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Concepts of functional analysis, namely, regular points, tangent subspaces, constraint sur- 
faces, Lagrangian matrix restricted to the tangent subspace of a constraint surface, are pre- 
sented in connection with the Hartree-Fock (HF) problem. The energy functional in LCAO 
approximation is considered to be a polynomial function of several variables subject to subsidi- 
ary conditions. General HF equations and instability conditions for the unrestricted Hartree- 
Fock (UHF) solutions are derived from this standpoint. 

1. Introduction 

It is well known that Hartree-Fock (HF) solutions can present instabilities #1. 
Since the appearance of the classical work by Thouless [2] deriving the Hartree- 
Fock instability conditions by using variational methods, several authors [1,3-11] 
have performed studies of those conditions and their physical consequences. In par- 
ticular, Fukutome [6,7] by utilizing the group theory has classified the possible 
unrestricted HF (UHF) solutions into eight classes and studied their corresponding 
type of instabilities. 

The mathematical formulation of the HF instability conditions is achieved in 
terms of the second variation of the energy functional (in the Born-Oppenheimer 
approximation) 

CelH.l e> 
E[~P] - <WIW > , (1) 

#1 There is an enormous literature on the subject. Consult, for example, a recent review by Paldus 
[1]. 
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where H ,  is an n-particle Hamiltonian and [W) is a trial function consisting of a sin- 
gle Slater determinant, i.e. and antisymmetrized product of n single particle func- 
tions {~uj} j = 1 , . . . ,  n such that 

/ .  (~'il~'j) = dv ~'i ~/j = 6ij. (2) 

In practice, the minimization in (1) is carried out using a finite-dimensional sub- 
space of a general one-electron Hilbert space. One common restriction, particu- 
larly for molecular calculations, is to require that the molecular orbital (MO) gj is a 
linear combination of atomic orbitals (LCAO) X~, i.e. (in this work the MO 
indices, i,j, k, and l vary from 1 to n and the AO Greek indices from 1 to m) 

= (3) 
# 

and to choose the coefficients {Cuj } so as to minimize (1). This is the SCF-  
LCAO-MO approximation. 

Using relation (3) for gj, we note that the functional E[R?] can be considered to 
be a polynomial function in the mn variables C~j. Therefore, instead of studying the 
HF instability problem as a variational one, we can formulate it as a maximum- 
minimum problem of the real-valued function E ( X )  = E[W], X = {C~j}, subject to 
constraints 

= = 

u# 

We call such an approach the maximum-minimum formulation (MMF). 
We remark that although the MM formulation appears to be a more laborious 

procedure than the variational method, it has certain advantages; for instance: (i) 
there is a well-known and relatively simple mathematical theory to determine local 
[12,13] and, in some cases, global [12] extremum values of functions subject to sub- 
sidiary conditions; (ii) it gives a geometric interpretation to the unoccupied molecu- 
lar orbitals; (iii) it makes possible, in principle, to develop for HF equations new 
methods and convergence criteria based on theorems of constrained continuous 
variable functions; and (iv) more important, it can indicate a route to investigate 
general global criteria for a point X = {Cd~ } to correspond to the absolute mini- 
mum of the energy function E ( X ) .  

In this paper we derive the instability condition for U H F  solutions in the frame- 
work of the MM formulation. The derivation is carried out for the case of general 
Hartree-Fock (GHF) method, i.e. we consider the molecular spin-orbitals (MSO) 

as 
! ! 

~/k(r, ~) = ~ok(r)r/(~) q- qo/~(r)r/(~) 

- IN) l ,7> + I k ' ) l r / ) ,  (4) 

with r/and r/spin eigenfunctions; g)k, ~ t  spatial molecular orbitals (MO) and k 
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< ~gk (r, so)I g/l(r, ~#) > = <~pk(r) l~t(r) > + <~o~(r) M~ (r) > = 6kl. (5) 

The present paper is arranged as follows. In section 2 we formulate instability 
conditions at the general spin orbital (GSO) level (i.e. GHF method) by using the 
MM formulation. Our derivation includes three steps. First, we determine the 
Lagrangian matrix L. Second, we construct the tangent subspace M. Finally, we 
obtain the restriction of L to M, LM, which in the MMF scheme is the instability 
matrix. Section 3 is devoted to comments and concluding remarks. 

2. Derivat ion of  instability conditions 

Considering MSOs given by (4), let IV> represent a normalized Slater determi- 
nant for an n-electron system. It follows that <Will> = 1. Then, we have in the 
LCAO approximation, with usual notation, that 

k aft 

+ ½ ~_, ~ (%q,<~ll#,~>.c6,c~k + c~c'~*t<~ll#6>,,c'~,c'~k 
kl aft'76 

~* * a 6 C C '  '* * 6 C' C + 2C'~kC~x< ~11# > 6t ~k -  2c~kc;~<~ll #> 6~ zk) (6) 

with 

where we have considered the spin-independent Hamiltonian Hn given by (in 
atomic units) 

k 

and the LCAO expansions of MOs given by 

"7 

qo; = E x'TC; k' <XuIX~> = 1. 
'7 

As the coefficients {C~k, C~k } represent the molecular orbital (MO) in the cho- 
sen basis, we shall call in this paper each set of these coefficients a molecular orbi- 
tal. 

The orthonormalization condition (5) in terms of C~ and C ~  is written as 

c:~s~c~, + ~ ~o~oo~,-'* o - '  = e~,, (7) 
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where S ~  is the overlap matrix, S ~  = (X~ [X~). 
Let us define 

I / • 
C___ = ( C l 1 , C 2 1 , . . . ,  C f k , . . . , C m n ; C l l l ,  C i l , . . . , C T k , . . . , C m n ,  

• * * I* I*  
C l l , C 2 1 , . - - , C f k , . - - , C * m n  ; C'l*lci*l,..., CTk,..., cmn) 

= ( 8 )  

with w = 1 ,2 , . . .  ,4n; C ~  = C~;  C~,n+ k = C ~ ;  C~,2n+k = C~;  andCa,3n+k = C~*k, 
• I* I qkt(C__) = ~-~( C ~S~C~t + C ~kS~C ~t) -- ~kt = 0 (9) 

and 

q(__C) = (qll (__C), q l 2 ( C ) , . . . ,  qnn(C)). (10) 

2.1. FIRST-ORDER NECESSARY CONDITIONS 

To derive the H F  instability conditions in M M F  scheme, we consider (6) as a 
function E(C)  subject to the constraints q(C) = 0 and apply the local theory of  con- 
strained minimizat ion problems. According to theorem 1, (see appendix A) if C is 
a local extremum point  of  E(__C) subject to the constraints q(__C) = 0, there is a 
~. = ( A l l , / ~ 1 2 , - . . ,  Ann) such that 

V E ( C )  + ~,Vq(C) = 0,  (11) 

where, in our notat ion,  the product  of  two row vectors means scalar product  (for 
instance, Z, Vq(__C) - l , .  Vq(C)) .  

In terms of  components,  we have from eq. (11) 

0[E(C) - Y~'~t ek/qkt(C)] = 0,  (12) 
OC~w 

where we have redefined the Lagrangian multipliers, i.e. Akt = -ekl. 
Substituting relations (6) and (9) into eq. (12) and carrying out the derivatives, 

we obtain the matrix equations 
/ I FCk - G C k = SCke 

F Ic~  - GCk --- SC~l~, 

(13) 

(14) 

and  corresponding complex conjugate equations. In eqs. (13) and (14) F (F I) is 
the matrix which collects all Fock operator  matrix elements defined in terms of  C 
and C I (C I and C). e = Ilcklll is a Hermit ian matrix and G and G / are defined as the 
matrices ~ k  ~ e c',k< 7116,x>c6  and )--~k ~ ' re  C k< 711&X>C k, respectively. The 

7 1 7  
matrices Ct and C t are such that 

C~ = (Cll,  C 2 l , . . . ,  Cml) , 
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c ' ;  = (c ' , , ,  c',),  

where the superscript t means transpose. 
Equations (13) and (14) are equivalent to GHF equations [14,15] and determine 

the reference molecular orbitals {Ct, C~}, i.e. the point _C_C where E(__C) has a extre- 
mum value. 

By an unitary transformation, we may single out that set of coefficients 
{Ct, C~} for which e becomes diagonal, so that all the reference molecular orbitals 
satisfy 

FCk - G'C~ = eSCk, (15) 

F 'C k' - GCk --- eSC~, e = diagonal matrix. (16) 

2.2. SECOND-ORDER CONDITIONS 

Equations (15) and (16) correspond to first-order necessary conditions for __C to 
be a local extremum of the energy function E(C) subjected to the constraints q(__C) 
given by eq. (9). The type of local extremum point (maximum, minimum or saddle 
point) is characterized by the second-order conditions. Then, according to theo- 
rems 2 and 3 (appendix A) we must determine the tangent subspace M defined by 

M =  {X : Vq(_C_)X = 0}, (17) 

and the Lagrangian matrix L(C) defined by 

L(C) = E(C) - eQ(C),  (18) 

where E(C) and Q(C) are the Hessian matrices associated with E(C) and q(C), 
respectively. Furthermore, in order to apply the theorem 4 (appendix A), we must 
determine the restriction ofL(C) to the subspace M, i.e. LM. 

2.2.1. The Lagrangian matrix L(C) 
The determination of L(C) requires the construction of the Hessian matrices 

E(__C) and Q(C). We observe that the 4mn variables C can be divided into four 
types: C~k = C~, C 2 = C~k, C 3 = C~k, and C 4 = C~k. Thus, from the defini- 
tion of Hessian matrix, we can obtain a Hermitian Hessian matrix H(C_) associated 
with a function h(C) if we arrange its elements as 

/H31 H32 H33 H 34 

/ H41 H42 H43 H44 / 
H =  / H l l  H12 HI 3 H I 4 /  = IIH° II, a,b = 1,2,3,4, (19) 

\ H  21 H 22 H 23 H 24 / 
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= [H ab (Note, for example, that whereHab 1[02h(C) /OC~kOCbtll - ,*,.t • 

, .  ( ( 
• "Ak:,p./J = 3 2 - -  \oc5,o%} ~o%oc,,i  

_ 02h(C) _ 02h(C) = 

OC idOC,* 4 1 ,, ° ch°% I-e,,.,,.) 
An analysis of the blocks H ab allows us to conclude that there are six independent 
blocks only. We choose the following basic blocks: H 11 , H 12, H 22, H 31 , H 41, and 
H 42. Applying these general results to the Hessian of E(C) we have 

(Ell)°'k, M = Z C;k  (°t~ll°'/~ )aC*~ 1' (20) 

12 • t ,  (E),,k,~,t = y~'jCh,<~/311o.X>C~,- c,.Ao,,Ollo-.x>cek], (21) 

22 ~k< 5[[°'A>aCet, (22) (E)..k.~,, = ~ c'* o, ' *  

( E 3 1 ) a k , M  = Fgkfkl -- Ned,,*, (23) 

(E41)°'k, M = Z c;,<~lla~>c~k- G~ek,, ( 2 4 )  

2 I I (E 4 ) ~ , .  = F '~kt  - -  V'o . l , ,*  

where in eq. (23) 

* I* / v~,k,~,~ = }7_. ( c .k < o, oll ~.X >,,cet + c ~ < o,~,ll~.X > c et) , 

(25) 

(26) 

F~, = h ~  + ~_. ~(C;p<O,o-II#),>,,C~p + c%<o,~ll#.X>C'~p) . 
p a# 

F.~ is the c~k-element of the Fock operator matrix. In eq. (25) ' V't,,* is similar to 
V,,t,,*, replacing in (26) C, C* by C', C'* and vice versa. For the Hermitian Hessian 
matrix Q of the constraints q(C) the only nonvanishing elements of the basic 
blocks are 

31 (Qk)~k,al = S~6kl, (27) 

42 (Qk)&,)a = S~),6kX. (28) 

Then, by using eqs. (18), (20)-(25), (27), and (28), we can write the Lagrangian 
matrix L(C) as 
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E31 -- ~ k  ekQ 31 (E41) t 

E41 E42 -- ~k  EkQ 42 
L = E 11 E 12 

(E12) t E 22 

(E l l )  t 
(E12) t 

( E31 -- E k  ekQ 31)t 

(E4 ) * 

(E|2) * '~ 

t [ 
(Eg1)t / 

(E4  _  kQ,?)t ] 

/ L 3 1  L 32 L33 L 34'~ 

= / L41 L42 L43 L44 

J - -  I L I I  L 12 L13 L 14 ' 

\ L  21 L 22 L23 L 24 

(29) 

where • and t stand for complex conjugation, and Hermitian conjugation, respec- 
tively. 

2.3.2. The tangent subspace M 
In order to determine the tangent subspace M, we construct a basis set of vectors 

belonging to M. We note that eq. (17) gives 

* C l *  cT  ~ I E[C*~kSflctXod -3 I- flkOflc~);.t~,l+n -~- Sc~l~CfllXcLk+2n --~ S a ~ C  l~lXc~,k+3n] = O, (30) 
a~ 

where X~w (w = 1,2, . . .  ,4n) are the components of XEM.  Therefore eq. (17) is 
equivalent to n 2 equations given by (30), i.e. all the vectors satisfying (30) belong to 
tangent subspace M. Hence, we find readily that a basis set for M is given by the 
vectors 

( d l )  t-~-- ( 0 t , . . . , 0  t, Ctu , 0 t , . . .  0 t, C~ ,0  t, 0 t ) 

kth group (k+n)th group 4nth group 

( d ~ )  t --~ ( 0 t , . . . , 0  t, C *t , 0 t , . . . , 0  t, Ctu *t , 0 t , . . .  0 t ) 

(k+2n)th group (k+3n)th group 4nth group 

(akt) t = ( 0 t , . . . , 0  t, C~ , 0 t , . . . , 0  t, C~ , 0 t , . . . , 0  t - C 7  t , 

lth group (/+n)th group (k+2n)th group 

• .  ¢ - ~ / . t  . . . ,  0 t ot' " ' ot '  --"'1 ' ot '  

(k+3n)th group 4nth group 

where u = n + 1 , . . . ,  m and the symbols 0 stand for column vectors with m null ele- 
ments. We note that the vectors dluk and d~  are constructed from unoccupied mole- 
cular orbitals and akt from occupied molecular orbitals. Furthermore, we can 
consider M as a direct sum Of Md spanned by {d~} and {d2k} and, Ma spanned by 
{ak/}, i.e., M = M a  ~) M d .  
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2.2.3. The restriction LMofL(_C_) to M 
A straightforward calculation shows that the restriction of L to subspace Ma is 

a zero matrix• Then in the matrix T, such that LM = T t L T  (see appendix A), only 
the vectors d~k and d 2 need to be considered. Explicitly, we obtain for T the expres- 
sion 

T 0 ) 
T 2 0 

T = T3 , 0 
0 Ta 4n,,,×2~(m-n) 

with 
a 

T a = (T.+ 1 

where each submatrix T~ is given by 

(31) 

Tna+2 . . .  Tam)nmx(mn_n2), a =  1,2,3,4; (32) 

o o 

o o 

o o 

0 0 0 

, u = n + l , . . . , m .  

. . .  0 

• . . 0 

• • • 0 

• . .  C a  . m × .  

Using L and T given by eqs. (29) and (31), respectively, we have 

- - \L3M L ~  ' 

where 

L 1 = (T3)tL31T 1 + (T4)tL41TI + (T3)tL32T 2 + (T4)tL42T 2 , 

(33) 

(34) 

L 2 = (T3)tL33T s + (T4)tL43T 3 -t- (T3)tL34T 4 + (T4)tL44T 4 , (35) 

L3M = (T1)tLllT 1 + (T2)tL21T 1 + (T1)tL12T 2 + (T2)tL22T 2 , (36) 

L 4 = (T 1)tL13T3 + (T2)tL23T 3 --I- (T 1)tL14T4 -4- (T2)tL24T 4 , (37) 

and we have used that T l t = T  3t and T 2 t = T  at . Each block L~t is a 
n(m - n) x n(m - n) matrix. We can identify aia element of L ~  giving its/-row and 
j -column ( i , j  = 1 , 2 , . . . ,  n (m - n)) or specifying its subblock characterized by the 
values of functions u(i), w(j) (u, w = n + 1, n + 2 , . . . ,  m) defined below and, in that 
uw-subblock, the v(i)-row and x(j)-column (% x = 1 ,2 , . . . ,  n). The specification 
of L~t by using u, v, w, x-indices is more convenient in order to compare our results 
to those of the literature. Functions u, v, w, and x are defined by 
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u ( i ) = g  + n + l ,  v ( i ) = i - - g  n, (38) 

w ( j ) = g @ ~ - - ~ ) + n + l ,  x ( j ) = j - g ( J ~ n l ) n ,  (39) 

where g(z) is the integer part of  z. In order to simplify the expressions of  L~ ,  we 
introduce the definitions 

I,w.~ = y ~  C~uC2w<a/3ll'76)aC,~Gx , (40) 

c~[3"y6 
(41) 

I;w,v x y ~  '* '* , , 
c~1376 

(42) 

Jluw, v x :  Z t ,  , t . c ~ c L  <~ll~a>C ~v C~x (43) 

From eqs. (34) to (37), using eqs. (29) and (32), functions (38) and (39) as 
indices, and definitions (40)-(43), we get 

(L1M)i j  1 t ----(LM)~w~x = (ew - ev)6uw6xv + Jux~w + Jux~w + Iuxvw 
I ! 

+ Iuxvw- Juxwv- Juxwv, (44) 

2 ' ' ' (45) (L] , ) , j  - (LM),.~vx = I , . . ~  + I . ~ x  + J .ww + J,~w= - J u . ~  - Juwxo, 

(L4)ij  4 * t* * =--(Lu)uwvx = (ew - ev)tSuw6xv + Jux~w + Juxow + Iux~w 
I, • I, 

+ Iux~w - J,,x~o - Jux~,  

L 3 = I* I'* * '* - J'* (47) ( L 3 ) i j ~ (  ~)uw~x uwvx + uwvx + Ju~ox + Juwxv- Juwvx uwxv" 

From relations (44) to (47) we note that 

L 4 = (L~t)* and L 3 = (L~)*. 

Hence, we have from eq. (33) 

( L 1 L~/ ) (48) 
LM= \(L2M), (El) , . 

Matrix LM with its elements defined by relations (44)-(47) is the instability 
matrix for the solutions of the GHF, in the MMF framework. We note that LM is 
constructed from occupied and unoccupied LCAO-MO coefficients, orbital ener- 
gies and AO integrals (~IIV6)a and (a~llV~). According to theorems 2-4 (appen- 
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dix A) the eigenvalues of  LM characterize the kind of local extremum point  
C = { C#, Cit} determined by eqs. (15) and (16). 

Since for the other classes of  HF  solutions [6,7] the MOs used are special cases 
of  the MSOs given by (4), one can derive instability matrices for each class of  H F  
solution from (48) by imposing restrictions on the L C A O - M O  coefficients. We will 
not  present these particular instability matrices here #2. 

3. Discussion and concluding remarks 

In the present paper we have considered an alternative formulation of instability 
conditions (the M M  formulation) in order to clarify some geometrical aspects of  
the H F  theory. Writing the energy expectation value E[~P] in the L C A O - M O  
approximation,  we have noted that E[q ~] can be analysed as a polynomial function 
of the LCAO coefficients, i.e. as a real-valued function E(C) defined on a complex 
(or real) space K ~ (the dimension of K is obtained from the number  n of electrons, 
the number  m of atomic orbitals in the LCAO basis set and the class of H F  solution 
of interest). In consequence, the problem of  H F  instability conditions can be trea- 
ted as a constrained minimization problem relative to the energy function. The con- 
straint equalities are determined by n 2 orthonormalization conditions of the 
MSOs. This set of constraints defines a subset o f K  ~ which is best viewed as a hyper- 
surface S of dimension ~ - n 2. Then, geometrically, we can regard a HF  problem 
as that  of the minimization of E(C) over the region S in K e defined by n 2 con- 
straints. 

The geometrical viewpoint presents at least two aspects for analysis. First, it 
allows us to introduce some concepts of  functional analysis into quantum chemis- 
try literature, namely the ideas of a regular point, the subspace M tangent to con- 
straint surface S, and the restriction of  the Lagrangian matrix L to the tangent 
subspace M. In this context, we have shown that HF  solutions are regular points of  
the constraints and we have characterized the tangent subspace M (associated 
with each H F  solution) in terms of the gradients of  the constraint functions. Next, 
we presented an or thonormal  basis set for the subspace M in terms of  the occupied 
and unoccupied molecular orbitals. We indicated that M is a direct sum of  two vec- 
tor subspaces Ma and Md, with Md being spanned by the unoccupied molecular 
orbitals. Finally, we determined the restriction LM of L to M: the restriction of L to 
Ma is a zero matrix and the restriction to Md gives the HF  instability matrices 
known in the literature; LM = T t L T ,  where T is a matrix whose columns consist of  
the basis vectors for Md. 

The second aspect of the geometrical viewpoint is that it makes possible (with 
the functional analysis concepts above defined) to use algorithms, convergence the- 

#2 Requests for copies of a report with the particular instability matrices LM and corresponding basis 
set for M should be addressed to author J.D.M. Vianna. 
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orems and methods of the general nonlinear constrained optimization theory to 
determine solutions of the HF equations; that is, it can show new relationships 
between the HF method and constrained minimization problems. For example, the 
eigenvalues of L restricted to M determine the natural rates of convergence for 
algorithms designed for constrained problems [12]. This result can be used in the 
determination of HF  solutions. 

This second aspect seems more important since the existence of convergence dif- 
ficulties in U H F  theory is well known in the literature [16,17] and in order to over- 
come these difficulties, it is necessary to develop new solution procedures for the 
HF equations. A step in this direction can be made by noting that the structure of 
the Lagrangian matrix restricted to the tangent subspace is the backbone of the the- 
ory of algorithms and methods for constrained problems [12,15]. Hence our inter- 
est to derive, in the M M F  framework, the matrices LM and corresponding basis set 
fo rM.  

Another aspect to be considered is that the M M F  can indicate a route to deter- 
mine the global minimum of E[W]. For instance, in the study of minimization pro- 
blems having specified constraints we have the theorem [12]: "Consider the 
problem of minimization o f f ( X )  subject to gi(X) <~0, i = 1 ,2 , . . .  ,p, where the 
funct ionsf  and gi are convex and have continuous first partial derivatives. Suppose 
that X* is a regular point of the constraints. Then, a necessary and sufficient condi- 
tion for X* to be a global minimum to this problem is that there exist 
~1 ~ 0, ~2 ~ 0 , . . . ,  ]alp/> 0 such that 

f (X*)  = min{f(X) + #1gl (X) +/z2g2(X) + . . .  + lZpgp(X)}, 

/z/gi(X*) = 0 for i =  1 ,2 , . . .  ,p ."  

One such result can be used in connection with our MM formulation of the HF pro- 
blem. Hence, at least for some specific physical systems, the M M F  can show that 
a HF  solution is a global minimum of E[C_]. Furthermore, we believe that the tan- 
gent subspace M is the fundamental concept to be analysed in order to determine 
conditions for the global minimum of E[C]. Studies in this direction are in progress 
and will be presented in a forthcoming paper. 

Appendix A: Definitions and theorems 

The following concepts and theorems [12,13] were used throughout the paper. 

DEFINITION 

A point X ~ E n (normed vector space of dimension n) satisfying the constraint 
h(X) = (hl (X) ,h2(X) , . . .  ,hm(X)) = 0 is said to be a regular point of the con- 



328 G. Magela e Silva et al. / Hartree-Fock instabilities 

straint if the gradient vectors ~Thl (X), Vh2(X) , . . . ,  Vhm(X) are linearly indepen- 
dent. The gradient o f f  is given by 

[Of(X) Of(X) Of(X).] 
V f ( X ) =  [ OX1 ' OX2 ' " "  OX, ] '  

and for a vector valued function the gradient operation is carried out component- 
wise. 

THEOREM1 

Let X be a local extremum point o f f  subject to the constraints h(X) = 0. 
Assume further that X is a regular point of these constraints. Then there is a L e E m 
(normed vector space of dimension m) such that 

K7f(X) + k V h ( X )  = 0.  

THEOREM 2 

Suppose that X is a local minimum o f f  subject to h(X) = 0 and that X is a 
regular point of these constraints. Then there is a k EE m such that Vf(X)  
+kVh(X)  = 0. If we denote by M the tangent subspace M = {Y : Vh(X)Y = 0}, 
then the matrix 

L(X) = F(X) + kH(X) 

is positive semidefinite on M, that is, YtL(X)Y >/0 for all Y G M. In the Lagran- 
gian matrix L, F and H are the HelTnitian Hessians o f f  and h, respectively. The 
Hessian of a vector valued function g = (gl,  g2, • • •, g a , . . . ,  gin) at X is given by 

G ( X )  = ( G I ( X ) , G 2 ( X ) , . . . , G ~ ( X ) , . . . , G m ( X ) ) ,  

where each 

G~(X) = ~02g'~ i,j  = 1 , 2 , . . . , n ,  

is an (n x n) matrix. 

THEOREM 3 

Suppose that there is a point X satisfying h(X) = O, and a k E E m such that 

Vf(X)  + kVh(X) = O. 

Suppose also that the matrix L ( X ) =  F ( X ) +  kH(X) is positive definite on 
M = {Y : Vh(X)Y = 0}, that is, for Y E M ,  Y # 0 there holds YtL(X)Y>O.  
Then Xiis a strict local minimum o f f  subject to h(X) = O. 
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T H E O R E M  4 

The matrix L(X) is positive definite (semidefinite) on M, that is, 
y t L ( X ) Y  > 0 ( t> 0) for all Y e M if, and only if, the eigenvalues of its restriction to 
M 

LM = TiLT 

are > 0 ( >~ 0). T is a matrix whose columns consist of the basis vectors of the sub- 
space M. 

Appendix  B. Regular  points o f  the constraints and H F  so lut ions  

We show that the solution of HF-Roothaan  equations are regular points of the 
constraint (9). For the sake of simplicity we take the case in which the LCAO-coef- 
ficients are real and solutions of closed-shell systems. In this case, we have from 
eq. (9) 

qkt = Z Z Co~S~C~t - 6kt = 0. (49) 

Suppose by reductio ad absurdum that the gradient vectors Vqkt are linearly 
dependent. Then there exist n(n + 1)/2 constants akl ,ak2, . . .  ,akt, (k<<.l, l = 1, 
2 , . . . ,  n) not all vanishing, such that the linear combination ~k l  akJVqkJ is equal to 
the null vector, i.e. 

Zakl•qkl = O, k<~l,l = 1 , 2 , . . . , n .  
kl 

For each pair (~,j) we have from (49) that 

Oqkl k <~ l 
ak, OC~j ' 

kl 

= ~ ajt ~ S;~C~I + ~ akj ~ S;~C~k = 0; l>~j and k ~<j. 
1 fl k 

Multiplying this equation by C;,i and summing over ~, we obtain 

~-~.ajt3it+ ~--~akfiik=0, l>>.j and k<~j. (50) 
l k 

From eq. (50) it follows that 

(a) i f i = j ,  2ajj=O, 
(b) if i> j ,  aji=O, 
(c) if i< j ,  aij=O. 

These results are valid for any pair, i,j = 1 ,2 , . . . ,  n. Then we came to a contra- 
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diction with the initial hypothesis  which says that  not  all O~kl were null. In conse- 
quence,  we have that  the gradient  vectors Vqkl are linearly independent  and the 
molecular  orbitals C = (Cl l , .  • . ,  Cm~) are regular points  of  the constraints .  Simi- 
larly, we can show that  GSOs are regular  points  of  the constraints  (9). 
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