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Congruence lattices of pseudocomplemented semilattices 

H. P. SANKAPPANAVAR 

Congruence lattices of algebras in various varieties have been studied exten- 
sively in the literature. For example, congruence lattices (i.e. lattices of ideals) of 
Boolean algebras were characterized by Nachbin [18] (see also Gratzer [9] and 
Jonsson [16]) while congruence lattices of semilattices were investigated by Papert 
[19], Dean and Oehmke [4] and others. 

In this paper we initiate the investigations into the structure of congruence 
lattices of pseudocomplemented semilattices. Our main concern here is two-fold: 
to develop certain indispensable tools, such as filter congruences, for the study of 
congruence lattices and to show that they possess several interesting (special) 
properties in addition to being algebraic. 

After introducing the class of pseudocomplemented semilattices as a variety in 
Section 1, a very special congruence ~ is defined. In Section 2 certain congru- 
ences, called filter congruences, are defined and then used to express every 
congruence as a join of two "simpler" congruences (in fact even better, see 
Theorem 2.6), a decomposition which is important for our subsequent investiga- 
tions. In Section 3 we analyse the possibility of dually embedding a given pseudo- 
complemented semilattice in its congruence lattice, while Section 4 deals with 
several special properties of congruence lattices. 
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1. Preliminaries 

For the concepts and notations not defined in this paper as well as the  results 
that are used here without proof the standard references are Birkhoff [2] and [3], 
Griitzer [8] and [9] and J6nsson [16]. 

An algebra (S; ^ ,  *, O) is a pseudocomplemented semilattice iff (S ; /x ,  O) is 
a ^-semilattice with least element 0 and * is a unary operation on S such that for 
a ~ S, a* is the pseudocomplement of a in S, i.e. x A a = 0 in S iff x - a*.  We shall 
denote by PCS the class of all pseudocomplemented semilattices; " P C S "  will also 
be used as an abbreviation for "pseudocomplemented semilattice." For typographi- 
cal convenience we shall identify an algebra with its universe when there is no 
confusion. Thus the PCS (S; A, *, 0) is abbreviated by "the PCS S." 

It was shown by Balbes and Horn [1] that the class PCS is indeed a variety 
(equational class) whose defining identities, in addition to the three usual semilat- 
tice identities, are: 

(1) x ^ 0 = 0 ,  
(2) x^(x^y)*=xAy*, 
(3) x ^ 0 * = x ,  
(4) 0"* = 0. 

0* being obviously the greatest element in a PCS will be denoted by 1. Frink [6] 
has given a characterization of the class of Boolean algebras by a set of  identities 
which are of the same similarity type as that of PCS and which include the 
defining identities of PCS, in other words the class of Boolean algebras, BA, is a 
subvariety of PCS. In fact, Jones [14] has shown that BA, viewed in this way, is 
the only nontrivial proper subvariety of PCS. In this work, unless otherwise 
stated, we regard Boolean algebras from this standpoint. 

Frink [7] has shown that the following formulas-which  will be useful for 
u s - a r e  true in PCS. 

(5) x<-x**, 
(6) x-y---~y*--<x *, 
(7) x--- y ---~ x**--- y**, 
(8) x*** = x*, 
(9) x*^  y* = (x*^ y*)**, 

(10) (x ^ y)* = (x** ^ y**)*, 
(11) (x A y)** = x**A y**. 

It is also shown in Frink [7] that if S is a PCS then the set of elements of the form 
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x*, x s S, forms a Boolean algebra. We state this important structure theorem 
more precisely since we make frequent use of it, sometimes implicitly, in the 

sequel. 
For a PCS S we define B ( S ) = { x * : x s S } .  The elements of B(S) are called 

closed elements; equivalently a ~ S is closed iff a = a**. For  a ~ S, a** is called 
the closure of a. We also define N(S)= S - B ( S ) ,  the elements of which will be 
referred to as non-closed. 

T H E O R E M  1.1 (Frink [7]). If  S is a PCS then (B(S), A, ~/,*,0, 1) is a 
Boolean algebra (in the usual sense) such that (B(S), A, *, O) is a PCS-subalgebra 
of S and the Boolean join ~/ is defined by a~/ b=(a* Ab*)*. 

The following corollary is immediate from the theorem. 

C O R O L L A R Y  1.2. Let S ~ PCS. Then S is a BA (in the sense of Frink) iff 
every element of S is closed. 

Unless otherwise stated, S always represents an arbitrary fixed PCS. 

We d e n o t e  by Con S the congruence lattice of S whose least and greatest 
elements are denoted by As and V s (sometimes simply A and V) respectively. If 
x ~ S and to ~ Con S then [x]to or [x] ,  denotes the congruence class of x modulo 
tO; we simply write [x] for [x]to if no confusion is possible. If H, K _  S then we 
denote  by O(H x K) the congruence generated by H x K c S x S; in particular, we 
shall denote by O(a, b) the principal congruence generated by a pair (a, b) of 

elements of S. 
It is shown in Frink [7] that the mapping ** :S--~ S, s--~ s** is a (PCS-) 

homomorphism. We denote by 4)(S) the kernel of this homomorphism, thus 

~ ( S ) = { ( x , y ) : x , y ~ S  and x**=y**} ,  

or equivalently, 

q~(S) = {(x, y) : x, y ~ S and x* = y*}. 

It is clear that q~(S)~ Con S, and whenever there is no confusion we simply write 
4~ for q~(S). It should be emphasized that we use the symbol 4) in this sense only 
throughout this paper. We also note that if 0 ~ Con S and a, b ~ S then (a, b) 

v 0 iff ([a]O, [b]0) e ~(S/O). 
The following remark is useful. 



Vol. 9, 1 9 7 9  Congruence lattice of pseudocomplemented semilattices 307 

Remark 1.3. Let  B be a Boolean algebra. Then the PCS-congruences on B 
(as a PCS) are precisely the BA-congruences on B (as a BA), because the join 
operat ion is a polynomial in /x and *. Hence it is immaterial  whether  we regard 
Con B as the lattice of BA-congruences on B or as the lattice of PCS- 
congruences on B. In particular, this applies to B(S) .  

Recall that B(S)  is also a PCS-subalgebra o f  S. If R is a relation on S, we 
denote  by ( R ) ,  the restriction of R to B(S) ,  i.e. (R) a = R 71 ( B ( S ) x  B(S)) .  The 
following lemma gives some useful propert ies of the operat ion of transition f rom 0 
to (0)n. 

L E M M A  1.4. Let a, [3 e Con S. Then 

(1) ( a ) .  = a .  and (V). = V.,  
(2) a c_ [3 implies (5 ) .  c_ (/3)., 

(3) a ~ 4~ i f  ( 5 ) .  = a . ,  
(4) (o~). c a, .  

(5) (,~ ^ [3) .  = ( ,~ ) .  ^ ( [ 3 ) . .  
(6) (ol v / 3 ) .  = ( a ) .  v ( /3) .  = (a )8  
(7) (or V qb). = ( a ) . .  

o ( [3) .  = (5  o # ) . ,  

Proof. (1)-(5) are immediate f rom the definitions. To prove (6) we first prove 
(5 o [3)B =(a )B  ~ ([3)B. Suppose x, y e B ( S )  and x a s [ 3 y  for some s e S .  Then 
x a s**[3 y since x and y are closed, and so (5 o/3) .  c_(a)B o (/3).. Since the 
other  inclusion is trivial, we thus have (a o/3) .  = ( 5 ) .  o (/3).. Now we know that 

av[3= UA~ 

where 

A o = 5 ,  A . + t = A  n o 1 3 o a  

and 

(5).  v(t3). = t~Jr~ 

where 

Co = (~ )~ ,  r,~+~ = r'~ o (t3)~ o (~)~. 
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Thus 

(av~)a=(~U<,,,A~) f'h(B(S) xB(S))= ~<,oU (A. N (B(S) x B(S))). 

An easy induction, using (a o/3)a = (cOB o (/3)s, shows that F,  = 
A n N ( B ( S ) x  B ( S ) )  for all ~ < to, giving (a v/3)B = (a)s  v(B)B. Finally, recalling 
that any two congruences on a Boolean algebra permute with each other,  we get 
(a)B v (~)B = (a)B ~ (/3)B and thus (6) is proved. (7) follows immediately from (3) 
and (6). 

2. Filter congruences 

The notion of a filter in Boolean algebras can be easily generalized to PCS's. 
A non-empty subset F of S is a filter in S iff F is closed under  ^ ,  and if a is in F 
and a -< b then b is in F. It is clear that the intersection of a family of filters in S is 
also a filter in S. If A c S then the filter (A)  generated by A is the intersection of 
filters in S which contain A. If s ~ S then Is, 1] is the principal filter generated by 
S. 

With the help of the following lemma we will show that every filter in S 
induces a congruence on S. We call such a congruence a filter congruence. 

LEMMA 2.1. Let  s ~ S. Then  x/x s = y A S implies x* ̂  S = y* A S, for all x, y ~ S. 

Proof. Using (2) and the hypothesis we have 

( x *  ^ s )  = (x  ^ s )*  ^ s = (y  ^ s ) *  ^ s = y *  a s. 

The above lemma is also due independently to J. T. Jones [14]. 

DEFINITION 2.2. Let  F be a filter in S. Define a relation ~', also denoted by 
(F)", on S as follows: 

(x, y ) e  F iff there exists an f e F such that x A f = y  ^ f .  

We note here that the above definition is equivalent for Boolean algebras to: 

(x ,y )~ /~  iff ( x v y * ) A ( x * v y ) E F .  

L E M M A  2.3. I f  F is a filter in S then P ~ C o n  S and 0 ( F x F ) = F =  

O~milat(F • F). 
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Remark 2.4. If F =  [a, 1] then P is denoted by d (or by (a) ̂ ) and 

( x , y ) e t i  iff x A a = y A a ,  x , y ~ S .  

L E M M A  2.5. I f  F1, F2 are filters in S then FI c F2 implies _F~ c F2, and if 
a, b e S then a <- b implies l) c_ gt. 

If B is a BA then the congruences on B are, of course, precisely of the form/~ 
where F is a filter in B. We shall now show that every congruence on a PCS S can 
be expressed as the join of a congruence of the form t ~, where F is a filter on S, 
and a congruence contained in ~. In fact a much stronger statement is true. 

T H E O R E M  2.6. (Decomposition Theorem ). Let to ~ Con S. Then 
(i) [1], is a filter in S, 

(ii) to = ( [1 ] , ) ^v (0^  4~) = ([1],) ̂  o (toA q~) o ([1],) ~. 

Proof. It is easy to show that [1], is a filter in S. 
To prove (ii), it is enough to prove that to is contained in the extreme right 

hand expression. Let (x, y)~ to. Then one can verify that ((x*A y**)*, 1}e to, and 
by symmetry ((x**/~ y*)*, 1) ~ to and hence (x*/x y**)* A (x**/x y*)* ~ [114 ,. It is 
straightforward to verify x** A [(x* A y**)* A (X** A y*)*] = 
y** ^ [(X* ̂  [(X* A y**)* ̂  (X** ̂  y*)*]. Thus we get (x**, y**} �9 ([114,)" which im- 
plies that (x, x A y**) �9 ([114,) ̂  and (x** ^ y, y) �9 ([114,) ̂ . Since (x, y) e to, we get 
(xAy**,X**^y)~to .  Since by (10) (x ^ y**)* = (x** ^ y)*, we then obtain 
(x ^ y**, x**^ y) e to/x ~ whereby one gets (x, y) �9 ([114,) ̂  o ([1],) ̂ , proving the 
theorem. 

The following corol lary-which is immediate from the preceding t h e o r e m -  
shows that certain congruences on S, namely the congruences disjoint from q~, 
behave like the congruences on Boolean algebras in the sense that  they are 
determined by a single congruence class, the class of 1. 

C O R O L L A R Y  2.7. Let toeCon S be such that toA cI)=A. Then to=([1]4,) ̂  
where [114, __q B(S) .  

We note here that the converse to this corollary is false. 
In general if 0, qJ ~ Con S then 0 v tO cannot be expressed as a composition 

0 o to . . . . .  0. Our next result, motivated by the proof of the preceding theorem, 
gives a simple, explicit expression for the join of two congruences in the case 
when one of the two is a filter congruence on S. 

T H E O R E M  2.8. Let F be a filter in S and let t o , C o n  S. Then F v t o =  
PotooP. 



310 H.  P. S A N K A P P A N A V A R  A L G E B R A  UNIV.  

Proof. It is sufficient to prove O ~176 O--q# ~ O o p. Let  xOx,Px2Oy. Then 
X l A t = X 2 A t  for some t~F ,  and so X#XAtOXlAt=X2AtOyAt fry  and the 
proof is complete. 

C O R O L L A R Y  2.9. Let [3 ~ Con S with /3 A 49 = za and let O~ Con S. Then 
/ 3 v 0 = / 3  o 0 o/3. 

Easy examples show that Theorem 2.8 can not be improved further. 
The following theorem gives a simple expression for the join of two 

congruences-  when one of the two contains cb - i n  terms of their relative product. 

T H E O R E M  2.10. Let [3, 0 ~ C o n  S with /3~cb. Then / 3 v 0 = / 3  o 0 ~ in 
fact, /3 v O = [3 ~ (O)B o /3. 

Proof. It suffices to show O o/3 o 0_el3 o (0)B ~ To this end, suppose 
(x, y ) s  0 ~ 13 o 0- Then (x**, Y**)~(0 ~ o 0)B and so, by Lemma 1.4, we have 
(x**, y**)~ (0)a ~ (/3)8- But (x, x**) and (y**, y) are in /3 since q~_c/3. Conse- 
quently 

(x, y)~/3  o (0)B o (/3)8 ~ o (0)8 ~ 

as required. 

3. Dual embedding 

With the help of the congruences of the form fi for a in S we now establish 
that every PCS is "mir rored"  inside its congruence lattice. Let S denote  the set of 
congruences of the form c1 with a in S. 

T H E O R E M  3.1. There exists a dual PCS-isomorphism between S and S. 

Proof. We shall show that the mapping a ~ ~ is a dual PCS-isomorphism 
from S onto S. 

First let us show that (aAb)  ̂ = d v / ~ .  From Lemma 2.5 it is clear that 
( a A b ) ^ _ ~ v / ) .  On the other  hand, let ( r , s ) ~ ( a A b ) " .  Then r A a A b = S A a A b  
and so r A a = s A a ( b ) .  But r---rAa(gO and S - S A a ( a ) ,  so r---s(~v/)) ,  showing 
that (a A b ) " ~  ~ v/~. 

Now we show that if a ~ S then (a*)" is the dual pseudocomplement  of ~ in 
Con S. First, observe that fi v ( a * ) " =  ( a A a * ) " =  0 =V. Next, let 0 ~Co n  S with 
d v O = V ,  Then by Theorem 2.8 ~ o 0 o f i=V.  Hence (a, 0 ) e a  o 0 o ~, so a - -  
xl(fi), xl=-xz(O), x2-O(gO for some x l , x z ~ S .  Thus a = a A x , O  a A x 2 = O ,  i.e. 
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(a,O)~O and hence (a*, 1)e0 ,  yielding ( a * ) " c  0, which shows that (a*) ̂  is the 
dual pseudocomplement of 4. Thus we have shown that the mapping is a dual 
PCS-homomorphism. 

The mapping is obviously onto. If ~ = / )  then (b, 1 ) ~  and so a /xb=a;  by 
symmetry a/x b = b wherefore a = b, showing that the mapping is one-one.  

It is immediate from the above theorem that [S[-<lCon S[. 
It should be pointed out that although S is dually pseudocomplemented as 

seen above, Con S is not, in general, dually pseudocomplemented.  The  following 
theorem clarifies the situation. 

T H E O R E M  3.2. Con S is dually pseudocomplemented iff B(S) is finite. 

Proof. Let B(S) be finite. We show that for every 0 in Con S the dual 
pseudocomplement of 0 exists and is of the form fi for some a in B(S). Since (0)B 
is a congruence on B(S), the hypothesis implies that (0)B is a principal congru- 
ence and hence exists an element c ~ B(S) such that the filter [c, 1] generates (0)8. 
It is easy to verify that the dual pseudocomplement  of 0 is (c*) ̂ . Thus Con S is 
dually pseudocomplemented.  Now to show the converse, assume B(S) is infinite. 
First observe that  if 0 + is a dual pseudocomplement  of 0 ~ Con S then (0+)B is a 
dual pseudocomplement of (0)B in Con B(S), thus the hypothesis implies that 
Con B(S) is also dually pseudocomplemented,  which implies that the lattice of 
filters of the (infinite) BA B(S) is dually pseudocomplemented,  leading to a 
contradiction as it can be easily seen that a non-principal filter doesn't  have a dual 
pseudocomplement.  

C O R O L L A R Y  3.3. If B(S) is finite then B(S) is isomorphic to B (dual of Con 
S), the set of closed elements in the dual of Con S. 

The following t h e o r e m - w h o s e  proof is easy and hence omi t t ed-desc r ibes  
precisely when S of Theorem 3.1 coincides with Con S. 

T H E O R E M  3.4. There is a dual PCS-isomorphism from S onto Con S iff either 
S is a finite Boolean algebra, or else S is of the form B U{1} where B is a finite BA 
and 1 is the new largest element of S. 

It is well-known that the congruence lattice of a Boolean algebra determines, 
up to isomorphism, that Boolean algebra. However,  for PCS's this is not the case, 
as the following example shows: 



312 H.P.  SANKAPPANAVAR ALGEBRA UNIV. 

$1 S~ 

+ 

Fig. 1 

Example 3.5 

We conjecture that if S satisfies the following property then Con S determines 
S upto isomorphism: 

(U) V x V y ( x < y * * - - - ~ ( x * = y *  or x-<y)). 

4. Properties of congruence lattices 

Congruence lattices of PCS's have, in addition to their being algebraic lattices, 
many interesting properties in common. In this section we shall give some such 
properties. 

It is quite clear that Con S is a complete sublattice of the lattice of semilattice- 
congruences on S; hence it follows immediately from Papert [19] that every 
interval in the congruence lattice of a PCS is pseudocomplemented. Then it is 
easy to see that M5 cannot be embedded as a sublattice into the congruence 
lattice of a PCS (see Varlet [22]). 

T H E O R E M  4.1. Con S is coatomic, i.e. every 0 e C o n  S is contained in some 
coatom of Con S. Furthermore, if 0 is a coatom in Con S then 0 ~_ ~.  

Proof. Observe that V = 0(0, 1) is compact in Con S and use Zorn's  lemma, 
while the second half is immediate from Lemma 1.4(7). 

Remark 4.2. The congruence ~ gives rise to two important subintervals 
[A, ~ ]  and [q~, V] in Con S such that q~ is the intersection of all maximal 
congruences on S. 
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A property of the congruence lattices of PCS's is contained in the following 
corollary to a well-known characterization of the congruence lattice of a Boolean 
algebra. 

C O R O L L A R Y  4.3. The interval [~, V] of Con S is a distributive algebraic 
lattice in which the compact elements form a complemented sublattice. In  particular, 

if S is finite then [~, V] is a (finite) BA. 
(For a property of  the interval [A, ~ ]  see Corollary 4.10.7 

Our next theorem gives another property of the congruences on a PCS and 
shows where the failure of distributivity can possibly occur. 

T H E O R E M  4.4. Let [3, 3"~, 3"2E Con S such that either [3 c_ ~ or 3"~ A 3": ~_ 49. 

Then [3 v (3"1 ̂  3":) = (/3 v 3"1) A ([3 v 3":). 

Proof. Let /3 ~ q~. It is enough to show that the expression on the right is 
contained in the one on the left in the equation. Let (x, y)~([3v3"l)A([3v3":), 
then (x**, y**) is in ((13)B v (3"1)B)/x ((/3)B v (3":)8) = (13)B v ((3"1)B/x (3":)B) using 
Lemma 1.4 and the distributivity of Con B(S) ,  hence (x**,y**) is in ([3v 
(3"lA3":))n ~ [3V(3`lA3`:). Since (x,x**)~/3 and (y**, y)~13 by hypothesis, it 
follows that (x, y) ~ [3 v (3`1A 3":). The case 3", A 3": D_ ~ is similar. 

Remark  4.5. The above argument can be used to prove the following "com- 
plete version" of the above theorem: 

Let [3,3,,eCon S, i ~ I  such that either 13~_4~ or A,~r3",~-4~. Then 

13 v (A,~,  3",7 = A,~ ,  (t3 v 3",). 

If A ~ S, we define (A)B by (A)B = A N B(S) .  

L E M M A  4.6. Let ~/1, 3`: s Con S be such that ~/i A 49 = A, i = 1, 2 and  (3'1)B = 

(3`:)8- Then 3'1 = 3':. 

Proof. Since 3 ,̀ A q~ = A, we have by Corollary 2.7 that 3 ,̀ = ([1]v,) ̂ , and [1Iv, = 
([1].,,)B, i =  1, 2. From (3`t)B = (3`:)B we get ([1],,)B = ([1],2)~ and hence [1]~,,= 
[1].y 2 which implies 3'1 = 3`2, proving the lemma. 

Another property enjoyed by the congruence lattices of PCS's is given in the 
following theorem. 

T H E O R E M  4.7. Let  [3, 8 ~ Con S be such that [3 D_ q). Then  [8 A [3, ,3]-~ 

[[3, 8v[31. 
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Pro@ We shall first prove the theorem for the special case when 6/x/3 = A. 
With 6/~/3 = za we will show [A, 6]----- [/3, 6 v/3]. Define a mapping 

f : [ &  6]---> [/3, 6 v/3] by f(3") = 3" v/3, 3' _c & We claim f is an isomorphism. For, if 
71,72~[A, 6], then f (3" l )=3" lV/3  and f(3"2)=3'2V/3 . Now obviously f is a v- 
homomorphism. Also f(7l/x 3'2) = (3'1/x 3"z) v/3 = (3"1 v 19)/x (3"2 v/3) by Theorem 4.4 
and hence f(71 ^ 3"2) = f(3"0 ̂  f(3"2) - thus f is a lattice-homomorphism. Let  f(3"1) = 
f(3'2). Then 3"t v/3 = 3"z v/3 and so (3"08 v (/3)8 = (3"2)B v (/3) 8. Also from 6/x/3 = zl 
and 3"~ ~ 6, i = 1, 2, we get 3"i/x/3 = zl, i = 1, 2 and so (3"~)8 A (/3)s = A s. Then using 
an argument for congruence lattices of Boolean algebras one can see that 
(3"|)B = (3"2)8- Also since 3'i/x/3 = A, i = 1, 2 and /3 ~ 4>, we get 3"~/~ q~ = A, i = 1, 2. 
Thus applying Lemma 4.6 we get 3"! = 3"z and hence f is one-one.  To show f is 
onto, let 0 6 [/3, 6 v/3]. Then take 3" = toA 6, and it is clear that 6 ~[A, 6]. Now 
f(3') = f(to/x 6) = (tO/~ 6) v/3 = (tO v 13) ̂  (6 v/3) by "Haeorem 4.4. Since/3 ___ tO _~ 6 v/3, 
we see that f(3")= to, thus f is onto. This shows that f is an isomorphism. 

Returning to the general case, we let S~ = S/6A/3 and let /31, 6t correspond 
/3,8 respectively. Then /3t ~_cI)(SO and /3t^6~ =As,, so from what we have just 
proved we get [As,, 61] = [/3t, 6t v/31]- Since [6 ^/3, 6] ~ [As,, 6|]  and [/3t, 6| ^ 131] ~- 
[/3, 6 v/3], the theorem follows. 

C O R O L L A R Y  4.8. If  6 ~ Con S then [6/x oil 6] is distributive. 

Another  property is given in the following. 

T H E O R E M  4.9. Let/3, 6 ~ Con S such that 6 c_ 4>. Then Con S satisfies: 

(B) I f6>-- /3^6  then/3v6>.---/3. 

Proof. It suffices to show that (B) holds in the congruence lattice of the 
quotient St = S//3/~6. Let "/3~, 6t denote  the congruences on St corresponding to 
/3, 8 respectively. Then /3 tA6!  =As, and 6t is an atom in Con St. Since 6 ~ qb it is 
straightforward to verify that 61 ={(a, b), (b, a)}UA for some a, b ~ St such that 
a* = b*, b covers a and every element of St which is less than b is already less 
than or equal to a. From this it follows immediately that 6t is an atom in Eq (St), 
the lattice of equivalence relations on St. Since Con S is a s.ublattice of Eq ($1) 
and the latter has the property (B) the proof is complete. 

C O R O L L A R Y  4.10. [A, qb] has the property (B). 

In view of the above corollary the height function is defined in the lattice 
[zl, ~] ,  and the following theorem relates the height of q~ with the number  of 
non-closed elements in S. 
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T H E O R E M  4.11. (i) N(S)  is finite iff h(O), the height of O, is finite. 
(ii) If  N(S)  is finite then h(O) = n(S) where n(S) is the cardinalitv of  N(S).  

Proof. First part being obvious, for the second part we use induction on 
n ( S ) - l .  (Recall N ( S ) = 0  iff O = z L )  Let  n ( S ) = l  and let x be the unique 
non-closed element in S. Then it is easy to see that O(x, x**) is an atom in Con S 
and that @ = O(x, x**), thus h ( O ) =  1 = n(S). Next, suppose that the theorem is 
true for all PCS's S such that n(S) = k. Let S be a PCS with n(S) = k + 1. Observe 
that if x ~ N ( S ) ,  y e S ,  y < x * *  and y~:x then y A x ~ N ( S )  and (y A X)** = y**. 
Then it is easily verified, since N(S)  is finite, that there exists an a ~ N(S)  such 
that whenever y < a * *  one has y < a .  Let  b ~ S  be such that a---<b and a * = b *  
(the existence of such an element is clear. Then we claim that z < b implies z - a 
for every z in S. For, if there is a z ~ S such that z < b and z~ e a then z < a** and 
z ~ a, a contradiction. Thus the congruence O(a, b )=  0 has one block consisting of 
exactly two elements a, b and has all other  blocks as singletons. Then $1 = S/O has 
exactly k non-closed elements and hence by the induction hypothesis h(@(Sl))= 
N(SI)  = k. Since 0 is an atom in [A, O(S)] and [0, @(S)]~[Ab @(S1)] we conclude 
that h(@) = k + 1, completing the induction. 

It is already stated in Section 1 that Boolean algebras are the only non-trivial 
subvariety of PCS. It is interesting to note that the class of congruence lattices of 
Boolean algebras, being distributive, satisfies every nontrivial lattice identity; the 
class of congruence lattices of PCS's, at the other  extreme, does not satisfy any 
nontrivial lattice identity, a result which we proceed to derive from a similar result 
for congruence lattices of semilattices proved in [5] by Freese and Nation. We 
need the following lemma for the proof of this result. 

Let  N be a Boolean algebra (with universe B) and let Con ((B,/x )) denote  the 
lattice of (semilattice) congruences on (b, ^ ) (as a semilattice, forgetting the other 
structure in N). Let SB denote B O{z} where z ~ B  is the new least element.  It is 
easily seen that SB is a PCS and B(Ss )  is a two-element BA. The following 
lemma is easily verified. 

L E M M A  4.12. Let ~ be a BA. Then Con ((B, A)) is a sublattice of  Con SB. 
In fact, Con SB is iust Con ((B, ^))  with a new 1 adioined. 

We shall, for convenience, state the result due to Freese and Nation that was 
referred to earlier. 

T H E O R E M  4.13. Let 8 be a non-trivial lattice identity. Then there exists a 
finite Boolean algebra ff3(8) (with universe B(8))  such that 8 fails in Con ((B(8), 



316 H. P. S A N K A P P A N A V A R  A L G E B R A  U N I V .  

C O R O L L A R Y  4 .14 .  L e t  8 be a non-tr iv ial  lattice identity. Then  there exists a 

finite P C S  9~ such that  8 fails  in C o n  (9O(8)). Thus  the class o f  congruence 

lattices o f  P C S ' s  does not satisfy any  non-tr ivial  lattice identity. 

Proof. T a k e  S(8)  to  be  Ss(s). 

F i n a l l y  t he  a u t h o r  w o u l d  l ike to t h a n k  the  r e f e ree  for  severa l  use fu l  c o m m e n t s .  
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