. (39)

Such a set of equations, invariant under the Galilean transformations given by (37),
is the Maxwell equations in the magnetic limit, specified according to Le Bellac and
Le� vy-Leblond by v�c<<1, &ct&<<&x&, and &E&<<c &B& [17].

B. Electric Non-relativistic Limit of Maxwell 's Equations

The second case, the ``electric limit,'' is obtained if we consider the embedding
I : x � x=(x, x4, x5)=(x, ct, 0), such that, under the Galilean boost, we have

x� =x+vt, x� 4=t� =t, x� 5=0. (40)

Therefore, from (36) we derive

{ } E=\, { } B=0 (41)

{_E=0, {_B&�t E=J, (42)

which are the Maxwell equations in the electric non-relativistic limit, characterized
according to Le Bellac and Le� vy-Leblond by v�c<<1, &x&<<&ct&, and
c &B&<<&E& [17]. (Note that in (42), J has been replaced by J+�tE.)

Therefore, through these different embeddings, we have derived both non-
relativistic limits of the electromagnetic field from the five dimensional covariant
structure. This fact opens the possibility of carrying out a proper analysis for the
non-abelian fields in Galilean space-time.

C. Non-abelian Theories

Let us assume in G the form

dF=dA+A 7 A,

=' +_'&\F a
+&Xa dx_ 7 dx\ (43)

where Xa is an element of the gauge group, and the gauge potential is

A='+&Aa
+Xa dx& . (44)

It is clear from (43) and (44) that, as pointed out by Ku� nzle and Duval [11], we
can derive a non-abelian theory in a Galilean covariant form by replacing the flat-
space Minkowski metric in the usual theory by '+&. Nevertheless, we need to specify
the embedding; the embeddings analysed previously to obtain the two non-
relativistic limits of the electromagnetic field are natural candidates. We do not
intend to go much further here with non-abelian theories, which will be the subject
of another article. However, it is worth noting that a Galilean CJ theory can be
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derived if in (43) and (44) we consider '+& as given by Eq. (10) with hij=1 and Xa ,
the generator of the CJ algebra (1), resulting in an expression that is formally the
one derived by Cangemi and Jackiw [3], that is,

F=F aXa

=(da+=a
b|eb) Pa+d| K+(da+ 1

2 ea=abeb) I,

where the gauge curvature associated with the translation generators describes a
torsion density, while for the generators of boost gauge curvature, it is the scalar
curvature density [3].

V. G-MANIFOLD AND LORENTZ-LIKE INVARIANT THEORIES

In the present section, we show how to use the five dimensional G-manifold to
derive, via a different embedding, Lorentz-like invariant approaches. First, we use
the embedding given by Eq. (32), such that

x � x=\x,
kt

- 2
,

kt

- 2+ (45)

and

�=\�i=
�

�xi , �4=
1

- 2

�
k�t

, �5=
1

- 2

�
k�t+ . (46)

This leads to a Minkowskian invariant of the type d 2=x2&k2t2.
Let us then consider, as an example, k=c (=1) in the case of the electro-

magnetic field. We define in Eq. (36) b=B as the magnetic field, c=d=E�- 2 as
the electric field, and j=(J, \�- 2, \�- 2), where J is the electric current and \ is
the charge distribution. From this, one finds the Maxwell equations { } B=0,
{_E+�t B=0, {_B&�tE=J, and { } E=\.

This procedure also works for other fields. Indeed, considering the Casimir
invariant �+�+ of the algebra given by (20)�(22), we write

�+ �+�=n2�, (47)

where n is a fixed value of the Casimir invariant for each specific representation.
Using the embedding defined in (45) and (46), it follows that

\{2&
�2

k2�t2&n2+ �=0. (48)
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Observe that Eq. (48) is a Lorentz-like invariant but does not necessarily describe
a relativistic theory. As a matter of fact, we have different possibilities according to
the choice of the constants k and n. For instance, when k=c (the speed of light)
and n=m (the mass of a bosonic particle), then Eq. (48) is the Klein�Gordon
equation. On the other hand, for k=cs , the speed of sound, and n=0, Eq. (48) can
be interpreted as the phonon wave equation. This mechanism of embedding can
then explain, from a geometrical standpoint, why we can find Lorentz-like
symmetries in the scenario of Galilean theories, as is the case of the wave equations
in matter. This aspect leads us to the conjecture about the existence of a Dirac-like
equation for non-relativistic physics, in the following sense.

A linearized version of (47) is the equation

(#+�++n) 9=0, (49)

where the five matrices #+ are given by [14]

#i=\_ i

0
0

&_ i+ , #4=\ 0
&- 2

0
0+ , #5=\0

0
- 2

0 + , (50)

so that #+�+ is invariant (where _i (i=1, 2, 3) are the (2_2) Pauli matrices). The
matrices #+ satisfy the Clifford algebra

[#+, #&]=2'+&. (51)

Therefore, Eq. (49) is g-invariant. Using the embedding given in (45) and (46),
Eq. (49) reduces to

\#1�1+#2�2+#3�3+
1

k - 2
(#4+#5) �t+n+ 9=0, (52)

resulting in the usual form of the Dirac equation (in a four dimensional space), that is,

(#+�++n) 9=0, (53)

where +=1, 2, 3, 4. The metric has a Minkowski signature, (+++&), #i are given
in Eq. (50), and (1�- 2)(#4+#5) � #4, which is the matrix

#4=\ 0
&1

1
0+ . (54)

Then, if n=m, the mass of a spin 1�2 particle, and k=c, Eq. (53) is the Dirac
equation. But notice that this is not the only possibility, as is the case for the scalar
field. The interpretation of (49), for general values of n, has not been explored yet.
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VI. G-COVARIANT CLASSICAL MECHANICS

We define a 10 dimensional phase space as a manifold 1 defined via the symplectic
2-form

w='+& dq+ 7 dpv , +=1, 2, ..., 5, (55)

and by a vector field,

Xf=
�f

�p+

�
�q+&

�f
�q+

�
�p+

,

where f is a C� function in 1, such that a Poisson bracket [ f, g] is introduced by

w(Xf , Xh)=[ f, h]

=dq(Xf ) dp(Xh)&dp(Xf ) dq(Xh),

=' +& \ �f
�q+

�g
�p&&

�g
�q+

�f
�p&+ .

On the other hand, since w(Xh)=dh, we have [ f, h]=df (Xh)=(df, Xh) .
Then (df, X[h, g])+(dh, X[g, f ]) +(dg, X[ f, h]) =0, such that [Xh , Xf]=X[ f, h] ,
inducing a representation of Lie groups. Considering the g-Lie algebra it can
be shown that

[XM+&
, XM\_

]= &'&\XM+_
+'+\ XM&_

&'+_ XM&\
+'&_XM+\

, (56)

[XP+
, XM\_

]=&'+\XP_
+'+_XP\

, (57)

[XP+
, XP\

]=0, (58)

where XM+&
=&[M+& , ], and M+&=q+p&& p&q+ , with

Mij =qipj& piq j,

M5i =q4pi& p5q i,

M4i =q5pi& p4q i,

M54=q4p4& p5q5.

It is possible to derive a classical mechanics theory assuming a flow such that

�+ f =&Xp+
f, (59)

where f (q, p) is a real (C�) density distribution function in 1, and the (five dimen-
sional) vectors q and p are defined through the embedding given by Eq. (28), that
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is, q=(q, t, q2�2t) and p=(p, H, m), where H=p2�2m. Then, in terms of com-
ponents, we have from Eq. (59)

�i f =&Xpi
f [ �i f =[ p i , f ], (60)

�4 f =&Xp4
f [ �t f =[H, f ], (61)

�5 f =&Xp5
f [ �5 f =0. (62)

Consistency relations are given by Eqs. (60) and (62), whereas Eq. (61) is nothing
but the Liouville equation. Notice that this derivation has been possible because of
the nature of the embedding. In this case, the symplectic structure defined in
Eq. (55) reduces to

w=dqi 7 dpi&dt 7 dH, (63)

and from Eq. (59) we can write D+ f =0, where D+=�++Xp+
, that is,

Di =D5=0, i=1, 2, 3, (64)

Dt=�t+XH . (65)

Equations (63) and (65) provide the gauge structure of classical mechanics, as
explored by Ghaboussi [18].

VII. CONCLUDING REMARKS

To summarize, we have explored several consequences of Galilean covariance
using a metric similar to ' (Eq. (2):

(i) Depending on the dimension, we have shown that there are different Lie
algebras associated with '. For instance, in four dimensions, we have derived not
only the Cangemi�Jackiw Lie algebra, Eq. (1), but also su(1, 1)�u(1);

(ii) we have used ', as a metric tensor, to derive Galilean as well
as Lorentzian theories in a geometrically unified way, exploring the notion of
embeddings of the Euclidean space in the space G, a five dimensional space with
metric ';

(iii) through a five dimensional representation of the equations dF=0 and
d*F=*j, we have provided the two non-relativistic limits of the electromagnetic
field in a covariant form;

(iv) we have discussed Galilean non-abelian theories, in particular the
Poincare� �gauge theory proposed by Cangemi and Jackiw;

(v) we have derived the inhomogeneous transformation group in G; and

(vi) we have introduced a canonical classical representation resulting in a
gauge structure associated to a generalized symplectic form.
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The results derived here set forth the basis for other systematic studies in the con-
text of Galilean non-abelian theories and classical mechanics under a covariant
perspective.
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