A Note on Generated Systems of Sets*

ARLETE CERQUEIRA LIMA

I - Introduction

The existence of a smallest algebra (σ-algebra) containing a given collection of subsets of a set X is an elementary and well known fact (cf. [3] p. 22). Considering a modified definition of algebra (σ-algebra) (see the definition below) where the unit is not necessary the whole X, the existence of the smallest algebra (σ-algebra) in this generalized sense can not be guaranteed. This fact was noted by A. B. Brown and G. Freilich, in [1], where a necessary and sufficient condition was given as follows:

Theorem. Let \mathscr{S} be a collection of subsets of X such that $\bigcup \mathscr{S} Z \neq X$. A necessary and sufficient condition for the existence of a smallest σ-algebra (in the sense of the below definition) containing \mathscr{S} is the existence of a countable collection $\left\{S_{n}\right\}, S_{n} \in \mathscr{S}$ such that $Z=\bigcup_{n=1}^{\infty} S_{n}$.

Note that the condition $Z \neq X$ which is not stated in [1] can not be omitted.
The notations of algebra and σ-algebra are in the theory of quantum probability spaces frequently substituted by that of q-algebra and q - σ-algebra. The last are usually named s-class or σ-class respectively (see [2], [4], [5]).

The difference between the notions q-algebra and q - σ-algebra is in substituting the condition of closedness with respect to unions, by the condition of closedness wth respect to disjoint unions (see the definition below). When the q-algebras and $q-\sigma$-algebras with a unit different of X are considered, evidently the existence of a smallest one needs not be guaranteed. It seems to be natural that a necessary and sufficient condition for the existence can be obtained if the condition $Z=\bigcup_{n=1}^{\infty} S_{n}$ in Theorem is substituted by the *Recebido pela SBM em 2 de outubro de 1973.
similar one where $\left\{S_{n}\right\}$ are required to be pairwise disjoint. But this is not the case as we show in this note.

II - Notations and notions

Definition. A nonempty collection \mathscr{A} of subsets of a set X is said to be algebra if
a) there exists $E \in \mathscr{A}$ such that $E \supset A$ for any $A \in \mathscr{A}$;
b) if $A \in \mathscr{A}$ then $E-A \in \mathscr{A}$;
c) if $A, B \in \mathscr{A}$ then $A \cup B \in \mathscr{A}$.

Note 1. E is called the unit of \mathscr{A}. In the case $E=X$ we get the definition in the usual sense (see [3]).

Note 2. To obtain the notion of σ-algebra we substitute c) by the usual condition of countable unions.

Note 3. The notions of ring and σ-ring are used in the same sense as in [3].
Definition 2. A nonempty collection \mathscr{A} of subsets of X is said to be a q-ring if
a) $A, B \in \mathscr{A}, A \subset B$ implies $B-A \in \mathscr{A}$;
b) $A, B \in \mathscr{A}, A \cap B=\phi$ implies $A \cup B \in \mathscr{A}$.

If moreover there is $E \in \mathscr{A}$ such tht $A \subset E$ for any $A \in \mathscr{A}$ then is said to be a q-algebra.

Note 4. The notions of $q-\sigma$-ring and $q-\sigma$-algebra are defined in a natural way substituting the conditions of the closedness with respect to finite disjoint unions by that countable disjoint unions in the q-anel and q-algebra respectively.

III - Results

Theorem 1. Let \mathscr{S} be a collections of subsets of X such that $\bigcup \mathscr{S}=Z$.
i) A sufficient condition for the existence of a smallest q-algebra (q - σ-algebra) containing \mathscr{S} is

$$
\begin{gathered}
Z=\bigcup_{i=1}^{n} S_{i} \quad \text { where } \quad S_{i} \in \mathscr{S}, i=1,2, \ldots n, S_{i} \cap S_{j}=\phi, \quad \text { if } \quad i \neq j \\
\left(Z=\bigcup_{i=1}^{\infty} S_{i}, S_{i} \in \mathscr{S}, S_{i} \cap S_{j}=\phi, i, j=i, 2, \ldots, \quad \text { if } \quad i \neq j\right)
\end{gathered}
$$

ii) If $Z \neq X$ a necessary condition for the existence of a smallest q-algebra ($q-\sigma$-algebra) containing \mathscr{S} is

$$
\begin{aligned}
& Z=\bigcup_{i=1}^{n} S_{i}, \quad S_{i} \in \mathscr{S}, i=1, \ldots n \\
& \left(Z=\bigcup_{i=1}^{\infty}, \quad S_{i} \in \mathscr{S}, i=1,2 \ldots\right)
\end{aligned}
$$

iii) The condition i) is not necessary and the condition ii) is not sufficient.

Proof. We shall give a proof for q-algebras (the proof for $q-\sigma$-algebras is analogous.
i) Considering all the q-algebras with the fixed unit Z the usual approach gives the existence of the smallest one containing \mathscr{P} belonging to this collection. Let \mathscr{A} be this q-algebra. We shall prove that \mathscr{A} is the smallest among all q-algebras containing \mathscr{S}, with or not the fixed unit Z. In fact, let $\mathscr{A}^{\prime} \supset \mathscr{S}$ be any q-algebra. The condition

$$
Z=\bigcup_{i=1}^{n} S_{i}, \quad S_{i} \in \mathscr{S}, \quad S_{i} \cap S_{j}=\phi \quad \text { if } \quad i \neq j
$$

gives $Z \in \mathscr{A}^{\prime}$. Let $\mathscr{E}=\left\{A: A \in \mathscr{A}, A \in \mathscr{A}, Z-A \in \mathscr{A}^{\prime}\right\}$. The system \mathscr{E} is a q-algebra with the unit Z because $A_{1}, A_{2} \in \mathscr{E}, A_{1} \cap A_{2}=\phi$ implies $A_{1} \cup A_{2}$ $\in \mathscr{A}, A_{1} \cup A_{2} \in \mathscr{A}$ and $Z-\left(A_{1} \cup A_{2}\right)=\left(Z-A_{1}\right)-A_{2} \in \mathscr{A}$ because of the fact $A_{2} \subset Z-A_{1}$.

On the other hand $\mathscr{S} \subset \mathscr{E}$. Thus $\mathscr{A} \subset \mathscr{E}$. But $\mathscr{E} \subset \mathscr{A}^{\prime}$ hence, $\mathscr{A} \subset \mathscr{A}^{\prime}$.
ii) If Z is not a finite union of the elements of \mathscr{S} then it is possible using the method of [1] to construct an algebra \mathscr{A} such that $\mathscr{A} \supset \mathscr{S}$ and $Z \notin \mathscr{A}$. A smallest q-algebra \mathscr{A}^{\prime} containing \mathscr{S} cannot exist. In fact, if it exists then it
is easy to prove that $Z \in \mathscr{A}^{\prime}$. But \mathscr{A} being algebra is also a q-algebra, hence $\mathscr{A}^{\prime} \subset \mathscr{A}$. Thus $Z \in \mathscr{A}$, what is a contraction.
iii) Let $X=\{1,2,3, \ldots, 8,9\}$ and $Z=\{1,2, \ldots, 8\}$.

Let \mathscr{S} be the collection containing the set $\{1,2,3,4\}$ and all three elements subsets of $\{1,2, \ldots 8\}$. Evidently Z is not a disjoint union of the elements of \mathscr{S}. Nevertheless the smallest q-algebra containing \mathscr{S} exists and it is the q-algebra of all subsets of Z. Hence the condition i) is not necessary.

To show that (ii) is not sufficient let

$$
X=\{a, b, c, d\}, \quad \mathscr{S}=\{\{a, b\},\{b, c\}\} \quad \text { and } \cdot \quad Z=\{a, b, c\}
$$

It is easy to see that $\mathscr{A}=\{\{a, b\},\{b, c\},\{a, b, c\},\{c\},\{a\},\{a, c\},\{b\}, \phi\}$ is a q-algebra containing \mathscr{S} with unit $E=\{a, b, c\}$

Since \mathscr{A} is the smallest q-algebra of subsets of Z with the unit Z containing \mathscr{S} then, as we know, if there exists a smallest q-algebra \mathscr{A}^{*} containing \mathscr{S} it should coincide with \mathscr{A}. But \mathscr{A} is not the smallest q-algebra containig \mathscr{P}. In fact if

$$
\mathscr{B}=\{\{a, b\},\{b, c\},\{a, b, c, d\},\{c, d\},\{a, d\}, \phi\}
$$

then \mathscr{B} is a q-algebra which contains \mathscr{S}, but $\mathscr{A} \not \dot{B}$.

Note. The part (iii) of the preceeding theorem shows that an analogy of the Theorem proved in [1] is not valid for q-algebra ($q-\sigma$-algebras). The following is a necessary and sufficient condition for the existence of a smallest q-algebra and can be formulated in the same manner also for algebras.

Theorem 2. Let \mathscr{S} be a collection of subsets of X such that $\bigcup \mathscr{S}=Z \neq X$. Denote by \mathscr{A}_{Z} the smallest q-algebra of subsets of Z which contains \mathscr{S} and bv \mathscr{A} the smallest q -ring (which alwavis exists) containing \mathscr{S}. A necessary and sufficient condition for the existence of the smallest q -algebra \mathscr{A}_{0} containing. \mathscr{S} is $\mathscr{A}=\mathscr{A}_{2}$.

Proof. Let $\mathscr{A} \neq \mathscr{A}_{z}$. Then evidently $Z \notin \mathscr{A}$. Choose $\alpha \in X, \alpha \notin Z$ and put

$$
\mathscr{B}=\{A: A \in \mathscr{A} \quad \text { or } \quad(Z \cup\{\alpha\})-A \in \mathscr{A}\}
$$

\mathscr{B} is a q-algebra which contains \mathscr{S}. The fact $\mathscr{S} \subset \mathscr{B}$ is obvious.
Now let $A, B \in \mathscr{B}, A \subset B$. If both $A, B \in \mathscr{A}, A \cap B=\phi$, then $A \cup B \in \mathscr{A}$, hence $A \cup B \in \mathscr{B}$. If under the same conditions $A \in \mathscr{A}$ and $Z \cup\{\alpha\}-B \in \mathscr{A}$, then $(Z \cup\{\alpha\})-(A \cup B)=(Z \cup\{\alpha\}-B)-A \in \mathscr{A}$. The case $B \in \mathscr{A},(Z \cup\{\alpha\})-$ $A \in \mathscr{A}$ is analogous. The case $(Z \cup\{a\})-A \in \mathscr{A},(Z \cup\{\alpha\})-B \in \mathscr{A}$ is not possible because A, B are disjoint.

The fact that $A \subset(Z \cup\{\alpha\})$ for any $A \in \mathscr{B}$ is evident as well fact when $A \in \mathscr{B}$ also the complement $(z \cup\{\alpha\})-A \in \mathscr{B}$. Hence \mathscr{B} is a q-algebra with the unit $Z \cup\{\alpha\}$.

Evidently $\mathscr{S} \subset \mathscr{B}$. But $Z \notin \mathscr{B}$ because $Z \in \mathscr{A}$ and $(Z \cup\{\alpha\})-Z=\{\alpha\} \notin \mathscr{A}$. Hence a smallest q-algebra \mathscr{A}_{0}, containing \mathscr{S} doesn't exist. Suppose it exists; then we have $Z \in \mathscr{A}_{0} \subset \mathscr{B}$, which is impossible.

Now let $\mathscr{A}=\mathscr{A}_{Z}$. Then \mathscr{A} is a q-algebra which contains \mathscr{S} with a unit Z. If $\tilde{\mathscr{A}}$ is any q-algebra containing \mathscr{S} then $\mathscr{\mathscr { A }}$ is a q-ring. This $\tilde{\mathscr{A}} \supset \mathscr{A}=\mathscr{A}_{z}$. Hence $\mathscr{A}_{0}=\mathscr{A}_{Z}=\mathscr{A}$ is the smallest q-algebra which contains \mathscr{S}.

BIBLIOGRAPHY

[1] A. B. Brown and G. Fremich, A condition for existence of a smallest Borel algebra containing a given collection of sets, Enseignment Math. 2 (1967), 107-109.
[2] Gudder, Quantum probability spaces, Proceedings of the American Mathematical Society 21 (1969) pp. 296-302.
[3] P. Halmos, Mesure Theory, D. Van Nostrand Company, Inc.
[4] Neubrunn, A note on quantum probability spaces, Proceedings of the American Mathematical Society vol. 25, n. ${ }^{\circ}$ 3, July, 1970.
[5] Neubrunn, A certain generalized randon variables (to appear).

Instituto de Matemática Universidade Federal da Bahia Salvador - Brasil

