A Note on Generated Systems of Sets*

ARLETE CERQUEIRA LIMA

I - Introduction

The existence of a smallest algebra (σ -algebra) containing a given collection of subsets of a set X is an elementary and well known fact (cf. [3] p. 22). Considering a modified definition of algebra (σ -algebra) (see the definition below) where the unit is not necessary the whole X, the existence of the smallest algebra (σ -algebra) in this generalized sense can not be guaranteed. This fact was noted by A. B. Brown and G. Freilich, in [1], where a necessary and sufficient condition was given as follows:

THEOREM. Let \mathscr{G} be a collection of subsets of X such that $\bigcup \mathscr{G} Z \neq X$. A necessary and sufficient condition for the existence of a smallest σ -algebra (in the sense of the below definition) containing \mathcal{S} is the existence of a countable

collection $\{S_n\}, S_n \in \mathscr{S}$ such that $Z = \bigcup_{n=1}^{\infty} S_n$.

Note that the condition $Z \neq X$ which is not stated in [1] can not be omitted.

The notations of algebra and σ -algebra are in the theory of quantum probability spaces frequently substituted by that of q-algebra and q- σ -algebra. The last are usually named s-class or σ -class respectively (see [2], [4], [5]).

The difference between the notions q-algebra and q- σ -algebra is in substituting the condition of closedness with respect to unions, by the condition of closedness with respect to disjoint unions (see the definition below). When the q-algebras and q- σ -algebras with a unit different of X are considered, evidently the existence of a smallest one needs not be guaranteed. It seems to be natural that a necessary and sufficient condition for the existence can be obtained if the condition $Z = \bigcup_{n=1}^{\infty} S_n$ in Theorem is substituted by the

*Recebido pela SBM em 2 de outubro de 1973.

similar one where $\{S_n\}$ are required to be pairwise disjoint. But this is not the case as we show in this note.

II - Notations and notions

DEFINITION. A nonempty collection \mathscr{A} of subsets of a set X is said to be algebra if

a) there exists E∈A such that E ⊃ A for any A∈A;
b) if A∈A then E - A∈A;
c) if A, B∈A then A ∪ B∈A.

NOTE 1. E is called the *unit* of \mathscr{A} . In the case E = X we get the definition in the usual sense (see [3]).

NOTE 2. To obtain the notion of σ -algebra we substitute c) by the usual condition of countable unions.

NOTE 3. The notions of ring and σ -ring are used in the same sense as in [3].

DEFINITION 2. A nonempty collection \mathcal{A} of subsets of X is said to be a q-ring if

a) $A, B \in \mathcal{A}, A \subset B$ implies $B - A \in \mathcal{A}$; b) $A, B \in \mathcal{A}, A \cap B = \phi$ implies $A \cup B \in \mathcal{A}$.

If moreover there is $E \in \mathscr{A}$ such that $A \subset E$ for any $A \in \mathscr{A}$ then is said to be a q-algebra.

NOTE 4. The notions of q- σ -ring and q- σ -algebra are defined in a natural way substituting the conditions of the closedness with respect to finite disjoint unions by that countable disjoint unions in the q-anel and q-algebra respectively.

III - Results

THEOREM 1. Let \mathscr{G} be a collections of subsets of X such that $\bigcup \mathscr{G} = Z$.

i) A sufficient condition for the existence of a smallest q-algebra (q- σ -algebra) containing $\mathscr S$ is

$$Z = \bigcup_{i=1}^{n} S_{i} \quad \text{where} \quad S_{i} \in \mathscr{S}, \ i = 1, 2, \dots, \ S_{i} \cap S_{j} = \phi, \quad \text{if} \quad i \neq j;$$
$$(Z = \bigcup_{i=1}^{\infty} S_{i}, \ S_{i} \in \mathscr{S}, \ S_{i} \cap S_{j} = \phi, \ i, \ j = i, \ 2, \dots, \quad \text{if} \quad i \neq j)$$

ii) If $Z \neq X$ a necessary condition for the existence of a smallest q-algebra $(q-\sigma-algebra)$ containing \mathscr{S} is

$$Z = \bigcup_{i=1}^{n} S_{i}, \quad S_{i} \in \mathcal{S}, \ i = 1, \dots n.$$
$$(Z = \bigcup_{i=1}^{\infty}, \quad S_{i} \in \mathcal{S}, \ i = 1, 2, \dots).$$

iii) The condition i) is not necessary and the condition ii) is not sufficient.

PROOF. We shall give a proof for q-algebras (the proof for q- σ -algebras is analogous.

i) Considering all the q-algebras with the fixed unit Z the usual approach gives the existence of the smallest one containing \mathscr{S} belonging to this collection. Let \mathscr{A} be this q-algebra. We shall prove that \mathscr{A} is the smallest among all q-algebras containing \mathscr{S} , with or not the fixed unit Z. In fact, let $\mathscr{A}' \supset \mathscr{S}$ be any q-algebra. The condition

$$Z = \bigcup_{i=1}^{n} S_{i}, \quad S_{i} \in \mathscr{S}, \quad S_{i} \cap S_{j} = \phi \quad \text{if} \quad i \neq j,$$

gives $Z \in \mathscr{A}'$. Let $\mathscr{E} = \{A : A \in \mathscr{A}, A \in \mathscr{A}', Z - A \in \mathscr{A}'\}$. The system \mathscr{E} is a *q*-algebra with the unit Z because $A_1, A_2 \in \mathscr{E}, A_1 \cap A_2 = \phi$ implies $A_1 \cup A_2 \in \mathscr{A}, A_1 \cup A_2 \in \mathscr{A}'$ and $Z - (A_1 \cup A_2) = (Z - A_1) - A_2 \in \mathscr{A}'$ because of the fact $A_2 \subset Z - A_1$.

On the other hand $\mathscr{G} \subset \mathscr{E}$. Thus $\mathscr{A} \subset \mathscr{E}$. But $\mathscr{E} \subset \mathscr{A}'$ hence, $\mathscr{A} \subset \mathscr{A}'$.

ii) If Z is not a finite union of the elements of \mathscr{S} then it is possible using the method of [1] to construct an algebra \mathscr{A} such that $\mathscr{A} \supset \mathscr{S}$ and $Z \notin \mathscr{A}$. A smallest q-algebra \mathscr{A}' containing \mathscr{S} cannot exist. In fact, if it exists then it

is easy to prove that $Z \in \mathscr{A}'$. But \mathscr{A} being algebra is also a q-algebra, hence $\mathscr{A}' \subset \mathscr{A}$. Thus $Z \in \mathscr{A}$, what is a contraction.

iii) Let $X = \{1, 2, 3, \dots, 8, 9\}$ and $Z = \{1, 2, \dots, 8\}$.

Let \mathscr{S} be the collection containing the set $\{1, 2, 3, 4\}$ and all three elements subsets of $\{1, 2, \ldots, 8\}$. Evidently Z is not a disjoint union of the elements of \mathscr{S} . Nevertheless the smallest q-algebra containing \mathscr{S} exists and it is the q-algebra of all subsets of Z. Hence the condition i) is not necessary.

To show that (ii) is not sufficient let

$$X = \{a, b, c, d\}, \quad \mathscr{S} = \{\{a, b\}, \{b, c\}\} \quad \text{and} \quad Z = \{a, b, c\}.$$

It is easy to see that $\mathscr{A} = \{\{a, b\}, \{b, c\}, \{a, b, c\}, \{c\}, \{a\}, \{a, c\}, \{b\}, \phi\}$ is a q-algebra containing \mathscr{S} with unit $E = \{a, b, c\}$

Since \mathscr{A} is the smallest q-algebra of subsets of Z with the unit Z containing \mathscr{S} then, as we know, if there exists a smallest q-algebra \mathscr{A}^* containing \mathscr{S} it should coincide with \mathscr{A} . But \mathscr{A} is not the smallest q-algebra containing \mathscr{S} . In fact if

$$\mathscr{B} = \{\{a, b\}, \{b, c\}, \{a, b, c, d\}, \{c, d\}, \{a, d\}, \phi\}$$

then \mathscr{B} is a q-algebra which contains \mathscr{S} , but $\mathscr{A} \not\subset \mathscr{B}$.

NOTE. The part (iii) of the preceeding theorem shows that an analogy of the Theorem proved in [1] is not valid for q-algebra (q- σ -algebras). The following is a necessary and sufficient condition for the existence of a smallest q-algebra and can be formulated in the same manner also for algebras.

THEOREM 2. Let \mathscr{G} be a collection of subsets of X such that $\bigcup \mathscr{G} = Z \neq X$. Denote by \mathscr{A}_Z the smallest q-algebra of subsets of Z which contains \mathscr{G} and by \mathscr{A} the smallest q-ring (which always exists) containing \mathscr{G} . A necessary and sufficient condition for the existence of the smallest q-algebra \mathscr{A}_0 containing \mathscr{G} is $\mathscr{A} = \mathscr{A}_Z$.

PROOF. Let $\mathscr{A} \neq \mathscr{A}_Z$. Then evidently $Z \notin \mathscr{A}$. Choose $\alpha \in X$, $\alpha \notin Z$ and put

 $\mathscr{B} = \{A : A \in \mathscr{A} \quad \text{or} \quad (Z \cup \{\alpha\}) - A \in \mathscr{A}\}.$

 \mathcal{B} is a q-algebra which contains \mathcal{G} . The fact $\mathcal{G} \subset \mathcal{B}$ is obvious.

Now let $A, B \in \mathcal{B}, A \subset B$. If both $A, B \in \mathcal{A}, A \cap B = \phi$, then $A \cup B \in \mathcal{A}$, hence $A \cup B \in \mathcal{B}$. If under the same conditions $A \in \mathcal{A}$ and $Z \cup \{\alpha\} - B \in \mathcal{A}$, then $(Z \cup \{\alpha\}) - (A \cup B) = (Z \cup \{\alpha\} - B) - A \in \mathcal{A}$. The case $B \in \mathcal{A}, (Z \cup \{\alpha\}) - A \in \mathcal{A}$ is analogous. The case $(Z \cup \{a\}) - A \in \mathcal{A}, (Z \cup \{\alpha\}) - B \in \mathcal{A}$ is not possible because A, B are disjoint.

The fact that $A \subset (Z \cup \{\alpha\})$ for any $A \in \mathcal{B}$ is evident as well fact when $A \in \mathcal{B}$ also the complement $(z \cup \{\alpha\}) - A \in \mathcal{B}$. Hence \mathcal{B} is a q-algebra with the unit $Z \cup \{\alpha\}$.

Evidently $\mathscr{G} \subset \mathscr{B}$. But $Z \notin \mathscr{B}$ because $Z \in \mathscr{A}$ and $(Z \cup \{\alpha\}) - Z = \{\alpha\} \notin \mathscr{A}$. Hence a smallest q-algebra \mathscr{A}_0 , containing \mathscr{G} doesn't exist. Suppose it exists; then we have $Z \in \mathscr{A}_0 \subset \mathscr{B}$, which is impossible.

Now let $\mathscr{A} = \mathscr{A}_Z$. Then \mathscr{A} is a q-algebra which contains \mathscr{G} with a unit Z. If $\widetilde{\mathscr{A}}$ is any q-algebra containing \mathscr{G} then $\widetilde{\mathscr{A}}$ is a q-ring. This $\widetilde{\mathscr{A}} \supset \mathscr{A} = \mathscr{A}_Z$. Hence $\mathscr{A}_0 = \mathscr{A}_Z = \mathscr{A}$ is the smallest q-algebra which contains \mathscr{G} .

BIBLIOGRAPHY

- A. B. BROWN and G. FREILICH, A condition for existence of a smallest Borel algebra containing a given collection of sets, Enseignment Math. 2 (1967), 107-109.
- [2] GUDDER, Quantum probability spaces, Proceedings of the American Mathematical Society 21 (1969) pp. 296-302.
- [3] P. HALMOS, Mesure Theory, D. Van Nostrand Company, Inc.
- [4] NEUBRUNN, A note on quantum probability spaces, Proceedings of the American Mathematical Society vol. 25, n.º 3, July, 1970.
- [5] NEUBRUNN, A certain generalized randon variables (to appear).

Instituto de Matemática Universidade Federal da Bahia Salvador - Brasil