Theoretical explanation of the $\operatorname{Er} \mathrm{C}_{33}$-versus-temperature curve in the ordered phase near T_{N}

J. Vasconcelos
Instituto de Física da Universidade Federal da Bahia, Rua Caetano Moura, 123 (Federação), 40.000 Salvador-Bahia, Brazil
(Received 26 January 1982)

Abstract

We have developed a general algorithm in order to study many static and dynamic magnetoelastic properties of a rare-earth metal, with the use of a general Hamiltonian already known in literature. As a specific application of our method we calculate the magnetic contribution to the $\operatorname{Er} C_{33}$ elastic constant in the region of ordered phase near T_{N}. In order to study the magnetic ordered phase we have adapted a method developed by Nagamiya.

I. INTRODUCTION

We have used the known theories of magnetostriction already developed by Callen and Callen ${ }^{1,2}$ and Southern and Goodings. ${ }^{3}$ In order to compare our results with experiment, we have considered a very detailed computer program. Our initial aim is to study as many magnetoelastic properties of the rare-earth metal as possible.

In this report we consider the behavior of the Er C_{33} elastic-constant-versus-temperature curve in the ordered phase near the Néel temperature. In order to study this behavior in this region we have made use of a generalization of Nagamiya's study on helical spin ordering. ${ }^{4}$

II. THE HAMILTONIAN

Assuming the equivalence of all ions in the crystal we adopt the general Hamiltonian

$$
\begin{equation*}
H=H_{\mathrm{ex}}+H_{z}+H_{c}+H_{\mathrm{me}}^{\mathrm{I}}+H_{\mathrm{me}}^{\mathrm{II}}+H_{e} \tag{2.1}
\end{equation*}
$$

In order to deal with the Heisenberg Hamiltonian $H_{\text {ex }}$, we make use of the Weiss molecular-field hypothesis. In this way we may write

$$
\begin{equation*}
H_{\mathrm{ex}}=g \mu_{B} \Gamma M_{0} \vec{\sigma} \cdot \overrightarrow{\mathbf{J}} \tag{2.2}
\end{equation*}
$$

where g is the Lande factor, μ_{B} the Bohr magneton, Γ is the Weiss constant, M_{0} is the saturation magnetization, $\vec{\sigma}$ is the reduced magnetization
($\vec{\sigma}=\overrightarrow{\mathrm{M}} / M_{0}$), and $\overrightarrow{\mathrm{J}}$ is the total angular momentum operator. The Zeeman Hamiltonian is

$$
\begin{equation*}
H_{z}=g \mu_{B} \overrightarrow{\mathrm{~J}} \cdot \overrightarrow{\mathrm{H}} \tag{2.3}
\end{equation*}
$$

where $\overrightarrow{\mathrm{H}}$ is the external magnetic field. H_{c} in Eq. (2.1) is the crystal-field anisotropy energy. This Hamiltonian characterizes the electrostatic interaction of the $4 f$ shell distribution of one ion with the (electric) crystal field formed by all other ions in the crystal. For this part of the Hamiltonian one may write

$$
\begin{align*}
H_{c}= & P_{2}^{0} Q_{2}^{0}(\overrightarrow{\mathbf{J}})+P_{4}^{0} Q_{4}^{0}(\overrightarrow{\mathbf{J}}) \\
& +P_{6}^{0} Q_{6}^{0}(\overrightarrow{\mathbf{J}})+P_{6}^{6} Q_{66}^{+}(\overrightarrow{\mathbf{J}}) . \tag{2.4}
\end{align*}
$$

Q_{l}^{m} are the reducible tensor operators, P_{l}^{m} are the phenomenological crystal-field constants, the terms in P_{2}^{0}, P_{4}^{0}, and P_{6}^{0} correspond to a uniaxial anisotropy, and P_{6}^{6} means a basal anisotropy.

For the present purpose we consider the magnetoelastic Hamiltonian corresponding to one ion interaction $H_{\mathrm{me}}^{\mathrm{I}}$, including terms with $l=2$ only. This Hamiltonian may be written as

$$
\begin{align*}
H_{\mathrm{me}}^{\mathrm{I}}= & -\left(B_{1}^{\alpha, 2} e_{1}^{\alpha}+B_{2}^{\alpha, 2} e_{2}^{\alpha}\right) Q_{2}^{0}(\overrightarrow{\mathbf{J}}) \\
& -B^{\gamma, 2}\left[e_{1}^{\gamma} Q_{22}^{+}(\overrightarrow{\mathbf{J}})+e_{2}^{\gamma} Q_{22}^{-}(\overrightarrow{\mathbf{J}})\right] \\
& -B^{\epsilon, 2}\left[e_{1}^{\epsilon} Q_{21}^{-}(\overrightarrow{\mathbf{J}})+e_{2}^{\epsilon} Q_{21}^{+}(\overrightarrow{\mathbf{J}})\right] \tag{2.5}
\end{align*}
$$

$B_{i}^{\Gamma, j}$ are the phenomenological magnetoelastic coupling constants and e_{i}^{Γ} are the strains. The magnetoelastic Hamiltonian corresponding to the two-ion interaction $H_{\mathrm{me}}^{\mathrm{II}}$ is written as

$$
\begin{align*}
H_{\mathrm{me}}^{\mathrm{II}}= & J\left(G_{1}^{\alpha, 0} e_{1}^{\alpha}+G_{2}^{\alpha, 0} e_{2}^{\alpha}\right) \vec{\sigma} \cdot \overrightarrow{\mathrm{J}}+J\left(G_{1}^{\alpha, 2} e_{1}^{\alpha}+G_{2}^{\alpha, 2} e_{2}^{\alpha}\right)\left(3 \sigma_{z} J_{z}-\vec{\sigma} \cdot \overrightarrow{\mathbf{J}}\right) \\
& +J G^{\gamma, 2}\left[e_{1}^{\gamma}\left(J_{x} \sigma_{x}-J_{y} \sigma_{y}\right)+e_{2}^{\gamma}\left(J_{x} \sigma_{y}+J_{y} \sigma_{x}\right)\right]+J G^{\epsilon, 2}\left[e_{1}^{\epsilon}\left(J_{y} \sigma_{z}+J_{z} \sigma_{y}\right)+e_{2}^{\epsilon}\left(J_{x} \sigma_{z}+J_{z} \sigma_{x}\right)\right] \tag{2.6}
\end{align*}
$$

FIG. 1. Temperature dependence of two elastic constants for Er (Ref. 5).
$G_{i}^{\Gamma, j}$ are the phenomenological two-ion magnetoelastic coupling constants.
Finally, H_{e} in Eq. (2.1) is the Hamiltonian which represents the static interaction. We may write

$$
\begin{equation*}
H_{e}=\frac{1}{2} C_{11}^{\alpha}\left(e_{1}^{\alpha}\right)^{2}+C_{12}^{\alpha} e_{1}^{\alpha} e_{2}^{\alpha}+\frac{1}{2} C_{22}^{\alpha}\left(e_{2}^{\alpha}\right)^{2}+\frac{1}{2} C^{\gamma}\left[\left(e_{1}^{\gamma}\right)^{2}+\left(e_{2}^{\gamma}\right)^{2}\right]+\frac{1}{2} C^{\epsilon}\left[\left(e_{1}^{\epsilon}\right)^{2}+\left(e_{2}^{\epsilon}\right)^{2}\right] . \tag{2.7}
\end{equation*}
$$

FIG. 2. Theoretical determination of the temperature dependence of C_{33} for Er in the neighborhood of ordered phase near T_{N} and in the paramagnetic region. Open circles are experimental values of Ref. 5. Open triangles and solid circles are two sets of values for different values of magnetostriction coefficients.
$C_{i j}^{\Gamma}$ are the elastic constants. As we are interested in the magnetic contributions to the elastic constants, we use the relations

$$
\begin{equation*}
\Delta C_{i j}=\frac{\partial^{2} U(\overrightarrow{\mathrm{H}})}{\partial e_{i} \partial e_{j}}-\frac{\partial^{2} U(\overrightarrow{\mathrm{H}}=0)}{\partial e_{i} \partial e_{j}} \tag{2.8}
\end{equation*}
$$

where $\overrightarrow{\mathrm{H}}$ is the external magnetic field. U is the free energy calculated through our computer program using the definition equation

$$
\begin{equation*}
U=\frac{\sum_{n} E_{n} \exp \left(-\frac{E_{n}}{T}\right)}{\sum_{n} \exp \left(-\frac{E_{n}}{T}\right)}, \tag{2.9}
\end{equation*}
$$

where E_{n} are the eigenvalues of the Hamiltonian operator obtained through a diagonalization in our computer program.

III. COMPARISON WITH EXPERIMENT

The behavior of the rare-earth metal elastic constants changes characteristically in a magnetic phase transition. In this report we have limited ourselves to the study of the C_{33} Er elastic constant in the neighborhood of the Néel temperature. In Fig. 1 the experimental curve of C_{33} versus temperature is shown. ${ }^{5}$ Including some modification in our Hamiltonian in order to adopt part of the formalism discussed by Nagamiya, ${ }^{4}$ we have obtained a very good concordance with experimental results. To our knowledge this is the first time that a comparison has been made between the experiment and a detailed calculation using a theoret-
ical model which describes a magnetostriction property of a rare-earth metal in a magnetic-ordered-phase region.

Unfortunately, we do not yet have a good experimental set of values for all parameters appearing in the Hamiltonian. For this reason we must give a value for many of these parameters. We have considered the anisotropy constants (in K/ion) $P_{2}^{0}=-3.12 \times 10^{-1}, P_{4}^{0}=2.734 \times 10^{-4}$, $P_{6}^{0}=7.572 \times 10^{-7}$, and $P_{6}^{6}=-1.7 \times 10^{-6}$. For the magnetostriction coefficients we initially used the values $B_{1}^{\alpha}=2.4, B_{2}^{\alpha}=2.4, B^{\gamma}=-6.7, B^{\epsilon}=7.0$, $G_{1}^{\alpha, 0}=0, G_{2}^{\alpha, 0}=0, G_{1}^{\alpha, 2}=0$, and $G_{2}^{\alpha, 2}=0$. Our results are plotted in Fig. 2 with the points in open triangles. It is possible to obtain a better result if we consider all values stated above but $G_{1}^{\alpha, 0}=-5$ and $G_{2}^{\alpha, 0}=-3.5$. These points are plotted again in Fig. 2 as solid circles.

IV. CONCLUSION

As we have stated above, we have used Nagamiya's work in order to study the behavior of $\mathrm{Er} C_{33}$ elastic constant in the neighborhood of the Néel temperature. We have not applied our procedure in other regions of the ordered magnetic phase because we have not yet a treatment like that of Nagamiya for other values of the temperature in the ordered-phase region.

ACKNOWLEDGMENT

I would like to thank Professor P. L. Donoho from Rice University who suggested this problem to me and helped me in many instances.
${ }^{1}$ E. R. Callen and H. B. Callen, Phys. Rev. 129, 578 (1963).
${ }^{2}$ E. R. Callen and H. B. Callen, Phys. Rev. 139, A433 (1965).
${ }^{3}$ B. W. Southern and D. A. Goodings, Phys. Rev. B 7,

534 (1973).
${ }^{4}$ T. Nagamiya, Solid State Phys. 20, 305 (1967).
${ }^{5}$ W. C. Hubbell, P. L. Donoho, and F. R. Brotzen (unpublished).

