
Universidade Federal da Bahia
Escola Politécnica / Instituto de Matemática

Programa de Pós-Graduação em Mecatrônica

HUGO VIŃICIUS VAZ BRAGA

ALGORITHMS FOR THE DIRECTED
K-SPANNER WITH MINIMUM DEGREE

STEINER TREE PROBLEM

DISSERTAÇÃO DE MESTRADO

Salvador

2012

HUGO VIŃICIUS VAZ BRAGA

ALGORITHMS FOR THE DIRECTED K-SPANNER WITH
MINIMUM DEGREE STEINER TREE PROBLEM

Dissertação apresentada ao Programa de Pós-Graduação

em Mecatrônica da Escola Politécnica e do Instituto de

Matemática, Universidade Federal da Bahia, como requi-

sito parcial para obtenção do grau de Mestre.

Orientador: Prof. Dr. Flávio Morais de Assis Silva

Salvador

2012

 Sistema de Bibliotecas da UFBA

 Braga, Hugo Vinícius Vaz.
 Algorithms for the directed k-spanner with minimum degree Steiner tree problem / Hugo
 Vinícius Vaz Braga. - 2012.
 68 f.: il.

 Inclui apêndice.

 Orientador: Prof. Dr. Flávio Morais de Assis Silva.
Dissertação (mestrado) - Universidade Federal da Bahia, Escola Politécnica, Instituto de

 Matemática, Salvador, 2012.

 1. Árvores (Teoria dos grafos). 2. Algoritmos computacionais. 3. Otimização combinatória.
 4. Heurística. I. Silva, Flávio Morais de Assis. II. Universidade Federal da Bahia. Escola
 Politécnica. III. Universidade Federal da Bahia. Instituto de Matemática. IV. Título.

 CDD - 511.5
 CDU - 519.17

A meu avô Clovis - o Major (In Memoriam).

AGRADECIMENTOS

São muitos a quem eu tenho que agradecer, não só pela elaboração deste trabalho mas

também pelo suporte fornecido ao longo da execução do mesmo. Talvez não consiga

mencionar todas as pessoas que foram importantes mas me sinto na obrigação de registrar

meus agradecimentos para alguns em especial. A ordem não necessariamente representa

a prioridade nos agradecimentos.

Gostaria de agradecer à minha famı́lia, em especial aos meus pais Geovani e Iris e

aos meus irmãos Júnior, Clovis e Marcelle, pelo amor, apoio e principalmente incentivo

na busca dos meus objetivos.

Agradeço também ao meu orientador, o Prof. Dr. Flávio Morais de Assis Silva, pelas

muitas horas de dedicação e orientação não só na elaboração deste trabalho como também

na formação, espero eu, de um futuro pesquisador. Agradeço Flávio pela confiança no

meu trabalho e também pela liberdade concedida para realizar minha pesquisa. Agradeço

também pelos momentos de descontração, principalmente nas conversas cujo tema era

música.

Agradeço à Capes pelo financiamento deste trabalho. Graças ao suporte da Capes,

pude dedicar meus esforços de forma única e exclusiva à elaboração deste trabalho.

Agradeço à minha avó Eufélia (pé de ...) pelo carinho e principalmente pelos momen-

tos hilários que passei com a mesma, mesmo que muitas vezes sendo através do telefone.

Agradeço à famı́lia Braga em geral, incluindo a Velharia.

Agradeço ao Lasid, em especial ao subgrupo Redesens pelas discussões proporcionadas.

Um agradecimento especial aos colegas e amigos Fred, Carol e Bruno, com os quais pude

compartilhar não apenas momentos de cunho técnico mas também momentos de lazer,

dentre eles a ida ao Rock in Rio IV.

5

agradecimentos 6

Agradeço aos professores da Mecatrônica pelos ensinamentos. Agradeço também

aos colegas (novos e antigos) de computação, tanto do mestrado em Mecatrônica como

do doutorado em Computação, pelas discussões. Agradecimento especial aos colegas e

amigos Zé, Marcos, Waltemir, Isaque e Ruth.

Agradeço à Liara e Aida pelo suporte. As mesmas sabem das suas parcelas de con-

tribuição para o andamento deste trabalho.

Agradeço aos amigos (alguns já mencionados anteriormente), dentre eles Daniele e

Paula, pelos momentos felizes e pela companhia agradável.

Aos que eu não citei explicitamente mas que, de alguma forma, foram importantes

ao longo da elaboração deste trabalho, também deixo meus sinceros agradecimentos.

The formulation of a problem is often more essential than its solution,

which may be merely a matter of mathematical or experimental skill.

—ALBERT EINSTEIN

RESUMO

Árvores Steiner são comumente utilizadas para modelar restrições na execução da operação

de multicast. Nesta dissertação nós tratamos um novo problema denominado Árvore

Steiner com Grau Mı́nimo e fator de dilatação k em Grafos Direcionados (cujo acrônimo

em inglês é DSMDStP). Este problema consiste em: dado um grafo direcionado G(V, E),

um nó origem s ∈ V , um fator de dilatação k (k ∈ R+, k ≥ 1) e um conjunto de ter-

minais T ⊆ V \ {s}, encontrar uma arborescência onde o custo entre o nó de origem s

em G e cada t ∈ T é menor ou igual a k vezes o custo da menor distância entre este

par de nós, ao passo que o grau máximo de sáıda é minimizado. DSMDStP não admite

aproximação sublogaŕıtmica (a menos que NP ⊂ DTIME(nlog log n)). Nós descrevemos

um algoritmo de aproximação que gera uma arborescência com grau máximo de sáıda

limitado por 2
√

|T | + 2 + O(log |T |) · d∗, onde d∗ consiste no grau máximo da solução

ótima e a arborescência é uma spanner com fator de dilatação (a partir da raiz) de

k ·
(

1 + maxt∈T {dist(s,t,G)}
mint∈T {dist(s,t,G)}

)

, onde dist(s, t, G) representa o caminho de menor custo entre

s e t em G. Embora nosso fator de dilatação viole k, nos experimentos, a restrição de

spanner foi satisfeita ou, em média, quase satisfeita. Além disso, o grau de sáıda medido

nos experimentos foi baixo. Nós também descrevemos uma heuŕıstica que garante um

fator de dilatação de k · (⌊
√

|T |⌋ + 2), mas não limita o grau máximo de sáıda. Nos

experimentos, a heuŕıstica mostrou-se extenśıvel com relação ao grau máximo, além de

sempre superar os outros algoritmos nesta métrica. A heuŕıstica gerou, adicionalmente,

uma spanner com fator de violação baixo.

Palavras-chave: Árvore Steiner, Grafo Direcionado, Grau Mı́nimo, Spanner, Solução

de Aproximação, Heuŕıstica

8

ABSTRACT

Steiner trees are commonly used to model constraints in message multicasting. In this dis-

sertation we address a problem called Directed k-Spanner with Minimum Degree Steiner

Tree Problem (DSMDStP). This problem consists in, given a directed weighted graph

G(V, E), a source node s ∈ V , a stretch factor k (k ∈ R+, k ≥ 1) and a set of ter-

minals T ⊆ V \ {s}, finding an arborescence in which the cost (distance) between s

and each t ∈ T is less than or equal to k times the shortest distance between s and t

in the original graph, while minimizing the maximum node out-degree. DSMDStP is

not approximable sublogarithmically (unless NP ⊂ DTIME(nlog log n)). We describe

an approximation algorithm that generates an arborescence with out-degree limited to

2
√

|T | + 2 + O(log |T |) · d∗, where d∗ is the maximum degree in an optimum solution

and the arborescence is a spanner with a root-stretch factor of k ·
(

1 + maxt∈T {dist(s,t,G)}
mint∈T {dist(s,t,G)}

)

,

where dist(s, t, G) represents the shortest distance between s and t in G. Although our

root-stretch factor violates k, in our experiments the spanner constraint was satisfied

or almost satisfied in average. Additionally, the resulted out-degree was low. We also

describe a heuristic which provides a root-stretch factor of k · (⌊
√

|T |⌋+ 2) but does not

provide a bound to the out-degree. In the experiments, the heuristic was shown to scale

well in terms of the maximum degree achieved, and has always outperformed the other

algorithms. The heuristic generated additionally a low spanner violation factor.

Keywords: Steiner tree, Directed Graph, Minimum Degree, Spanner, Approximation,

Heuristic

9

LIST OF FIGURES

3.1 ∆-neighbourhood of node u . 9

3.2 Applying procedure CompPar . 10

3.3 Example of MSC . 13

3.4 Setting an MSC instance . 14

4.1 Maximum out-degree in function of (a) network size, (b) number of termi-
nals, and (c) spanning factor . 32

4.2 Degree x Network Size when spanning factor is 1 33

4.3 Cost Violation Ratio in function of (a) network size, (b) number of termi-
nals, and (c) spanning factor . 33

4.4 Percentage of Violated Terminals in function of (a) network size, (b) num-
ber of terminals, and (c) spanning factor 34

4.5 Percentage of Violated RUNS x Network Size 36

10

ACRONYMS

APPROX The proposed Approximation Algorithm
APSP All-Pair-Shortest Paths
CT Covered Terminals
CVR Cost Violation Ratio
DSMDSt Directed k-Spanner with Minimum Degree Steiner Tree
DSMDStP Directed k-Spanner with Minimum Degree Steiner Tree Prob-

lem
MCG Maximum Coverage with Group Budgets
MDST Minimum-degree Spanning Tree
MSC Multiple Set-Cover
NS Network Size
PVR Percentage of Violated Runs
PVT Percentage of Violated Terminals
SCG Set Cover with Group Budgets
SF Spanning Factor
SIM Sliced and Iterative MSC
SPT Shortest Path Tree
SUB-M Maximizing a monotone submodular function under matroid

constraint
SvMDST Steinver version of MDST in Directed Graphs
Ter Terminal Sets Size
UT Uncovered Terminals

11

CONTENTS

Chapter 1—Introduction 1

Chapter 2—Problem Definition 4

2.1 Basic Definitions . 4

2.2 Our Problem: DSMDStP . 5

Chapter 3—Proposed algorithms for DSMDStP 8

3.1 An Approximation Algorithm for DSMDStP 8

3.1.1 First Phase: Computing a
√

l-Partition 10

3.1.2 Multiple Set-Cover Problem . 12

3.1.3 Second Phase: Covering Nodes in UT using an Instance of the
Multiple Set-Cover Problem . 13

3.1.4 The Complete Algorithm . 15

3.1.5 Complexity . 18

3.2 Heuristic for the DSMDStP . 19

3.2.1 Algorithm . 19

3.2.2 Complexity . 24

3.3 How MSC is solved . 25

Chapter 4—Evaluation 28

4.1 Parameters and Implementation Details 28

4.2 Algorithms and Metrics . 29

4.3 Experiment Results . 31

Chapter 5—Related Work 37

12

contents 13

5.1 Works that consider Spanner and Degree in Euclidean Space 39

5.2 Works that consider Spanner and Degree in (Directed and Undirected)
Graphs . 39

5.3 Our Problem: The novelty in DSMDStP 40

5.3.1 Limitation in the Results . 41

5.3.2 The Base Algorithmic Tool for the Proposed Solutions: The MSC
Problem . 41

Chapter 6—Conclusion 43

6.1 Future Work . 44

Appendix A—Discussion about how to approach DSMDStP through an alter-
native way 46

CHAPTER 1

INTRODUCTION

Given a graph G = (V, E), with edge weight function C : E → R+, a source node s ∈ V

and a set of terminals T ⊆ V \ {s}, the classical minimum cost Steiner tree problem

consists in finding a tree Tr = (VTr
, ETr

) rooted at s that spans T and that has minimum

cost (i.e. minimizes
∑

e∈ETr
C(e)). Many variations of this problem have been defined,

where additional constraints must be satisfied (e.g., (OLIVEIRA; PARDALOS, 2005;

PARSA; ZHU; GARCIA-LUNA-ACEVES, 1998; WANG; LIU; SHI, 2009)).

In the context of communication networks, the Steiner Tree problem is frequently re-

lated to multicasting, where a message has to be sent to a subset of the nodes. Constraints

are added to the problem, for example, to address quality-of-service requirements. In real-

time applications, maximum transmission delays for a message sent from s to each node

in T must have to be satisfied (OLIVEIRA; PARDALOS, 2005; NGUYEN; NGUYEN,

2008). Maximum delays can be modeled by defining maximum costs for paths from s to

each node in T . Alternatively, restrictions in communication delays can be defined as a

limit on the increase of the distance of a pair of nodes on the tree when compared to the

distance of the same pair of nodes in the original graph, i.e., by imposing a stretch factor.

This is commonly modeled as a spanner property.

An additional common constraint is a bounded node degree. Limiting node degree

is of practical importance, for example, to address the number of connections that can

be managed by communication devices such as routers and switches or by communica-

tion protocols (as in Bluetooth), to minimize the effort of replicating data in multicast

operations (OLIVEIRA; PARDALOS, 2005; NGUYEN; NGUYEN, 2008), or to decrease

topology maintenance in mobile networks. In the context of wireless sensor networks,

minimizing node degree is particularly important, due to the need for keeping resource

use at a minimum (as sensor nodes are typically scarce-resource devices).

1

introduction 2

In order to address degree minimization and a spanner property between the source

node and terminals, we define in this dissertation a new problem called Directed k-Spanner

with Minimum Degree Steiner Tree Problem (DSMDStP). Instead of minimizing the total

cost of the tree, we are interested in minimizing the maximum out-degree of nodes.

Additionally, we aim at generating a tree such that, given a stretch factor k, the distance

between the source node and a terminal on this tree is at most k times the minimum

distance between them in the original graph. We call Steiner trees with this kind of

parameterized spanner property single-sink k-spanner Steiner trees (although we are not

minimizing the tree cost, the nomenclature Steiner problem is consistent, for example,

with (FRAIGNIAUD, 2001)).

DSMDStP is not approximable within (1 − ε) loge n, for any 0 < ε < 1 (unless

NP ⊂ DTIME(nlog log n)). We describe first an approximation algorithm for DSMD-

StP based on the algorithm presented in (ELKIN; KORTSARZ, 2006). Our algorithm

provides a guarantee on the maximum out-degree of nodes and gives a stretch factor

of k ·
(

1 + maxt∈T {dist(s,t,G)}
mint∈T {dist(s,t,G)}

)

, where dist(u, v, G) represents the cost of a minimum cost

directed path from u to v in G. Although our algorithm does not guarantee the desired

stretch factor of k, in our experiments the cost of the generated paths is much lower than

the provided upper bound. In fact, on average, the spanner constraint was satisfied on

half of the scenarios and almost satisfied on the other half.

We also describe a heuristic for the problem, called Sliced and Iterative Multiple Set-

Cover (SIM). The heuristic does not provide guarantee on node degree and provides a

root-stretch factor of k · (⌊
√

|T |⌋ + 2). In the experiments, SIM exhibited quite good

results. Its curve is uniform for maximum out-degree, which is an important requirement

for scalability. Moreover, it always outperformed the approximation algorithm in rela-

tion to maximum node degree. Regarding the violation of spanner constraint, SIM was

outperformed by the approximation algorithm but the violation occurred by a low factor

(in average by 1.4 and by 2 in the worst case).

This dissertation is organized as follows. In Chapter 2 we formally define DSMDStP

introduction 3

and show that it is not approximable sublogarithmically (unless NP ⊂ DTIME(nlog log n)).

In Chapter 3 we describe the proposed algorithms for DSMDStP. In Chapter 4 we de-

scribe the results of experiments performed to evaluate the algorithms. In Chapter 5 we

discuss related work. Finally, Chapter 6 concludes the dissertation. In Appendix A we

comment how to approach DSMDStP through an alternative way, which comprises the

concepts of submodular function and matroids.

In the next chapter we define DSMDStP as well as to prove that it is not approximable

sublogarithmically.

CHAPTER 2

PROBLEM DEFINITION

In this chapter our main goal is to state the problem addressed in this dissertation.

We introduce some basic definitions necessary to understand the proof concerning the

hardness of approximation of the problem, as well as the notion of approximation used

throughout the dissertation. We formally state our problem and also emphasize the main

differences between it and previous definitions of similar problems. Finally, we prove our

problem is not approximable sublogarithmically.

2.1 BASIC DEFINITIONS

As we will prove later, DSMDStP is not approximable sublogarithmically (unless

NP ⊂ DTIME(nlog log n)), which means that not only an optimal solution cannot be

found polynomially but there is also a lower bound for the approximation factor of the

solution that can be polynomially computable (in our case, the lower factor is logarith-

mic). So, we will address DSMDStP through an approximation algorithm, which can be

formally defined as:

Definition 2.1 (WILLIAMSON; SHMOYS, 2011) An α-approximation algorithm for an

optimization problem is a polynomial-time algorithm that for all instances of the problem

produces a solution whose value is within a factor of α of the value of an optimal solution.

α is known as approximation factor or approximation ratio. Since in DSMDStP

we aim to minimize the degree, and considering an optimum solution to DSMDStP has

degree ∆∗, an α-approximation algorithm for DSMDStP generates an arborescence whose

maximum out-degree is ≤ α · ∆∗. Throughout the dissertation we use the expression

approximation algorithm instead of α-approximation algorithm when is not necessary to

4

2.2 our problem: dsmdstp 5

mention the approximation factor.

Another important definition is the complexity class DTIME. This class is mentioned

in our result of the hardness of approximation of DSMDStP. For the following concept

of the class DTIME, the notions of Turing machine and language are used. A Turing

machine decides a language L ⊆ {0, 1}∗ if it computes the function fL : {0, 1}∗ → {0, 1}
where fL(x) = 1⇔ x ∈ L.

Definition 2.2 (ARORA; BARAK, 2009) The class DTIME: Let T : N→ N be some

function. A language L is in DTIME(T (n)) iff there is a deterministic Turing machine

that runs in time c · T (n) for some constant c > 0 and decides L.

2.2 OUR PROBLEM: DSMDSTP

Let G(V, E) be a directed weighted graph with edge weight function C : E → R+. Let

P={v1, v2, ..., vm} be a directed path in G, where vi ∈ V and (vi, vi+1) ∈ E, 1 ≤ i < m.

We denote sp(vi, vj, G) a minimum cost directed path from vi to vj in G and dist(vi, vj, G)

the cost of this path, i.e. the sum of the costs of its edges (for simplicity, we assume that

dist(vi, vj , G) =∞ if there is no path from vi to vj in G). Let odeg(v, G), v ∈ V , be the

out-degree of node v in G.

The Directed k-Spanner with Minimum Degree Steiner Tree Problem (DSMDStP) is

defined as follows: given a directed weighted graph G = (V, E), a source node s ∈ V , a

stretch factor k (k ∈ R+, k ≥ 1) and a set of terminals T ⊆ V \{s}, find an arborescence

A = (VA, EA), VA ⊆ V and EA ⊆ E, rooted at s that spans T such that:

• dist(s, t, A) ≤ k · dist(s, t, G), ∀t ∈ T ; and

• the maximum out-degree of the nodes in A, denoted Dmax(A) = maxv∈VA
{odeg(v, A)},

is minimized.

The k value is known as a root-stretch factor, as we are interested in guaranteeing

2.2 our problem: dsmdstp 6

the spanner property only from the source node to the terminals (instead of between any

pair of nodes in the tree, as in (FOMIN; GOLOVACH; LEEUWEN, 2011)).

The proof of the hardness of approximation of DSMDStP is based on a reduction from

the Steiner version of the MDST problem in directed graphs (abbreviated for SvMDST),

presented in (FRAIGNIAUD, 2001), where this problem is similar to DSMDStP without

the spanner constraint. Formally, the instance of SvMDST problem is formed by a

directed graph G = (V, E), a set T ⊆ V and a source node s ∈ T and the objective is

finding an arborescence rooted at s that spans T (actually, T \{s}) and has maximum out-

degree minimized. Observe that in SvMDST, the source node s ∈ T , where in DSMDStP

s /∈ T . We take this into consideration in the reduction. The following theorem, which

appeared in (FRAIGNIAUD, 2001), is used in our proof:

Theorem 2.1 (FRAIGNIAUD, 2001). Unless NP ⊂ DTIME(nlog log n), the optimal so-

lution of the Steiner version of the MDST problem in directed graphs is not approximable

in polynomial time within (1− ε) loge |T | for any 0 < ε < 1.

Claim 2.1 Directed k-Spanner with Minimum Degree Steiner Tree Problem (DSMDStP)

is not approximable in polynomial time within (1− ε) loge |T |, for any 0 < ε < 1, unless

NP ⊂ DTIME(nlog log n).

Proof: Let S be an instance of SvMDST, defined by a directed graph G = (V, E), a set

T ⊆ V and a source node s ∈ T . Let ∆∗
S be an optimal solution for S. We now create

an instance D of DSMDStP, by using the same graph G, the same source node s, a set

of terminals TD = T \ {s} and an integer parameter k = ∞ (for example, k might be

defined as
∑

e∈E
C(e)

mint∈T {dist(s,t,G)}). Let ∆∗
D be an optimal solution for D.

For this value of k, whatever the solution to S, it satisfies the spanner constraint. So,

in this situation, ∆∗
S = ∆∗

D. Let A be an α-approximation algorithm for DSMDStP. Let

∆∗ be the resulted degree by applying A to D. We have ∆∗ ≤ α ·∆∗
D, which implies that:

∆∗

∆∗
S
≤ α. (.)

2.2 our problem: dsmdstp 7

This means that we can approximate an optimal solution for SvMDST (∆∗
S) within

α. Based on Theorem 2.1, we know the approximation ratio of ∆∗
S is > (1 − ε) loge |T |.

So, (1− ε) loge |T | < ∆∗

∆∗
S
≤ α, which implies that:

α > (1− ε) loge |T |, (.)

concluding the proof.

In the next chapter we present two algorithms to DSMDStP: an approximation algo-

rithm and a heuristic. For each of them, we describe the algorithm as well as giving and

proving its properties. For the approximation algorithm, we give an upper bound on the

maximum out-degree and an upper bound on the final costs of the arborescence’s paths.

For the heuristic, we give an upper bound on the final costs of the arborescence’s paths.

We are also going to present the complexity of each solution.

CHAPTER 3

PROPOSED ALGORITHMS FOR DSMDSTP

In this chapter we describe an approximation algorithm and a heuristic for DSMDStP.

For the approximation algorithm, we give an upper bound for the maximum out-degree.

As mentioned before, we were not able to guarantee the given spanning factor. For both

solutions, we give an upper bound to the final costs of the arborescence’s paths. For each

solution, we give detailed information about the complexity. We also describe how the

Multiple Set-Cover problem is solved, since it is an essential part of our algorithms. But

the reader can skip this last section without impairing the reading.

3.1 AN APPROXIMATION ALGORITHM FOR DSMDSTP

Our algorithm is based on the algorithm presented in (ELKIN; KORTSARZ, 2006)

(Directed Telephone Multicast Problem). We modified it to address the spanner property.

The algorithm has two phases. In the first phase the algorithm computes a so-called
√

l-partition. In this phase, some of the terminals are covered. In the second phase, an

instance of the Multiple Set-Cover problem (defined in (ELKIN; KORTSARZ, 2006)) is

used to determine paths to cover the remaining terminals.

Preliminaries

The algorithm has a directed graph G = (V, E) as input. The set V is divided into

two disjoint sets: C, the set of covered nodes, and U , the set of uncovered nodes. Let

UT = U ∩ T (the set of uncovered terminals) and CT = C ∩ T (the set of covered

terminals).

Let l = |T | and d∗ be the maximum out-degree of an optimum solution for an in-

stance of DSMDStP (d∗ ≤ l). The out-neighbourhood of u in G is denoted N(u, G), i.e.

8

3.1 an approximation algorithm for dsmdstp 9

s

(15)

(10)

(20)

(10)

a)

u

t3

t2
t1

s

(15)

(10)

(20)

(10)

b)

u

t3

t2
t1

Figure 3.1. ∆-neighbourhood of node u.

N(u, G) = {v : (u, v) ∈ E}. For a set of nodes S, N(S, G) is the union of the sets

N(u, G), ∀u ∈ S.

Let us denote G(S) the graph induced by a set of nodes S. The graph induced by

U is thus denoted G(U). The ∆-neighbourhood of a node u ∈ U , denoted ∆-neigh(u), is

the node set

∆-neigh(u) = {t : t ∈ UT ∧ dist(s, u, G) + dist(u, t, G(U)) ≤ k · dist(s, t, G)}.

Figure 3.1 illustrates the concept of ∆-neighbourhood. The gray nodes represent cov-

ered nodes (which are above the division) and the others are uncovered nodes (including

the black ones which represent terminals in UT). Consider k = 2 and the quantity plotted

in the right side of a node v as equal to dist(s, v, G) and consider dist(u, t1, G(U)) = 15,

dist(u, t2, G(U)) = 12, dist(u, t3, G(U)) = 25, The dashed paths in Figure 3.1a represent

the shortest paths from u to reachable terminals (t1, t2, t3). In Figure 3.1b, the solid

paths represent the paths to terminals only that are in ∆-neigh(u), which are t1 and t3.

We denote SPT (s, Sleaves, G) a tree rooted at s composed of shortest paths in graph

G from s to each of the nodes in Sleaves. Finally, for a graph G or a path P we denote

V (G) and E(G) as well as V (P) and E(P) the sets of nodes and edges, respectively, of

the graph and of the path.

3.1 an approximation algorithm for dsmdstp 10

s

a)

t3

t2

t4

t5 t6

t1

t7

(18)

(16)

(15)

(13)
(10)

(25)(27)

s

u

b)

t3

t2

t4

t5 t6

t1

t7

(18)

(15)

(13)
(10)

(25)(27)

(16)

s

u

c)

t3

t2

t4

t5 t6

t1

t7

(18)

(15)

(13)
(10)

(25)(27)

(16)

(5) s

u

d)

t3

t2

t4

t5 t6

t1

t7

(18)

(15)

(13)
(10)

(25)(27)

(16)

(5)

s

u v

e)

t3

t2

t4

t5 t6

t1

t7

(18)

(15)

(13)
(10)

(25)(27)

(16)

s

u v

f)

t3

t2

t4

t5 t6

t1

t7

(18)

(15)

(13)
(10)

(25)(27)

(16)

(5) (15)
s

u v

g)

t3

t2

t4

t5 t6

t1

t7

(18)

(15)

(13)
(10)

(25)(27)

(16)

(5) (15)

Figure 3.2. Applying procedure CompPar.

3.1.1 First Phase: Computing a
√

l-Partition

In the first phase, the algorithm computes a
√

l-partition. A
√

l-partition divides V

into the disjoint and non-empty sets C and U , V = C ∪ U , C ∩ U = ∅,
s ∈ C, such that the ∆-neighbourhood of any node in U contains at most

√
l termi-

nals. A
√

l-partition is computed by eliminating
√

l-bad nodes. A node u is called a
√

l-bad node if u contains more than
√

l terminals in its ∆-neighbourhood. Procedure

CompPar (from (ELKIN; KORTSARZ, 2006)) computes a
√

l-partition.

Figure 3.2 illustrates the application of procedure CompPar. Gray nodes represent

covered nodes and the others are uncovered nodes. Consider k = 2 and the quantity

plotted in the right side of a node z as equal to dist(s, z, G) and consider d(u, t4, G(u)) =

3.1 an approximation algorithm for dsmdstp 11

5, d(u, t3, G(u)) = 10, d(u, t1, G(u)) = 11, d(u, t2, G(u)) = 13, d(u, t6, G(u)) = 20,

d(u, t5, G(u)) = 22, d(v, t6, G(u)) = 10, d(v, t2, G(u)) = 20, d(v, t5, G(u)) = 24. The

dashed paths lead a
√

l-bad node x to ∆-neigh(x) and the circled areas represent the

trees removed from G(U) and rooted at a previous
√

l-bad node. So, Roots = {u, v}.

Procedure CompPar(G=(V, E), s, k)

1 C ← {s}, U ← V \ {s}, Roots← ∅
2 while G(U) contains a

√
l-bad node v do

3 Let Cl(v) be the ⌊
√

l⌋ uncovered terminals closest to v in G(U)
4 Let Tv be a shortest path arborescence leading from v to Cl(v) in G(U)
5 C ← C ∪ V (Tv), U ← U \ V (Tv), Roots← Roots ∪ {v}
6 Let H(VH , EH) be the forest formed by the union of Tv, ∀v ∈ Roots
7 Output (C, U, Roots, H)

The following lemmas state that CompPar computes a correct
√

l-partition and that

the set Roots has cardinality at most
√

l +2 (these lemmas are similar to Claims 2.2 and

2.3 in (ELKIN; KORTSARZ, 2006) and have analogous proofs - proofs are thus omitted).

Lemma 3.1 follows from the condition of stopping of the loop of CompPar (line 2). Lemma

3.2 follows from the number of terminals removed in each iteration (line 3 of CompPar)

along with the number of terminals left to be removed in the last iteration.

Lemma 3.1 (ELKIN; KORTSARZ, 2006) The pair (C, U) output by procedure CompPar

is a
√

l-partition.

Lemma 3.2 (ELKIN; KORTSARZ, 2006) |Roots| ≤
√

l + 2.

After the computation of a
√

l-partition, we build a directed graph that contains a

path from s to each node t in CT that satisfies k · dist(s, t, G) and which has bounded

degree. Let us call this graph G√
l−Par. It is built as the union of a shortest path

from s to each node in Roots and the Tv trees calculated in line 4 of CompPar (repre-

sented by forest H = (VH , EH), output by CompPar). This is represented by procedure

CompGraphFirstPh.

Lemma 3.3 The maximum out-degree of nodes in G√
l−Par is ≤ 2

√
l + 2

3.1 an approximation algorithm for dsmdstp 12

Procedure CompGraphFirstPh(G, s, Roots, H)

1 ARoots ← SPT (s, Roots, G)
2 G√

l−Par ← ARoots ∪H(VH, EH)
3 C ← V (G√

l−Par), U ← V \ C
4 Output (C, U, G√

l−Par)

Proof: The Tv trees computed in line 4 of CompPar are disjoint. Each node in these trees

has degree at most
√

l, as each Tv is a shortest path tree to at most
√

l terminals. ARoots

is a shortest path tree from s to the nodes in Roots. As the cardinality of Roots is at most
√

l + 2 (Lemma 3.2), each node in ARoots has degree at most
√

l + 2. As G√
l−Par is the

union of all these trees, the degree of any of its nodes is limited to
√

l+
√

l+2 = 2
√

l+2.

3.1.2 Multiple Set-Cover Problem

As mentioned before, the MSC problem was stated in (ELKIN; KORTSARZ, 2003,

2006). A solution was proposed in (CHEKURI; KUMAR, 2004) based on an approxi-

mation algorithm for another problem, called Maximum Coverage with Group Budgets

(MCG).

Let β(V1, V2, E) be a bipartite graph. A set S ⊆ V1 is called a set-cover of V2 if

N(S, β) = V2. The Multiple Set-Cover problem is stated as follows (ELKIN; KORTSARZ,

2006):

Input : A bipartite graph β(V1, V2, E) with |V1|+ |V2| = n. The set V1 is partitioned into

a disjoint union of sets V1 =
⋃d

j=1 Aj.

Output : A set-cover S ⊂ V1 of V2 which minimizes val(S), where val(S) = max{|S ∩ Ai|}di=1.

Figure 3.3 illustrates an example.

Theorem 3.1 (CHEKURI; KUMAR, 2004). The multiple set-cover problem admits a

polynomial time greedy (log |V2|+ 1)-approximation algorithm.

3.1 an approximation algorithm for dsmdstp 13

Figure 3.3. Example of MSC. Consider V1 = {a, b, c, d, e, f, g, h}, V2 = {1, 2, 3} and A1, A2,
A3 represent the partitions of V1 (V1 = A1∪A2∪A3). The set-covers S1 = {a, e}, S2 = {c, d, f}
and S3 = {b, f} are examples of optimum solutions, since val(S1) = val(S2) = val(S3) = 1.

In section 3.3 we explain how MSC is solved.

3.1.3 Second Phase: Covering Nodes in UT using an Instance of the Multiple

Set-Cover Problem

In the second phase, the remaining nodes in UT become covered. As in (ELKIN;

KORTSARZ, 2006), we use an instance of the MSC problem to find paths to cover these

nodes while limiting the maximum node degree.

The second phase is divided into two parts. First, an instance of MSC is solved to

find a specific subset of the covered nodes. In the second part, we define paths from

these covered nodes to the uncovered terminals. The union of these paths with G√
l−Par

generates a graph which contains an arborescence that is a solution to DSMDStP.

The instance of MSC, β = (V1, V2, ε), is defined as follows. V1 is composed of pseudo

nodes. A pseudo node xu,v is created for each edge (u, v) such that u is a covered node

and v is an uncovered node. Formally:

V1 = {xu,v : u ∈ C, v ∈ U, (u, v) ∈ E}.

The set V2 is the set of uncovered terminals, i.e. V2 = UT . The edge set ε is defined

as follows. There is an edge from pseudo node xu,v to t ∈ V2 iff the cost of a shortest

path from s to u in G, plus the cost of (u, v), plus the cost of a shortest path from v to t

3.1 an approximation algorithm for dsmdstp 14

s

u

a

b

c

t3

t2

t4

t5 t6

t1

t7

(18)

(15)

(13)
(10)

(25)(27)

(16)

(5)

Figure 3.4. Setting an MSC instance.

in G(U) satisfies the spanner property for t. I.e.:

dist(s, u, G) + C(u, v) + dist(v, t, G(U)) ≤ k · dist(s, t, G).

Let Au = {xu,v : v ∈ N(u, G(U))}. The disjoint partition of V1 that is input for the

instance of the MSC problem is V1 =
⋃

u∈C Au. Each partition Au represents the set of

uncovered neighbours of node u in G(U). As there is an algorithm to MSC that limits

Au ∩ S, MSC is used to provide a bound to node degree in the final arborescence.

Figure 3.4 illustrates how an MSC instance is set. Gray nodes represent covered nodes

and the others are uncovered nodes. A dashed path lead a covered node x, followed by

an uncovered node y, to a terminal t ∈ UT s.t. dist(s, x, G)+C(x, y)+dist(y, t, G(U)) ≤
k cot dist(s, t, G). We can set β = (V1, V2, ε) as V1 = {Xu,a, Xt4,b, Xs,b, Xs,c}, where

the disjoint partition of V1 can be represented by the set {{Xu,a}, {Xt4,b}, {Xs,b, Xs,c}},
V2 = {t1, t5, t7}, and ε = {(Xu,a, t1), (Xt4,b, t5), (Xs,b, t5), (Xs,c, t7)}.

The following lemmas present properties of solutions for such an MSC instance. Their

proofs are similar to the proofs of Lemmas 3.3 and 3.4 in (ELKIN; KORTSARZ, 2006).

So we only provide the main idea of the proofs.

Lemma 3.4 A multiple set-cover instance β = (V1, V2, ε), as defined above, admits a

solution S∗ ⊆ V1 such that val(S∗) ≤ d∗.

3.1 an approximation algorithm for dsmdstp 15

Proof: Let T ∗ be an optimal solution to an instance of DSMDStP. For any node t ∈ UT ,

there is a path from s to t in T ∗. Let u be the last node of this path that is in C and v the

node after u on this path (v ∈ U). So there will be a pseudo node xu,v in V1 and an edge

(xu,v, t) ∈ ε. As this happens to all nodes in UT and T ∗ has maximum degree d∗, there is

a solution S∗ for β such that for each node u there will be at most d∗ pseudo nodes xu,v

in the solution S∗, as xu,v ∈ S∗ iff v is a child of u in T ∗. Thus, maxc∈C{|S∗ ∩Ac|} ≤ d∗.

Lemma 3.5 Let D be a solution to β = (V1, V2, ε) with partition V1 =
⋃

v∈C Av using

Algorithm 3 (presented in (CHEKURI; KUMAR, 2004)). Then maxv∈C |D∩Av| = (log l+

1) · d∗.

Proof: As d∗ is greater than or equal to val(S∗) for an optimal solution S∗ of β and

|V2| ≤ l, this lemma is a direct application of Theorem 3.1.

In order to build the final solution to DSMDStP, we first add to G√
l−Par a set of

shortest paths from covered nodes to terminals in UT and compute a shortest path

arborescence over the resulting graph. We use D to choose the covered nodes. The

complete algorithm to DSMDStP is given in the section 3.1.4.

3.1.4 The Complete Algorithm

Algorithm 1 represents the complete algorithm. Lines 1-2 represent the first phase.

After computing a
√

l-partition (line 1), graph G√
l−Par is computed (line 2). Lines 3-4

correspond to the first part of the second phase of the algorithm, i.e. the application of

the algorithm in (CHEKURI; KUMAR, 2004) to an instance of the MSC problem (as de-

scribed in Section 3.1.3). The output of this algorithm is the set D, whose elements cover

V2. Lines 5-12 correspond to the second part of the second phase, when the arborescence

that is output of the algorithm is built.

In lines 5-10 the digraph Γ (VΓ , EΓ) is built. For each uncovered node t in UT , we

3.1 an approximation algorithm for dsmdstp 16

choose a node xu,v in D such that there is an edge (xu,v, t) ∈ ε and C(u, v)+dist(v, t, G(U))

is minimum. The set VΓ is composed of the nodes u and the set of nodes on a shortest

path from v to t. The set EΓ contains the edges in these paths and edges (u, v).

In line 11, we build the graph Gf , which is the union of graphs G√
l−Par and Γ . We

finally compute the arborescence Af that is the output of the algorithm. Af is a shortest

path tree in Gf rooted at s, containing shortest paths from s to the terminals.

Algorithm 1: Approximation Algorithm to DSMDStP

Input : G = (V, E), s ∈ V , T ⊂ V , k
Output: Af = (VAf

, EAf
)

1 (C, U, Roots, H)← CompPar(G, s, k)
2 (C, U, G√

l−Par)← CompGraphFirstPh(G, s, Roots, H)
3 Build the MSC instance β = (V1, V2, ε) as in Section 3.1.3
4 D ← Apply approximation algorithm (CHEKURI; KUMAR, 2004) on β
5 Γ (VΓ , EΓ), VΓ ← ∅, EΓ ← ∅
6 foreach t ∈ V2 do
7 Choose xu,v ∈ D : (xu,v, t) ∈ ε and C(u, v) + dist(v, t, G(U)) is minimum
8 s← sp(v, t, G(U))
9 VΓ ← VΓ ∪ {u} ∪ V (s)

10 EΓ ← EΓ ∪ {(u, v)} ∪ E(s)

11 Gf ← G√
l−Par ∪ Γ (VΓ , EΓ)

12 Af ← SPT (s, T, Gf)

Lemma 3.6 The maximum out-degree of nodes in Gf is ≤ 2
√

l + 2 + O(log l) · d∗.

Proof: The algorithm adds nodes to Gf in the first and second phases of the algorithm.

After the first phase, each node in Gf has maximum out-degree 2
√

l + 2 (Lemma 3.3).

In the second phase, new nodes are added to Gf and the out-degree of nodes already in

Gf might increase. The new added nodes have maximum degree
√

l, as, in this phase,

there are no more
√

l-bad nodes. The nodes already in Gf that might have their degrees

increased are those nodes u for which there is a pseudo node xu,v in D. However, from

Lemma 3.5, the out-degree of these nodes might be increased by at most O(log l) · d∗.

Thus, the maximum out-degree of any node is 2
√

l + 2 + O(log l) · d∗.

3.1 an approximation algorithm for dsmdstp 17

Lemma 3.7 ∀t ∈ T , dist(s, t, Gf) ≤ k · (dist(s, t, G) + dist(s, tmax, G)), where tmax ∈
{t′|(t′ ∈ T) ∧ (∀t′′ ∈ T : dist(s, t′′, G) ≤ dist(s, t′, G))}.

Proof: If t is covered in the first phase, dist(s, t, Gf) ≤ k · dist(s, t, G) by construction:

a tree rooted at a (previously)
√

l-bad node u contains paths from u to terminals t such

that dist(s, u, G)+ dist(u, t, G) ≤ k · dist(s, t, G). In particular, all nodes v (terminals or

not) that are covered in the first phase, are in a path from s to a terminal t with cost

less than or equal to k · dist(s, t, G), which is ≤ k · dist(s, tmax, G).

For the terminals t that are only covered in the second phase (as in the proof of

Lemma 3.4, for each t, there is a path between s and t), observe that a pseudo node xu,v

and an edge (xu,v, t) are inserted in the input graph to the MSC instance if dist(s, u, G)+

C(u, v)+dist(v, t, G(U)) ≤ k·dist(s, t, G). Thus, in particular, C(u, v)+dist(v, t, G(U)) ≤
k · dist(s, t, G). As dist(s, u, G) ≤ k · dist(s, tmax, G), we have dist(s, t, Gf) ≤ k ·
(dist(s, t, G) + ·dist(s, tmax, G)).

By Lemma 3.7, the algorithm can violate the spanner property for some terminals.

Observe, however, that this might only happen to terminals covered in the second phase.

Terminals covered in the first phase have their spanner constraint satisfied.

Theorem 3.2 The approximation algorithm generates an arborescenceAf with bounded

out-degree 2
√

k+2+O(log l)·d∗ and that has paths from s to each terminal t ∈ T with cost

less than or equal to k · (dist(s, t, G)+dist(s, tmax, G)), where tmax ∈ {t′|(t′ ∈ T)∧ (∀t′′ ∈
T : dist(s, t′′, G) ≤ dist(s, t′, G))}.

Proof: The Af tree is generated by computing minimum cost paths in Gf from s to

each t ∈ T . The theorem follows from the fact that all nodes in Gf have out-degree

≤ 2
√

l + 2 + O(log l) · d∗ (Lemma 3.6) and that Gf contains paths from s to each t ∈ T

with costs ≤ k · (dist(s, t, G) + dist(s, tmax, G)) (Lemma 3.7).

3.1 an approximation algorithm for dsmdstp 18

3.1.5 Complexity

The CompPar procedure has its complexity bounded by (
√

|T |+2)O(|V |3) due to the

number of loop iterations (Lemma 3.2) and the complexity of building a shortest path

tree (SPT) for the
√

l-bad node candidates, using Dijkstra’s algorithm (CORMEN et al.,

2009). The complexity of the procedure CompGraphFirstPh is bounded by the running

time of building SPT, so it is bounded by O(|V |2).

The complexity of building the MSC instance (line 3) is related to the complexity

of composing the sets V1 and ε. The former is bounded by O(|V |2) where the latter

is bounded by the running time of all-pair-shortest paths (APSP) algorithm, which is

O(|V |3) (CORMEN et al., 2009).

We assume the algorithm described in (CHEKURI; KUMAR, 2004) (Algorithm 4) for

solving instances of the MSC problem (line 4). This algorithm is based on an algorithm

(Algorithm 3) for another problem, called MCG. The algorithm to MCG depends on

calls to an oracle, which have, in our case, O(|V |2|T |) running time. The complexity of

MCG will thus be O(|V |3|T |2). As the MSC algorithm consists in iteratively applying the

MCG algorithm, the running time of line 4 is O((log |T |)(|V |3|T |2) (refer to (CHEKURI;

KUMAR, 2004) or Section 3.3 for the details).

Using the result of the APSP algorithm run for building the MSC instance, the

complexity of a single run of lines 7-10 is bounded to O(|V |2). As the number of iterations

of the loop in lines 6-10 is bounded by the size of D, the complexity of lines 6-10 is

|T |O(|V |2).

So, the complexity of Algorithm 1 is bounded by the complexity of solving MSC,

which is O((log |T |)(|V |3|T |2).

3.2 heuristic for the dsmdstp 19

3.2 HEURISTIC FOR THE DSMDSTP

In this section we describe a heuristic called Sliced and Iterative MSC (SIM) for the

DSMDStP. In this heuristic, the cost of the paths from s to each terminal t in the final

arborescence is less than or equal to k · (⌊
√

|T |⌋+ 2) · dist(s, t, G).

3.2.1 Algorithm

As the name says, the heuristic is iterative. The terminals are iteratively covered in

ascending order of the costs of the shortest paths from the source node to each of them

in G. At each iteration, the heuristic covers the next uncovered ⌊
√

l⌋ terminals in this

order, until there are no more uncovered nodes. Instead of using MSC only once to find

paths to all the remaining uncovered terminals (as in the approximation algorithm), we

use MSC at each iteration to cover the next uncovered ⌊
√

l⌋ terminals in order. The set

of these terminals will be referred to as Next
√

l
ter .

In order to build an MSC instance, we create pseudo nodes xu,v as in Section 3.1.3.

However, in order to try to decrease the out-degree of nodes, we mark nodes u that have

already been part of a solution of an MSC instance (in a previous iteration). We try to

create paths to uncovered terminals from unmarked nodes. However, when necessary, we

use marked nodes. The set of marked nodes is called Marked.

SIM is represented as Algorithm 2. In line 1, the sets C, U , Marked and l are

initialized (C, U and l are used as in Section 3.1).

The main loop of SIM (lines 2-16) represents the iterations. In lines 3-6, we define

the values of V1, V2 and ε to build an instance β = (V1, V2, ε) of MSC. The sets V1, V2

3.2 heuristic for the dsmdstp 20

Algorithm 2: SIM - Sliced and Iterative MSC

Input : G = (V, E), s ∈ V , T ⊂ V , k
Output: Af = (VAf

, EAf
)

1 C ← {s}, U ← V \ {s}, Marked← ∅, l ← |T |
2 while UT 6= ∅ do

3 Set V1, V2 and ε using the current values of C, U , Marked and Next
√

l
ter (See

Section 3.2.1)
4 foreach t : t ∈ V2 and ∄ edge (x, t) ∈ ε for any x do
5 Let xu,v be a pseudo node such that:

u ∈Marked,
u has the smallest out-degree and
C(u, v) + dist(v, t, G(U)) ≤ k · dist(s, t, G)

6 V1 ← V1 ∪ {xu,v}, ε← ε ∪ {(xu,v, t)}
7 D ← Apply approximation algorithm 4 on β(V1, V2, ε)
8 Γ (VΓ , EΓ)← ∅
9 foreach t ∈ V2 do

10 Choose a node xu,v ∈ D : (xu,v, t) ∈ ε and C(u, v) + dist(v, t, G(U)) is
minimum

11 Marked←Marked ∪ {u} { for which x(u,v) was chosen in the last line}
12 s← sp(v, t, G(U))
13 VΓ ← VΓ ∪ {u} ∪ V (s)
14 EΓ ← EΓ ∪ {(u, v)} ∪E(s)

15 C ← C ∪ VΓ , U ← U \ VΓ

16 Af ← Af ∪ Γ(VΓ, EΓ)

and ε are initialized as follows:

V1 = {xu,v : u ∈ (C \Marked), v ∈ U, (u, v) ∈ E},

V2 = Next
√

l
ter,

ε = {(xu,v, t) : xu,v ∈ V1 ∧ t ∈ Next
√

l
ter ∧ C(u, v) + dist(v, t, G(U)) ≤ k · dist(s, t, G)}.

First, we only consider unmarked nodes in C, as explained before. But, in doing so

there is the possibility of there being nodes in V2 that cannot be covered (for example,

if the only path from a covered to an uncovered node that has cost ≤ k · dist(s, t, G)

for some t has, as its last covered node, an already marked one). So, when needed, we

include in V1 pseudo nodes xu,v for marked nodes u. In these cases, we include a node

3.2 heuristic for the dsmdstp 21

xu,v such that u is a marked node with the smallest out-degree and the sum of the cost

of edge (u, v) and of a shortest path from v to t in G(U) is ≤ k · dist(s, t, G) (lines 4-6).

We thus apply the approximation algorithm 4 to β(V1, V2, ε), using V1 =
⋃

u∈C Au as the

partition, where Au = {xu,v : ∃v ∈ V such that xu,v ∈ V1} (line 7). D is the output of

this algorithm.

In lines 8-14 we choose paths from covered nodes to the terminals in Next
√

l
ter . For

each node t ∈ V2 we choose a pseudo node xu,v in D such that there is a path from u

to t with cost ≤ k · dist(s, t, G). These are the nodes xu,v for which there is an edge

(xu,v, t) ∈ ε. We choose the pseudo node xu,v for which the path composed of the edge

(u, v) and a shortest path from v to t has the smallest cost (line 10). We thus mark node

u (line 11) and store this path in Γ (lines 12-14).

In line 15, the set of covered (C) and uncovered (U) nodes are updated. The nodes in

V (Γ) become covered. Finally, the nodes and edges of Γ are added to the arborescence

Af (line 16).

At the end of the last iteration, Af contains the final arborescence.

Lemma 3.8 Let Af be output by SIM. ∀t ∈ T , there is a path from s to t in Af .

Proof: Let T ∗ be an optimal solution to an instance of DSMDStP. For any node t ∈ UT ,

there is a path from s to t in T ∗. Similar to the proof of Lemma 3.4, let u be the last

node of this path that is in C and v the node after u on this path (v ∈ U). Irrespective

the iteration which t is added to Next
√

l
ter , there will be a pseudo node xu,v in V1 and an

edge (xu,v, t) ∈ ε. So, after applying approximation algorithm 2 on β(V1, V2, ε) (line 7),

we know there will be at least one path leading from a covered node u to t, and one of

these paths is chosen by SIM to be part of Af (line 12), concluding the proof.

Lemma 3.9 The number of SIM’s iterations is bounded by ⌊
√

l⌋+ 2.

Proof:

Consider the number of terminals l. If l is a perfect square, it is easy to see that all

3.2 heuristic for the dsmdstp 22

terminals will be covered in
√

l iterations (since ⌊
√

l⌋ terminals =
√

l terminals). Now

let us examine the case where l is not a perfect square.

Let
√

l = ⌊
√

l⌋+ F , where F ∈]0, 1[. Then l = (⌊
√

l⌋+ F) · (⌊
√

l⌋+ F). So:

l = ⌊
√

l⌋ · ⌊
√

l⌋+ (⌊
√

l⌋ · F) + (⌊
√

l⌋ · F) + (F · F)

l = (⌊
√

l⌋ · ⌊
√

l⌋) + [⌊
√

l⌋ · (2 · F)] + (F · F)

l = (⌊
√

l⌋ · ⌊
√

l⌋) + [⌊
√

l⌋ · (2 · F)] +

[

⌊
√

l⌋ ·
(

F · F
⌊
√

l⌋

)]

l = (⌊
√

l⌋ · ⌊
√

l⌋) +

(

⌊
√

l⌋ ·
[

(2 · F) +

(

F · F
⌊
√

l⌋

)])

l = ⌊
√

l⌋ ·
(

⌊
√

l⌋+

[

(2 · F) +

(

F · F
⌊
√

l⌋

)])

We can divide l into two numbers: ⌊
√

l⌋ and (⌊
√

l⌋+ [(2 · F) + (F · F
⌊
√

l⌋)]). The first

number (⌊
√

l⌋) matches the number of terminals covered by SIM in each iteration (see

Section 3.2.1), so we need to find an integer upper bound IUB (sufficient condition) for

the real number (⌊
√

l⌋+ [(2 · F) + (F · F
⌊
√

l⌋)]), which means IUB iterations is sufficient to

cover l terminals. We have:

⌊
√

l⌋+ (2 · F) + (F · F
⌊
√

l⌋
) =

⌊
√

l⌋+ (2 · (
√

l − ⌊
√

l⌋)) +
(
√

l − ⌊
√

l⌋)2

⌊
√

l⌋
=

⌊
√

l⌋+
l

⌊
√

l⌋
− ⌊
√

l⌋ =

⌊
√

l⌋+
l − ⌊
√

l⌋2

⌊
√

l⌋

Since ⌊
√

l⌋2 is the greatest perfect square less than l, then (l − ⌊
√

l⌋2) ≤ 2 · ⌊
√

l⌋
(the proof is postponed to the last paragraph). This implies that ⌊

√
l⌋ + l−⌊

√
l⌋2

⌊
√

l⌋ ≤

3.2 heuristic for the dsmdstp 23

⌊
√

l⌋+ 2·⌊
√

l⌋
⌊
√

l⌋ = ⌊
√

l⌋+ 2, where ⌊
√

l⌋+ 2 is our IUB, concluding the proof.

Now, let us prove that (l − ⌊
√

l⌋2) ≤ 2 · ⌊
√

l⌋. Let SRx be a perfect square and

let Rx be its root. For two consecutive perfect squares SRi and SRj , it is known that

SRj−SRi = Ri+Rj (see Proposition 2 in (FIBONACCI; SIGLER, 1987)). Alternatively,

SRj − SRi = 2 · Ri + 1. Let X be a non perfect square and let GSRX be the greatest

perfect square less than X. Let RX be GSRX ’s root. Then, X −GSRX ≤ 2 · RX .

Lemma 3.10 Let Af be output by SIM. Af is an arborescence.

Proof: At the beginning, set C contains only node s. At the end of the first iteration,

Af will be an arborescence, as shortest paths from s to each terminal t ∈ V2 are chosen

to be added to Af (line 12). Analogously, starting at the second iteration, for each pair

(xu,v, t), where t ∈ V2 and xu,v is the chosen node for t in line 10, only shortest paths

from v to t (line 12) are added to Af . The proof follows from the inexistence of circuits

in Af , as these paths are formed only by nodes in U (except the first node v).

Theorem 3.3 LetAf be output by SIM. ∀t ∈ T, dist(s, t,Af) ≤ (⌊
√

l⌋+2)·k·dist(s, t, G)

Proof: At each iteration, new terminals are added to Af . Let th be the terminal u in

Next
√

l
ter in iteration i for which dist(s, u, G) is highest. Paths are added to Af from an

already covered node to a terminal t in Next
√

l
ter.

First, observe that all paths added to Af in iteration i have cost ≤ k ·dist(s, th, G), as

there will be an edge (xu,v, t) in the set ε of the MSC instance if C(u, v)+dist(v, t, G(U)) ≤
k · dist(s, t, G) ≤ k · dist(s, th, G). Additionally, as the heuristic covers ⌊

√
l⌋ terminals

at each iteration (except possibly the last one), there can be at most ⌊
√

l⌋+ 2 iterations

(Lemma 3.9).

Now, let t be a terminal added to Af in iteration j. Terminal t must be a terminal

in Next
√

l
ter . t can be reached from the root through a set of paths, added to Af in all

iterations until iteration j. As at each iteration terminals are in Next
√

l
ter following a

3.2 heuristic for the dsmdstp 24

non-decreasing order of their minimum cost paths from the source node, all these paths

have cost ≤ k · dist(s, t, G). As there are at most ⌊
√

l⌋ + 2 such paths, dist(s, t,Af) ≤
(⌊
√

l⌋+ 2) · k · dist(s, t, G).

3.2.2 Complexity

The complexity of some parts of SIM is similar to algorithm 1, but in SIM the size

of V2 is
√

|T | rather than O(|T |). The complexity of setting MSC instance in line 3 is

relatively similar to the complexity in algorithm 1, which means it is O(|V |3).

The loop in lines 4 to 6 has its complexity bounded by the number of iterations and

the size of Marked set, since the loop takes advantage of the results for building the APSP

and SPT in the MSC instance. At each iteration of the loop in line 2, the Marked set

has, at most, ⌊
√

|T |⌋ elements added to it, so in the last iteration the maximum size of

Marked is O(|T |
√

|T |). Since the number of iterations in line 4 is, at most, ⌊
√

T⌋, the

complexity of this loop is O(|T |2).

Considering the new size of V2 set (compared to this set in algorithm 1), the com-

plexity of running the algorithm for the MSC problem (line 7) is O((log
√

|T |)(|V |3|T |)).

The loop in lines 9 to 14 has its complexity bounded by the number of iterations and

the size of D (line 11), since this loop also takes advantage of the results for building the

APSP in the MSC instance, so retrieving the nodes in line 12 is O(1). Consequently, the

running time of this loop is (
√

|T |+ 2)O(V).

Considering the number of iterations in line 2 and the fact that the complexity of

SIM is bounded by the complexity of running the algorithm for the MSC problem, we

conclude the complexity of SIM is O((log
√

|T |)(|V |3|T |
√

|T |)).

3.3 how msc is solved 25

Algorithm 3: Greedy algorithm for MCG (based on (CHEKURI; KUMAR, 2004))

1 H ← ∅, X ′ ← X;
2 for i=1 to l do selec[i]← F , selecQt[i]← 0;
3 for j=1 to k do
4 for i=1 to l do
5 if selec[i] = False then
6 Si ← A(Gi, X

′);
7 else
8 Si ← ∅;

9 r ← argmaxi|Si|;
10 selecQt[r] = selecQt[r] + 1;
11 if selecQt[r] = budgetsK[r] then selec[r]← True;
12 H ← H ∪ {Sr}, X ′ ← X ′ \ Sr;

13 return (H, X \X ′);

3.3 HOW MSC IS SOLVED

Observe that the MSC is a minimization version of an optimization problem. The

solution proposed in (CHEKURI; KUMAR, 2004) for MSC consists in an iterative appli-

cation of the algorithm for the MCG problem, where the latter is a maximization version

of the optimization problem. Basically, MCG consists in, given the same input for MSC

and a budget ki for each Ai, finding a set-cover S ⊆ V1 such that |S ∩ Ai| ≤ ki, and the

number of elements covered is maximized. Formally:

Input : A ground set X and:

• S1, ..., Sm, where Si ⊆ X, 1 ≤ i ≤ m.

• G1, ..., Gl, where Gj ⊆ {S1, ..., Sm}, 1 ≤ j ≤ l.

• An integer k and a specific integer kj for each Gj, 1 ≤ j ≤ l.

Output : A set H ⊆ {S1, ..., Sm} such that the number of elements of X covered by the

sets of H is maximized. H is a solution iff |H| ≤ k and |H ∩Gj | ≤ kj, 1 ≤ j ≤ l.

3.3 how msc is solved 26

Algorithm 4: Algorithm for MSC (CHEKURI; KUMAR, 2004)

1 Guess (search for) the optimal value v∗ of the MSC instance;
2 constraintV alues← l copies of v∗;
3 S ← ∅;
4 while V2 6= ∅ do /* iterates at most log |V2|+ 1 times */

5 (S ′, V ′
2)←Algorithm 3(

⋃m
i=1 Si,

⋃l
j=1 Gj , V2, constraintV alues, v∗);

6 S ← S ∪ S ′;
7 V2 ← V2 \ V ′

2 ; /* some sets Si are deleted as well as (possibly) sets

Gj */

8 return S;

Algorithm 3 represents the algorithm to the MCG problem. It greedily chooses among

the available sets the one (Sr) that covers the maximum number of uncovered elements

of X in each iteration. Observe that the selection of a set Si has to respect the constraint

kj of each set Gj. The function A in line 6 represents an α-approximate oracle. An α-

approximate oracle A(Gi, X
′) outputs a set Sj ∈ Gi such that Sj ∩X ′ ≥ 1

α
maxD∈Gi

|D ∩
X ′|. For α = 1, the following theorem (from (CHEKURI; KUMAR, 2004)) holds:

Theorem 3.4 (CHEKURI; KUMAR, 2004). Algorithm 3 is a 2-approximation algo-

rithm for MCG.

As previously explained, the algorithm to the MSC problem basically consists in an

iterative application of Algorithm 3. Algorithm 4 represents the algorithm to the MSC

problem.

In Algorithm 4, some parameters are passed to algorithm 3. Each Gj is related to a

covered node u that originated a pseudo node xu,v and each Si is related to a pseudo node.

The constraint values (represented by constraintV alues) and v∗ represent, respectively,

the values kj and k that are input to MCG. V2 represents the ground set X of MCG.

Using Theorem 3.4, it is simple to see that Algorithm 4 solves MSC, covering V2 in at

most log |v2|+ 1 iterations (see (CHEKURI; KUMAR, 2004) for more details).

Regarding the relation between MSC and MCG problems (introduced in the last

paragraph), let β = (V1, V2, ε) be an instance of MSC as defined in Section 3.1.3. For

3.3 how msc is solved 27

each xu,v ∈ V1, suppose there is an order between the nodes in N(u, G(U)). Let Ni(u) be

the i-th neighbor of u in U . Remember that the disjoint partition of V1 for the instance

of the MSC is V1 =
⋃

u∈C Au, where Au = {xu,v : v ∈ N(u, G(U))}. The sets Si, Gj and

X, that are passed as parameters to the instance of MCG in Algorithm 4 (line 5), are

formed in the following way:

• X = V2.

• S(u,v) = {y : (y ∈ X) ∧ (∃ (xu,v, y) ∈ ε} for each pseudo-node xu,v ∈ V1.

• Gu = {S(u,N1(u)), S(u,N2(u)), ..., S(u,N|N(u,G(U))|(u))} for each index u s.t. Au is member

of the disjoint partition of V1.

Observe that it is mentioned in the description of Algorithm 4 that v∗ is guessed (line

1). It is easy to see that 1 ≤ v∗ ≤ |V2|. To find out a value v′, s.t. v∗ ≤ (log |V2|+1) ·v′ ≤
(log |V2|+ 1) · v∗ and all nodes of V2 are covered by applying Algorithm 4 with v′ as the

guessed v∗, we can use the following process: we initially execute Algorithm 4 with v′

set to 1; if some nodes of V2 are left uncovered, the value assigned to v′ was less than

the optimum, otherwise, according to Theorem 3.1, a solution would be found. So we

continue incrementing v′. We increment v′ and repeat the process until all nodes of V2

are covered.

In the next chapter we present an evaluation of the proposed algorithms. We compare

them with another algorithm, regarding the degree and the spanner property. We will

show that although our algorithms do not guarantee to respect the spanner property, in

practice, the results were quite good for both algorithms.

CHAPTER 4

EVALUATION

In this chapter we present the results of a series of experiments to evaluate the approx-

imation algorithm and SIM in relation to the maximum out-degree and the costs of the

paths from the source node to each terminal in the generated arborescence. We first de-

scribe the parameters used in the experiments and implementation details (Section 4.1).

Then, we describe the algorithms and metrics used in the experiments (Section 4.2). At

last, we present the results of experiments for the chosen metrics and algorithms (Section

4.3).

As mentioned before, we were not able to satisfy the spanner constraint. However, our

experiments show quite good results. More specifically, for the approximation algorithm,

in more than half of the situations there was no violation of the spanner constraint

(this will be better explained in Section 4.3, through graphics) and in the other half the

violation was by a low factor (on average, less than 10%). For the heuristic, although

the results were not as good as for the other algorithm, the ratio of violation (which is

the main metric) was quite low too, and the heuristic always outperformed the other

algorithms concerning the degree, besides showing a uniform behaviour for both the

degree and spanner violation, what contributes to scalability.

4.1 PARAMETERS AND IMPLEMENTATION DETAILS

We created a specific Java program to perform the experiments. The source code of

the program can be found in (BRAGA, 2012).

In all experiment scenarios, nodes were spread in a 500×500 Euclidian space. For

each node u we assumed a transmission range of approximately 125 distance units. Each

node can communicate with all nodes inside the circumference with radius equal to its

28

4.2 algorithms and metrics 29

range and centered at that node. The cost associated with each edge (u, v) is equal to

the Euclidean distance between u and v.

The number of nodes (network size), n, ranged from 60 to 300. For each network

size, the number of terminals, t, ranged from 10 to 50. For each pair of network size and

terminals set size, we performed experiments with different spanning factors, sf , ranging

from 1 to 2. For each combination of network size, terminals set size and spanning factor,

we generated 30 scenarios.

The algorithm for solving the MSC problem is based on an algorithm described in

(CHEKURI; KUMAR, 2004). This algorithm is based on an α-approximate oracle, which

results a solution set whose quality deviates by a bounded factor from an optimum set (see

Section 3.3 for more details). We implemented an optimum oracle, i.e. an 1-approximate

oracle.

4.2 ALGORITHMS AND METRICS

As we are not aware of any other algorithm to DSMDStP, we compared the algorithms

we presented in this dissertation against a shortest path tree algorithm (SPT), i.e. an

algorithm that calculates a tree formed by shortest paths from the source node to each of

the terminals. The reason for choosing SPT is that it is a simple and efficient algorithm

that generates a tree which satisfies the spanner restrictions as it generates a single-sink

1-spanner Steiner tree (k = 1). Another reason for choosing SPT were the similarities

between the proposed algorithms (mainly the approximation algorithm) and SPT, since

the criterion for choosing the spanner paths (paths that respect the spanner property) is

based on shortest paths. These similarities were reflected in the experiment results.

We used four metrics to compare and analyze the algorithms. For each metric, we

considered the average of the 30 scenarios. Besides evaluating the maximum out-degree,

we measured the final path costs. As we cannot guarantee a root-stretch factor of k, but

one of k ·
(

1 + maxt∈T {dist(s,t,G)}
mint∈T {dist(s,t,G)}

)

and k ·(⌊
√

|T |⌋+2) for Algorithm 1 and SIM respectively,

4.2 algorithms and metrics 30

we calculated the ratio between the final path’s cost and the desired path’s cost (i.e. k

times the shortest cost path from the source node to the terminal). We would like to

verify the extent of the violation in the experiments. Let us call this ratio Cost Violation

Ratio (CVR). CVR was calculated using the following formula:

CV R =

∑

∀t∈Tvio

dist(s,t,Af)

k·dist(s,t,G)

|Tvio|
(.)

where:

Tvio ⊆ T = {t|t ∈ T ∧ dist(s, t,Af) > k · dist(s, t, G)}.

Observe that we take into consideration only the terminals whose final costs violate

the spanner constraint (represented by the set Tvio). We defined the metric in this way

because we would like to answer the following question: when the violation occurs, by

how much does it occur? Even though this metric worse our results (by increasing the

CVR value), it is a more accurate metric for the former question than we had considered

all the terminals. CVR’s value is always ≥ 1. The lower the CVR, the lower the violation.

As CVR is an average, we also calculated the worst violation ratio (the greatest

ratio in the numerator of CVR). Let us call it MAX CVR. Although we ran 30 scenarios

for each pair of network size and terminals set size, in order to keep the coherency of

the metrics, we averaged CVR and MAX CVR only by the number of scenarios where

violation occurred.

The paths to the nodes covered in the first phase of our algorithm and in the first

iteration of SIM have their spanner constraints satisfied. It is supposed, however, that

more terminals have their spanner constraints satisfied, as we use the criteria of choosing

shortest cost paths in the algorithms. As in CVR’s denominator we considered |Tvio|
instead of |T |, we calculated additionally the percentage of spanner constraints violated.

This percentage is represented by the PVT (Percentage of Violated Terminals) metric.

Similar to CVR, we averaged PVT by the number of scenarios where violation occurred.

Formally:

4.3 experiment results 31

PV T =
|Tvio|
|T | · 100%. (.)

For both CVR and PVT, we considered only the scenarios where violation occurred.

We calculated additionally the percentage of scenarios where violation occurred. This is

represented by the PVR (Percentage of Violated Runs) metric.

4.3 EXPERIMENT RESULTS

Figure 4.1 shows the maximum out-degree for three different parameters: network

size (Figure 4.1a), size of the terminals set (Figure 4.1b) and spanning factor (Figure

4.1c). For each of these parameters, fixed values for the others were used. The fixed

values are indicated by the labels above the plots (NS - Network Size; Ter - Terminals

Set Size; SF - Spanning Factor). Algorithm 1 is referred throughout this section by the

abbreviation APPROX.

In Figure 4.1a, generally, the degree value is stable for both APPROX and SIM,

irrespective of the network size. So, regarding the degree, these algorithms support

network scalability well. On the other hand, the degree of SPT increases quickly and the

final arborescence has a degree three times greater than the other algorithms in denser

networks. Regarding the number of terminals (Figure 4.1b), the greater the number of

terminals, the greater the degree of the three algorithms. This behaviour is expected

by the two proposed algorithms, since in each step (each phase for APPROX and each

iteration for SIM) of the algorithms, the possible maximum degree is affected by the

number of terminals. But, the difference between the three algorithms is the slope ratio.

For the proposed algorithms the increasing ratio is low whereas it is high for SPT. Finally,

in Figure 4.1c, we ranged the spanning factor. As expected, the degree resulted from

applying SPT is the same, besides being high. For the lowest value of the spanning

factor, APPROX yielded a much higher degree when comparing to the cases with higher

spanning factors, but the maximum degree decreases drastically with the increase in the

4.3 experiment results 32

spanning factor. SIM exhibits a uniform behaviour, so the achieved maximum degree

mean was roughly unaffected by the spanning factor. For all the three parameters, SIM

outperformed APPROX.

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300

D
eg

re
e

Network Size

Degree x Network Size (SF = 1.5, Ter = 30)

APPROX
SIM
SPT

 0

 5

 10

 15

 20

 0 10 20 30 40 50

Terminals Set Size

Degree x Terminals Set Size (NS = 220, SF = 1.5)

APPROX
SIM
SPT

 0

 5

 10

 15

 20

 1 1.2 1.4 1.6 1.8 2

D
eg

re
e

Spanning Factor

Degree x Spanning Factor (NS = 220, Ter = 30)

APPROX
SIM
SPT

Figure 4.1. Maximum out-degree in function of (a) network size, (b) number of terminals, and
(c) spanning factor

Since APPROX imitates, in some aspects, the SPT algorithm, we evaluated the

algorithms for the specific case of spanning factor equal to 1. This graphic is illustrated

by Figure 4.2. Observe that the curve of APPROX is very close to the curve of SPT.

Assuming a spanning factor of 1 corresponds to the situation when the restrictions on

the paths from the source node to the terminals correspond to the minimum cost paths.

As the restrictions are tighter, there will be less paths to choose leading to the uncovered

terminals and respecting the constraints in the second phase of APPROX. This might

contribute to an increase in the degree of nodes. On the other hand, SIM is quite good for

scalability in this situation too. Although both APPROX and SIM apply the algorithm

4.3 experiment results 33

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250 300

D
eg

re
e

Network Size

Degree x Network Size (SF = 1.0, Ter = 30)

APPROX
SIM
SPT

Figure 4.2. Degree x Network Size when spanning factor is 1

0

1

1.2

1.4

1.6

1.8

2

 0 50 100 150 200 250 300

C
os

t V
io

la
tio

n
R

at
io

Network Size

Cost Violation Ratio x Network Size (SF = 1.5, Ter = 30)

APPROX
SIM
SPT

0

1

1.2

1.4

1.6

1.8

2

 0 10 20 30 40 50

Terminals Set Size

Cost Violation Ratio x Terminals Set Size (NS = 220, SF = 1.5)

APPROX
SIM
SPT

0

1

1.2

1.4

1.6

1.8

2

 1 1.2 1.4 1.6 1.8 2

C
os

t V
io

la
tio

n
R

at
io

Spanning Factor

Cost Violation Ratio x Spanning Factor (NS = 220, Ter = 30)

APPROX
SIM
SPT

Figure 4.3. Cost Violation Ratio in function of (a) network size, (b) number of terminals, and
(c) spanning factor

for the MSC problem, only APPROX exhibited behaviour similar to SPT. This might be

explained by the restrictions on the edges that are allowed to be part of a MSC instance,

where for APPROX the restriction considers paths from the source node to the terminal

4.3 experiment results 34

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

P
er

ce
nt

ag
e

of
 V

io
la

te
d

T
er

m
in

al
s

Network Size

PVT x Network Size (SF = 1.5, Ter = 30)

APPROX
SIM
SPT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50

Terminals Set Size

PVT x Terminals Set Size (NS = 220, SF = 1.5)

APPROX
SIM
SPT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 1.2 1.4 1.6 1.8 2

P
er

ce
nt

ag
e

of
 V

io
la

te
d

T
er

m
in

al
s

Spanning Factor

PVT x Spanning Factor (NS = 220, Ter = 30)

APPROX
SIM
SPT

Figure 4.4. Percentage of Violated Terminals in function of (a) network size, (b) number of
terminals, and (c) spanning factor

and for SIM the restriction only considers the path from a covered node (which is unique)

to the terminal.

Figure 4.3 shows the cost violation ratio (CVR) for the three different parameters

(network size, terminals set size and spanning factor). The vertical bars on each point

were used to represent MAX CVR (the top of the bars represents its value). On the

y axis, the value 0 indicates that at that point no violation for any terminal occurred.

For this metric, it is obvious that SPT will always exhibit the best behaviour (all of its

points are on the line y = 0), as it finds shortest paths. The closer the value to 1, the

lesser the violation. In Figure 4.3a, the CVR’s value for APPROX is quite close to 1 for

the first 2 points, and no violation occurs for the others. The CVR’s value for SIM is

greater than APPROX, but it is still low (1.4 in average) and it is uniform. In Figures

4.3b and 4.3c, the CVR’s behaviour is similar to the one presented in Figure 4.3a for

4.3 experiment results 35

both proposed algorithms. Considering APPROX’s values, in almost half of its abscissa’s

values no violation occurs and in the other points the CVR’s value is close to 1 (except

for one point in each graphic). Regarding SIM’s values, the CVR is again low (between

1.4 and 1.5 in average) and uniform. In the graphics, the behaviour of MAX CVR for the

algorithms is repeated. Regarding the APPROX algorithm, MAX CVR is really close to

CVR (except for one point in Figure 4.3b) and, in some cases, they are almost the same,

which it is good because APPROX’s worst case is close to the average case. Concerning

SIM, the MAX CVR is slightly higher than CVR, but it is in almost all situations ≤ 2,

which is quite acceptable.

CVR measures the quality of violation, but it is important to calculate the amount

of violation. PVT captures this concept. More specifically, PVT answers the question:

when violation occurs, how many terminals violate their constraint? The values of PVT

are shown in Figure 4.4. For all three graphics, the PVT’s value is 0 for the same points

where no violation occurs in Figure 4.3. In Figure 4.4a, the PVT’s value for APPROX

is quite low (less than 10%). In fact, the behaviour of PVT for APPROX is similar for

all the three graphics, where the value exhibited is generally less than 10%. Concerning

SIM, the PVT’s value is high but it is uniform for the network size (between 60% and

70%). For SIM, there is a tendency to increase the PVT value with the increse in the

terminals set size. On the other hand, when we vary the spanning factor, the higher the

spanning factor, the lower the PVT’s value for SIM.

Finally, we evaluated the percentage of scenarios where (at least one) violation occurs

(PVR). The graphic of PVR is represented by Figure 4.5. For APPROX, the denser the

network, the lower PVR is. Additionally, the percentage is no greater than 30%. Even

though this value could be considered, in some senses, to be not so low, recall that

PVR disregards the percentage of terminals which violate the spanner constraint (the

run is considered violated even if the constraint is violated for a single terminal) and the

amount of violation. The latter is captured by the CVR metric. A variation of the former

is captured by PVT metric. For SIM, PVR has the highest possible value.

4.3 experiment results 36

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
er

ce
nt

ag
e

of
 V

io
la

te
d

R
U

N
S

Network Size

Percentage of Violated RUNS x Network Size (Ter = 30, SF = 1.5)

APPROX
SIM

Figure 4.5. Percentage of Violated RUNS x Network Size

According to our experiments, the maximum out-degree for the proposed algorithms

was quite low, except for APPROX in the worst scenario when the spanning factor was

set to 1 (Figure 4.1c). In this scenario, APPROX mimicked SPT’s behaviour. SIM

had uniform behaviour at large, supporting better scalability, and always outperformed

APPROX in the degree metric. On the other hand, APPROX always outperformed SIM

for the CVR, PVT and PVR metrics. More than that, APPROX presented very good

results for both the quality (CVR) and the quantity (PVT and PVR) of violation. In

almost half of abscissa’s values (in some situations, more than half) no violation occurred.

Regarding the quality of violation, when it occurred, the violation was quite low, even in

worst cases. The same happened for the quantity of violation in the case of APPROX.

Considering SIM, although the values were as so good as for APPROX, especially for

the quantity metrics, SIM presented very good results for the metric that measures the

quality of violation, which is the one that best summarizes the analysis of the spanner

property. For the CVR metric, the value was quite low (in average 1.4) and even in the

worst case it was low (in most cases limited by 2). Furthermore, the values achieved by

CVR exhibited an uniform behaviour in general.

In the next chapter, we discuss extensively the related work, presenting the main

results. Moreover, we argue why DSMDStP is a new problem, giving the differences

between our problem and the related ones.

CHAPTER 5

RELATED WORK

In this chapter we present an extended up-to-date range of related work, from network

design problems that address single properties to, similar to our case, problems that

address multiple properties. We start by motivating for Steiner trees and spanners. Then,

we discuss the related work addressing the properties of interest (spanner and degree)

in Euclidean Space (Section 5.1) as well as in (undirected and directed) graphs (Section

5.2). Finally, we explain why DSMDStP is a new problem, giving its differences from

related work (Section 5.3).

Steiner trees are typically related to optimizing multicasting (for example,

(SUN; LANGENDöRFER, 1995; RAGHAVAN; MANIMARAN; MURTHY, 1998; FENG;

YUM, 1999; PARSA; ZHU; GARCIA-LUNA-ACEVES, 1998; ZHENGYING; BINGXIN;

ERDUN, 2001; WANG; LIU; SHI, 2009; WANG; LU; SUN, 2005; CHEN; YANG; XU,

2004)). In classical Steiner tree problems, the goal is to minimize the cost of the tree

while satisfying certain constraints.

Spanners are applied in many scenarios. For instance, spanners can be used to sup-

port efficient routing. Spanners allow routing protocols to store smaller routing tables

while packets’ headers are still small, since spanners allow a tradeoff between packets’

headers and routing table (when packets are routed through shortest paths, each node

has to store a complete routing table or the packet’s header has to contain a complete

description of the shortest path; spanners allow the tradeoff mentioned before as they use

paths with small stretch factors rather than routing through shortest paths) (THORUP;

ZWICK, 2001). (Geometric) spanners are also applied in wireless networks to decrease

energy expenditure (SCHINDELHAUER; VOLBERT; ZIEGLER, 2007) (for other appli-

cations of geometric spanners, see (NARASIMHAN; SMID, 2007)). Spanners are also

commonly used to approximate shortest path distances (FEIGENBAUM et al., 2008).

37

related work 38

Since calculating shortest paths is common for classical shortest path algorithms, ap-

proximating distances is of great utility (FEIGENBAUM et al., 2008). Motivation for

the adoption of spanners in shortest path algorithms can also be seen in (ELKIN, 2001).

In a similar way to this last application of spanners, they are also applied in dis-

tance oracles (BASWANA; SEN, 2006; THORUP; ZWICK, 2005). In (BASWANA;

SEN, 2006), the authors state that in many applications the objective is not to compute

all distances (the same as shortest paths) but to be able to retrieve distance values in an

efficient way. This can be done through some kind of preprocessing of the input graph.

Due to the complexity of the traditional shortest path algorithms, researchers have been

trying to find out structures which report approximate distance values instead of the ex-

act values. This motivates the works on t-approximate distance oracles, where for a pair

of vertices (u, v) in the input graph G, the value returned by the oracle is ≥ dist(u, v, G)

and ≤ t · dist(u, v, G).

Spanner tree, a restricted kind of spanner, is of great importance too. According

to (LIEBCHEN; WüNSCH, 2008), spanner trees are used in telecommunications since

they allow routing protocols to be simpler. They are also used as a model for broadcast

(PELEG, 2000) and, in similar way to Steiner trees, spanners trees can be used in message

multicasting. In the literature, there are also references to their application in solving

some kinds of linear systems of equations problems (ELKIN et al., 2005) and in finding

approximation solutions to the bandwidth minimization problem (VENKATESAN et al.,

1997).

The Steiner tree problems addressed in (RAGHAVAN; MANIMARAN; MURTHY,

1998; FENG; YUM, 1999; SUN; LANGENDöRFER, 1995; PARSA; ZHU; GARCIA-

LUNA-ACEVES, 1998) involve a single constraint, a cost bound on the paths between

a source node and the terminals (to model maximum transmission delay). In (CHEN;

YANG; XU, 2004) the authors take into consideration both delay and degree constraints.

In (CHEN; YANG; XU, 2004), the authors assume undirected graph and do not guarantee

that the delay constraints will be respected. Additionally, the problem involves a single

5.1 works that consider spanner and degree in euclidean space 39

delay constraint, which applies to a subset of nodes. Degree constraints arise in scenarios

in communication networks to address resource limitations in routers and switches and

to balance load during multicast operations.

5.1 WORKS THAT CONSIDER SPANNER AND DEGREE IN EUCLIDEAN SPACE

Much previous work has addressed network design problems with more than one prop-

erty (including being a tree, the spanner property, bounded maximum degree, and others)

as we do (ARYA et al., 1995; DINITZ; ELKIN; SOLOMON, 2008; KORTSARZ; PELEG,

1999). All these mentioned works assume an Euclidean space, which restricts the appli-

cability of their work to scenarios where geometric relations hold as well as associating

a different cost based on the direction of the edge is not allowed, as directed graphs are

not allowed to be modelled. Other works address degree too (CHAN, 2003; FEKETE et

al., 1997; MONMA; SURI, 1991; LUKOVSZKI, 1999; FARSHI; GUDMUNDSSON, 2007;

LUKOVSZKI; SCHINDELHAUER; VOLBERT, 2006; GRüNEWALD et al., 2002). But

they also assume an Euclidean Space.

5.2 WORKS THAT CONSIDER SPANNER AND DEGREE IN (DIRECTED AND

UNDIRECTED) GRAPHS

More spanner and degree problems on graphs are addressed in (FOMIN; GOLO-

VACH; LEEUWEN, 2011; DINITZ; KRAUTHGAMER, 2011; BERMAN et al., 2011;

ELKIN; SOLOMON, 2011b; HAJIAGHAYI; KORTSARZ; SALAVATIPOUR, 2009; NAOR;

SCHIEBER, 1997) and (KHANDEKAR; KORTSARZ; NUTOV, 2011; GOEMANS, 2006;

SINGH; LAU, 2007; ELKIN; KORTSARZ, 2006; BANSAL; KHANDEKAR; NAGARA-

JAN, 2009; NUTOV, 2011; FEDER; MOTWANI; ZHU, 2006; RAVI; RAGHAVACHARI;

KLEIN, 1992) respectively. These work assume undirected graphs, which is a restricted

case of our more general assumption of directed graphs.

On the other hand, the authors in (DINITZ; KRAUTHGAMER, 2011; NAOR;

5.3 our problem: the novelty in dsmdstp 40

SCHIEBER, 1997; BERMAN et al., 2011) deal with related problems in directed graphs.

Their work differ from us as the resulted graph is not a tree or the authors aim to min-

imize a different function (e.g., the number of edges, the total cost of the tree). The

works in (BANSAL; KHANDEKAR; NAGARAJAN, 2009; NUTOV, 2011) address tree

problems with degree restrictions in directed graphs too. They are interested in guara-

teeing k-connectivity. In these works, the authors aim to satisfy the degree restriction

imposed to each node rather than minimize the maximum degree. Additionally, they do

not consider the spanner property. The problems addressed in (FEDER; MOTWANI;

ZHU, 2006) are simitar to the ones addressed in the former papers. The authors consider

the problem of minimizing the maximum degree but they do not consider the spanner

property neither.

5.3 OUR PROBLEM: THE NOVELTY IN DSMDSTP

Our work differs from related work as in our case we consider directed graphs instead

of working in metric spaces or assuming undirected graphs. Additionally, we aim to find

Steiner trees, a more general case of spanning trees. Moreover, besides building a Steiner

tree with bounded maximum degree in directed graphs, we also address the k-spanner

property, more specifically, single-sink k-spanner trees, where k is a parameter of the

problem (instead of a bound achieved by a solution to the problem).

The closest works to ours are (ELKIN; SOLOMON, 2009, 2011a; ELKIN; KORT-

SARZ, 2006; KHANDEKAR; KORTSARZ; NUTOV, 2011). In (ELKIN; SOLOMON,

2009, 2011a), the authors address the problem of building narrow-shallow-low-light trees.

The authors thus address the problem of generating trees with parameterized root-stretch

factor and bounded maximum degree, as we do, but they consider two additional prop-

erties (generation of low and light trees). However, their work builds a spanning tree

rather than a Steiner tree and they consider metric spaces. Our assumptions are more

general, as we do not restrict our problem to metric spaces. Additionally, the authors’

work provides a constant root-stretch factor, similarly to other works where shallow trees

5.3 our problem: the novelty in dsmdstp 41

are generated, rather than supporting a parameterized stretch factor. The authors in

(ELKIN; KORTSARZ, 2006; KHANDEKAR; KORTSARZ; NUTOV, 2011) address the

problem of minimizing the out-degree of directed graphs in Steiner tree problems. In

(ELKIN; KORTSARZ, 2006), similar to our work, the problem consists in covering all

the set T of terminals, while in (KHANDEKAR; KORTSARZ; NUTOV, 2011) the prob-

lem is generalized as the objective is to cover p terminals, where p ≤ |T |. In both works,

the authors do not consider the spanner property. They also address problems somewhat

similar to ours, where besides minimizing the maximum degree it is required to limit the

height of the tree. So, they are interested in limiting the number of hops, which differs

from our spanner property. To the best of our knowledge, our work is the first attempt to

address the problem of building a Steiner tree in directed graphs with limited maximum

degree and with a parameterized root-stretch factor.

5.3.1 Limitation in the Results

Our algorithms are not able to guarantee the root-stretch factor k for all paths from

the source node to the terminals. Our approximation algorithm and heuristic give a root-

stretch factor of k ·
(

1 + maxt∈T {dist(s,t,G)}
mint∈T {dist(s,t,G)}

)

and k · (⌊
√

|T |⌋+ 2) respectively. However, as

argued in the introduction, in the experiments the cost of the generated paths is much

lower than the provided upper bounds.

5.3.2 The Base Algorithmic Tool for the Proposed Solutions: The MSC Problem

Our algorithms are based on the algorithm presented in (ELKIN; KORTSARZ, 2006).

In (ELKIN; KORTSARZ, 2006), the goal is to compute a schedule with a minimal number

of rounds that delivers a message from a given node to all the terminals. The problem is

called Directed Telephone Multicast Problem. Our approximation algorithm follows the

same steps as in (ELKIN; KORTSARZ, 2006), but we use different criteria for defining

some of the used concepts, such as
√

k-bad nodes, and for the construction of the instance

5.3 our problem: the novelty in dsmdstp 42

of the Multiple Set-Cover (MSC) problem. The bound on the degree is obtained in exactly

the same way as in (ELKIN; KORTSARZ, 2006). The heuristic SIM deviates from the

algorithm in (ELKIN; KORTSARZ, 2006), as it is based on an iterative application of

the MSC problem (instead of applying this problem only once, as in our algorithm and

in (ELKIN; KORTSARZ, 2006)).

The Multiple Set-Cover (MSC) problem was stated for the first time in (ELKIN;

KORTSARZ, 2003). A solution for this problem was presented in (CHEKURI; KUMAR,

2004). In (CHEKURI; KUMAR, 2004), MSC is called Set Cover with Group Budgets

(SCG). The MSC problem can be generalized by the problem called Maximization of

Monotone Submodular Function subject to Matroids Constraint, which was addressed

in (CĂLINESCU et al., 2011). However, our goal in this dissertation is to present a

deterministic algorithm. We will discuss this in greater detail in Appendix A.

In the next chapter, we conclude the dissertation and present future work.

CHAPTER 6

CONCLUSION

In this dissertation we presented a version of a Steiner tree problem called Directed k-

Spanner with Minimum Degree Steiner Tree Problem (DSMDStP). Unlike commonly de-

fined Steiner tree problems, in DSMDStP we are interested in minimizing the maximum

out-degree of the arborescence while respecting the terminals spanner constraints. We

assume as input a directed graph. To the best of our knowledge, these properties char-

acterize DSMDStP as a new problem. We showed that DSMDStP is not approximable

sublogarithmically (unless NP ⊂ DTIME(nlog log n)) and described an approximation

algorithm and a heuristic to it. For both proposed algorithms, we analyzed their com-

plexity.

The approximation algorithm is based on the algorithm described in (ELKIN; KO-

RTSARZ, 2006). The algorithm generates an arborescence Af with maximum degree

2
√

|T | + 2 + O(log |T |) · d∗, where d∗ is the maximum degree of an optimum arbores-

cence. This seems a reasonable limit, as DSMDStP does not admit a sublogarithmic

approximation. Additionally, in Af the paths from s to each terminal t have cost

≤ k · (dist(s, t, G) + dist(s, tmax, G)), where tmax ∈ {t′|t′ ∈ T ∧ (∀t′′ ∈ T : dist(s, t′′, G) ≤
dist(s, t′, G))}. Although the algorithm can violate the spanner constraint, this only

happens to terminals covered in the second phase of the algorithm.

The heuristic, called SIM, is based on an iterative application of an algorithm for the

MSC problem. SIM does not provide guarantee on maximum node degree. However, in

our experiments SIM provided lower maximum node out-degree than the approximation

algorithm. In the final arborescence, the path from s to t ∈ T has cost ≤ (|T | + 2) · k ·
dist(s, t, G).

The experiments presented quite good results for both proposed algorithms. Re-

garding the node out-degrees, both the approximation algorithm and SIM yielded low

43

6.1 future work 44

maximum out-degree and they outperformed the results of a shortest path tree algo-

rithm (SPT). Additionally, SIM has always outperformed the approximation algorithm

and it has a uniform behaviour, what contributes to scalability. On the other hand, the

approximation algorithm always outperformed SIM in metrics concerning the spanner

constraint. Moreover, in half of the situations no violation occurred. The metrics ad-

dressing the spanner constraint measured the quality and the quantity of violation. Even

when violation occurred, these metrics showed that the approximation algorithm violated

by low factors. Although SIM did not present as good results as the approximation al-

gorithm, concerning the metric that addresses the quality of violation (how much the

violation occurred), the results were also quite good, since on average the violation was

by a factor of 1.4 and in worst case by a factor of 2, which are quite acceptable.

We also described how we can improve (with high probability) the degree guarantee

for the approximation algorithm. This can be done through the concepts of submodular

functions and matroid. More specifically, we can solve DSMDStP using an instance of

a problem called MCG. The improved result can be achieved by modelling MCG as

a problem of maximizing a monotone submodular function subject to partition matroid

constraint and using the algorithm presented in (CĂLINESCU et al., 2011) to solve it.

6.1 FUTURE WORK

A possible future work could be to investigate new algorithms to try to improve the

resutls, mainly concerning the spanner property. It is important to mention that we do

not know if DSMDStP admits a solution.

Turning the solutions into distributed ones would be challenging and another possible

future work. Distributed algorithms are necessary in some scenarios, such as in Wireless

Sensor Networks. Besides this, a distributed solution is more scalable than a centralized

one, which is an important property.

We argued in Appendix A how we could improve the degree guarantee of the proposed

6.1 future work 45

approximation algorithm by modelling the problem (actually, the subproblem MCG)

through the concepts of submodular functions and matroids. But doing this, our algo-

rithm would be a probabilistic one. Although being probabilistic, it would be interesting

to see by how much the degree is improved in practice. So, another possible future work

would be to solve the MCG problem through the solution proposed in (CĂLINESCU et

al., 2011) and compare the results with the ones presented in this dissertation.

APPENDIX A

DISCUSSION ABOUT HOW TO APPROACH

DSMDSTP THROUGH AN ALTERNATIVE WAY

In this appendix we comment on how we could approach the MCG problem through an

alternative way and the impact of this new approaching for the DSMDStP. This new

modeling of MCG would allow us to decrease the maximum degree for the DSMDStP. In

order to do this, we would model the MCG problem through the concepts of submodular

functions and matroid. We briefly present these concepts and show how MCG could be

modeled through them. Although there is a result that allows the improvement of the

degree guarantee of our problem, this would turn our algorithm in a probabilistic one,

as the presented result for this new modeling of MCG is a randomized algorithm. The

results discussed here are a mere conjecture.

As mentioned in (CĂLINESCU et al., 2011), the MCG problem (CHEKURI; KU-

MAR, 2004) could be addressed through the concepts of monotone submodular functions

and matroids. More specifically, MCG can be modeled as a problem of maximizing a

monotone submodular function under matroid constraint. As we can solve MSC using

MCG, improvements on solution to MCG extend to MSC as well (ELKIN; KORTSARZ,

2006) (the SCG problem in (CHEKURI; KUMAR, 2004)). Let X be a ground set of n

elements. A function f : 2X → R+ is submodular iff:

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B),

for all A, B ⊆ X (SCHRIJVER, 2003). 2X represents the set of all subsets of X,

including the empty set and X itself. f is called monotone if f(A) ≤ f(B), for all

A ⊆ B. In order to address the matroid concept, besides a ground set X we need the

concept of an independence family I ⊆ 2X , a family of subsets that is downward closed,

46

discussion about how to approach dsmdstp through an alternative way47

which means that A ∈ I and B ⊆ A implies that B ∈ I. A matroid is a pair M = (X, I)

where I ⊆ 2X and

∀B ∈ I, A ⊂ B ⇒ A ∈ I. (i)

∀A, B ∈ I; |A| < |B| ⇒ ∃x ∈ B \ A; A ∪ x ∈ I. (ii)

The problem addressed in (CĂLINESCU et al., 2011) consists in maximizing f(S)

over the independent sets S ∈ I. Similar to (CĂLINESCU et al., 2011), let us denote

this kind of problem by SUB-M. The SUB-M problem can be modeled with a matroid

constraint called partition matroid, where X is partitioned into l subsets X1, X2, ..., Xl

with associated integers k1, k2, ..., kl, and A ⊆ X is considered independent iff |A∩Xi| ≤
ki.

Maximizing a monotone submodular function under matroid constraint (SUB-M)

was addressed for the first time in (NEMHAUSER; WOLSEY; FISHER, 1978; FISHER;

NEMHAUSER; WOLSEY, 1978). In these papers, the authors analyze a greedy algo-

rithm and give some approximation results. For SUB-M with partition matroid, the

greedy algorithm gives a 2-approximation (FISHER; NEMHAUSER; WOLSEY, 1978).

For the restricted case of SUB-M with uniform matroid (l = 1, so the objective is max-

imizing f(S) : |S| ≤ k), the algorithm gives a (e/(e − 1))-approximation. The authors

in (CĂLINESCU et al., 2011) improved the previous results to an approximation factor

of (e/(e − 1)) for any matroid, including the partition matroid, and this is optimal in

the oracle model (since this approximation ratio is the best one for the restricted ver-

sion, the one with uniform matroid (NEMHAUSER; WOLSEY; FISHER, 1978; FISHER;

NEMHAUSER; WOLSEY, 1978)). The authors in (CĂLINESCU et al., 2011) improved

the previous results through a randomized algorithm.

The MCG problem can be modeled by SUB-M with partition matroid. Regarding

MCG, a solution H ⊂ {S1, S2, ..., Sm} is independent iff |H ∩ Gi| ≤ ki (see problem

discussion about how to approach dsmdstp through an alternative way48

definition in Section 3.3). Remember that there is a set of partitions G1, G2, ..., Gl as

input to the MCG problem. For this problem, f : H ⊂ {S1, S2, ..., Sm} → R+ represents

the number of elements of the ground set X covered by the elements of H . This kind

of coverage function is submodular, as mentioned in (CĂLINESCU et al., 2011). Based

on Theorem 1.1 in (CĂLINESCU et al., 2011) and the previous discussion, the following

result holds:

Theorem A.1 (CĂLINESCU et al., 2011). There is a randomized algorithm which gives

an (e/(e− 1))-approximation 1 (in expectation) to the MCG problem.

The expression in expectation in theorem A.1 means the approximation factor is

guaranteed with high probability. Based on the idea proposed in (CHEKURI; KUMAR,

2004) to solve the MSC problem (the same as the SCG problem in (CHEKURI; KUMAR,

2004)), we can infer that:

Lemma A.1 There is an algorithm which gives a (loge n + 1)-approximation (in expec-

tation) to the MSC problem.

So, based on lemma A.1, theorem A.1 and theorem 3.2, we cojecture that there is

an approximation algorithm that generates an arborescence Af with (expected) bounded

out-degree 2
√

k+2+O(loge l) ·d∗ and that, with high probability, has paths from s to each

terminal t ∈ T with cost less than or equal to k · (dist(s, t, G) + dist(s, tmax, G)).

As the algorithm proposed in (CĂLINESCU et al., 2011) guarantees that the approx-

imation factor holds with high probability, the bounded degree of the aforementioned

approximation algorithm is guaranteed in expectation, since it depends upon the bound

provided by the algorithm to the MCG problem, what is probabilistic in this case, so the

expectation follows. Moreover, as the authors in (CHEKURI; KUMAR, 2004) calculate

the number of iterative runs of the MCG algorithm (and consequently the upper bound

to the MSC) for the solution to the MSC problem based on the approximation factor of

1Our notation of the approximation factor is different from the one presented in (CĂLINESCU et al.,
2011), since the latter is represented by 1

f
, where f is the approximation factor in our case.

discussion about how to approach dsmdstp through an alternative way49

the algorithm to MCG, by applying the probabilistic solution presented in this chapter,

the (loge l + 1) is an expected upper bound of iterations to cover all terminals.

Although the MCG problem could be modeled as SUB-M with partition matroid

and it could be solved by a deterministic algorithm with approximation ratio of 2 (the

one analyzed in (NEMHAUSER; WOLSEY; FISHER, 1978; FISHER; NEMHAUSER;

WOLSEY, 1978)), which was the first result, this deterministic algorithm gives the same

approximation factor of the algorithm presented in (CHEKURI; KUMAR, 2004).

BIBLIOGRAPHY

ARORA, S.; BARAK, B. Computational Complexity: A Modern Approach. 1st. ed. New
York, NY, USA: Cambridge University Press, 2009.

ARYA, S. et al. Euclidean spanners: short, thin, and lanky. In: Proceedings of the
twenty-seventh annual ACM symposium on Theory of computing. New York, NY, USA:
ACM, 1995. (STOC ’95), p. 489–498. ISBN 0-89791-718-9.

BANSAL, N.; KHANDEKAR, R.; NAGARAJAN, V. Additive guarantees for
degree-bounded directed network design. SIAM J. Comput., Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, v. 39, n. 4, p. 1413–1431, out. 2009. ISSN
0097-5397.

BASWANA, S.; SEN, S. Approximate distance oracles for unweighted graphs in
expected o(n2) time. ACM Trans. Algorithms, ACM, New York, NY, USA, v. 2, n. 4, p.
557–577, out. 2006. ISSN 1549-6325.

BERMAN, P. et al. Improved approximation for the directed spanner problem.
In: ACETO, L.; HENZINGER, M.; SGALL, J. (Ed.). Automata, Languages and
Programming. [S.l.]: Springer Berlin-Heidelberg, 2011, (Lecture Notes in Computer
Science, v. 6755). p. 1–12. ISBN 978-3-642-22005-0.

BRAGA, H. Implementation of the algorithms for DSMDStP. 2012. Website. Url =
https://github.com/hugobraga/College/raw/master/DSMDSt Alg.zip.

CĂLINESCU, G. et al. Maximizing a monotone submodular function subject to a
matroid constraint. SIAM J. Comput., v. 40, n. 6, p. 1740–1766, 2011.

CHAN, T. M. Euclidean bounded-degree spanning tree ratios. In: Proceedings of the
nineteenth annual symposium on Computational geometry. New York, NY, USA: ACM,
2003. (SCG ’03), p. 11–19. ISBN 1-58113-663-3.

CHEKURI, C.; KUMAR, A. Maximum coverage problem with group budget constraints
and applications. In: APPROX-RANDOM. [S.l.]: Springer-Verlag New York, Inc., 2004.
p. 72–83.

CHEN, L.; YANG, Z.; XU, Z. A degree-delay-constrained genetic algorithm for multicast
routing tree. In: Computer and Information Technology, 2004. CIT ’04. The Fourth
International Conference on. [S.l.: s.n.], 2004. p. 1033–1038.

CORMEN, T. H. et al. Introduction to Algorithms. 3. ed. [S.l.]: The MIT Press, 2009.

50

BIBLIOGRAPHY 51

DINITZ, M.; KRAUTHGAMER, R. Directed spanners via flow-based linear programs.
In: Proceedings of the 43rd annual ACM symposium on Theory of computing. New York,
NY, USA: ACM, 2011. (STOC ’11), p. 323–332. ISBN 978-1-4503-0691-1.

DINITZ, Y.; ELKIN, M.; SOLOMON, S. Shallow-low-light trees, and tight lower bounds
for euclidean spanners. In: Proceedings of the 2008 49th Annual IEEE Symposium on
Foundations of Computer Science. Washington, DC, USA: IEEE Computer Society,
2008. (FOCS ’08), p. 519–528. ISBN 978-0-7695-3436-7.

ELKIN, M. Computing almost shortest paths. In: Proceedings of the twentieth annual
ACM symposium on Principles of distributed computing. New York, NY, USA: ACM,
2001. (PODC ’01), p. 53–62. ISBN 1-58113-383-9.

ELKIN, M.; KORTSARZ, G. Approximation algorithm for directed telephone multicast
problem. In: ICALP’03. Berlin, Heidelberg: Springer-Verlag, 2003. p. 212–223. ISBN
3-540-40493-7.

ELKIN, M.; KORTSARZ, G. An approximation algorithm for the directed telephone
multicast problem. Algorithmica, Springer-Verlag New York, Inc., Secaucus, NJ, USA,
v. 45, p. 569–583, August 2006. ISSN 0178-4617.

ELKIN, M.; SOLOMON, S. Narrow-shallow-low-light trees with and without steiner
points. In: ESA. [S.l.: s.n.], 2009. p. 215–226.

ELKIN, M.; SOLOMON, S. Narrow-shallow-low-light trees with and without steiner
points. SIAM J. Discret. Math., Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, v. 25, n. 1, p. 181–210, fev. 2011. ISSN 0895-4801.

ELKIN, M.; SOLOMON, S. Steiner shallow-light trees are exponentially lighter
than spanning ones. In: Proceedings of the 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science. Washington, DC, USA: IEEE Computer Society,
2011. (FOCS ’11), p. 373–382. ISBN 978-0-7695-4571-4.

ELKIN, M. et al. Lower-stretch spanning trees. In: STOC’05: Proceedings of the
thirty-seventh annual ACM symposium on Theory of computing. [S.l.]: ACM Press,
2005. p. 494–503.

FARSHI, M.; GUDMUNDSSON, J. Experimental study of geometric t-spanners:
a running time comparison. In: Proceedings of the 6th international conference on
Experimental algorithms. Berlin, Heidelberg: Springer-Verlag, 2007. (WEA’07), p.
270–284. ISBN 978-3-540-72844-3.

FEDER, F.; MOTWANI, R.; ZHU, A. k-Connected Spanning Subgraphs of Low Degree.
[S.l.], 2006.

FEIGENBAUM, J. et al. Graph distances in the data-stream model. SIAM J. Comput.,
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, v. 38, n. 5, p.
1709–1727, dez. 2008. ISSN 0097-5397.

BIBLIOGRAPHY 52

FEKETE, S. P. et al. A network-flow technique for finding low-weight bounded-degree
spanning trees. Journal of Algorithms, v. 24, n. 2, p. 310 – 324, 1997. ISSN 0196-6774.

FENG, G.; YUM, T.-S. P. Efficient multicast routing with delay constraints.
International Journal of Communication Systems, John Wiley & Sons, Ltd., v. 12, n. 3,
p. 181–195, 1999. ISSN 1099-1131.

FIBONACCI, L.; SIGLER, L. The book of squares. [S.l.]: Academic Press, 1987. ISBN
9780126431308.

FISHER, M. L.; NEMHAUSER, G. L.; WOLSEY, L. A. An analysis of approximations
for maximizing submodular set functions-ii. In: Polyhedral Combinatorics. [S.l.]:
Springer Berlin Heidelberg, 1978, (Mathematical Programming Studies, v. 8). p. 73–87.

FOMIN, F. V.; GOLOVACH, P. A.; LEEUWEN, E. J. van. Spanners of bounded degree
graphs. Inf. Process. Lett., Elsevier North-Holland, Inc., Amsterdam, The Netherlands,
The Netherlands, v. 111, n. 3, p. 142–144, jan. 2011. ISSN 0020-0190.

FRAIGNIAUD, P. Approximation algorithms for minimum-time broadcast under the
vertex-disjoint paths mode. In: Proceedings of the 9th Annual European Symposium
on Algorithms. London, UK: Springer-Verlag, 2001. (ESA ’01), p. 440–451. ISBN
3-540-42493-8.

GOEMANS, M. X. Minimum bounded degree spanning trees. In: Proceedings of the
47th Annual IEEE Symposium on Foundations of Computer Science. Washington, DC,
USA: IEEE Computer Society, 2006. (FOCS ’06), p. 273–282. ISBN 0-7695-2720-5.

GRüNEWALD, M. et al. Distributed maintenance of resource efficient wireless network
topologies (extended abstract). In: European Conference On Parallel Computing
(EUROPAR. [S.l.: s.n.], 2002. p. 935–946.

HAJIAGHAYI, M. T.; KORTSARZ, G.; SALAVATIPOUR, M. R. Approximating
buy-at-bulk and shallow-light k-steiner trees. Algorithmica, Springer-Verlag New York,
Inc., Secaucus, NJ, USA, v. 53, n. 1, p. 89–103, jan. 2009. ISSN 0178-4617.

KHANDEKAR, R.; KORTSARZ, G.; NUTOV, Z. Network-design with degree
constraints. In: GOLDBERG, L. et al. (Ed.). Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques. [S.l.]: Springer Berlin, 2011,
(Lecture Notes in Computer Science, v. 6845). p. 289–301. ISBN 978-3-642-22934-3.

KORTSARZ, G.; PELEG, D. Approximating the weight of shallow steiner trees.
Discrete Appl. Math., Elsevier Science Publishers B. V., Amsterdam, The Netherlands,
The Netherlands, v. 93, n. 2-3, p. 265–285, jul. 1999. ISSN 0166-218X.

LIEBCHEN, C.; WüNSCH, G. The zoo of tree spanner problems. Discrete Appl. Math.,
Elsevier Science Publishers B. V., Amsterdam, The Netherlands, The Netherlands,
v. 156, n. 5, p. 569–587, mar. 2008. ISSN 0166-218X.

BIBLIOGRAPHY 53

LUKOVSZKI, T. New results of fault tolerant geometric spanners. In: Proceedings of
the 6th International Workshop on Algorithms and Data Structures. London, UK, UK:
Springer-Verlag, 1999. (WADS ’99), p. 193–204. ISBN 3-540-66279-0.

LUKOVSZKI, T.; SCHINDELHAUER, C.; VOLBERT, K. Resource efficient
maintenance of wireless network topologies. j-jucs, v. 12, n. 9, p. 1292–1311, sep 2006.

MONMA, C.; SURI, S. Transitions in geometric minimum spanning trees (extended
abstract). In: Proceedings of the seventh annual symposium on Computational geometry.
New York, NY, USA: ACM, 1991. (SCG ’91), p. 239–249. ISBN 0-89791-426-0.

NAOR, J.; SCHIEBER, B. Improved approximations for shallow-light spanning trees.
In: Proceedings of the 38th Annual Symposium on Foundations of Computer Science.
Washington, DC, USA: IEEE Computer Society, 1997. (FOCS ’97), p. 536–. ISBN
0-8186-8197-7.

NARASIMHAN, G.; SMID, M. Geometric Spanner Networks. [S.l.]: Cambridge
University Press, 2007.

NEMHAUSER, G. L.; WOLSEY, L. A.; FISHER, M. L. An analysis of approximations
for maximizing submodular set functions-i. Mathematical Programming, Springer Berlin
/ Heidelberg, v. 14, p. 265–294, 1978.

NGUYEN, U. T.; NGUYEN, H. L. Multicast Routing Algorithms. [S.l.], 2008.

NUTOV, Z. Approximating directed weighted-degree constrained networks. Theor.
Comput. Sci., Elsevier Science Publishers Ltd., Essex, UK, v. 412, n. 8-10, p. 901–912,
mar. 2011. ISSN 0304-3975.

OLIVEIRA, C. A. S.; PARDALOS, P. M. A survey of combinatorial optimization
problems in multicast routing. Comput. Oper. Res., Elsevier Science Ltd., Oxford, UK,
UK, v. 32, p. 1953–1981, August 2005. ISSN 0305-0548.

PARSA, M.; ZHU, Q.; GARCIA-LUNA-ACEVES, J. An iterative algorithm for
delay-constrained minimum-cost multicasting. Networking, IEEE/ACM Transactions
on, v. 6, n. 4, p. 461–474, 1998. ISSN 1063-6692.

PELEG, D. Distributed computing: a locality-sensitive approach. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 2000. ISBN 0-89871-464-8.

RAGHAVAN, S.; MANIMARAN, G.; MURTHY, C. S. R. Algorithms for delay-
constrained low-cost multicast tree construction. Comp. Communications, v. 21, p.
1693–1706, 1998.

RAVI, R.; RAGHAVACHARI, B.; KLEIN, P. N. Approximation through local
optimality: Designing networks with small degree. In: Proceedings of the 12th
Conference on Foundations of Software Technology and Theoretical Computer Science.
London, UK, UK: Springer-Verlag, 1992. p. 279–290. ISBN 3-540-56287-7.

BIBLIOGRAPHY 54

SCHINDELHAUER, C.; VOLBERT, K.; ZIEGLER, M. Geometric spanners with
applications in wireless networks. Comput. Geom. Theory Appl., Elsevier Science
Publishers B. V., Amsterdam, The Netherlands, The Netherlands, v. 36, n. 3, p.
197–214, abr. 2007. ISSN 0925-7721.

SCHRIJVER, A. Combinatorial Optimization - Polyhedra and Efficiency. [S.l.]:
Springer, 2003.

SINGH, M.; LAU, L. C. Approximating minimum bounded degree spanning trees to
within one of optimal. In: Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing. New York, NY, USA: ACM, 2007. (STOC ’07), p. 661–670. ISBN
978-1-59593-631-8.

SUN, Q.; LANGENDöRFER, H. Efficient multicast routing for delay-sensitive
applications. In: Proc. Second Workshop on Protocols for Multimedia Systems (PROMS.
[S.l.: s.n.], 1995. p. 452–458.

THORUP, M.; ZWICK, U. Compact routing schemes. In: Proceedings of the thirteenth
annual ACM symposium on Parallel algorithms and architectures. New York, NY, USA:
ACM, 2001. (SPAA ’01), p. 1–10. ISBN 1-58113-409-6.

THORUP, M.; ZWICK, U. Approximate distance oracles. J. ACM, ACM, New York,
NY, USA, v. 52, n. 1, p. 1–24, jan. 2005. ISSN 0004-5411.

VENKATESAN, G. et al. Restrictions of minimum spanner problems. Inf. Comput.,
Academic Press, Inc., Duluth, MN, USA, v. 136, n. 2, p. 143–164, ago. 1997. ISSN
0890-5401.

WANG, L.; LIU, W.; SHI, H. Delay-constrained multicast routing using the noisy
chaotic neural networks. Computers, IEEE Transactions on, v. 58, n. 1, p. 82–89, 2009.
ISSN 0018-9340.

WANG, Y.; LU, Y.; SUN, Y. A degree-constrained multicast routing algorithm for
multimedia communications. In: Proceedings of the SPIE, Network Architectures,
Management, and Applications III. [S.l.: s.n.], 2005. v. 6022, p. 1023–1031.

WILLIAMSON, D. P.; SHMOYS, D. B. The Design of Approximation Algorithms. 1st.
ed. New York, NY, USA: Cambridge University Press, 2011.

ZHENGYING, W.; BINGXIN, S.; ERDUN, Z. Bandwidth-delay-constrained least-cost
multicast routing based on heuristic genetic algorithm. Computer Communications, p.
685–692, 2001.

