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A CHARACTERIZATION OF PRINCIPAL CONGRUENCES OF
DE MORGAN ALGEBRAS AND ITS APPLICATIONS

H.P. Sankappanavall.

ABSTRACT. In this paper a characterization of prin-
cipal congruences of De Morgan algebras is given and
from it we derive that the variety of De Morgan alge-
bras has DPC and CEP. The characterization is then
appl ied to give a new proof of Kalman's characteriza-
tion of subdirectly irreducibles in this variety and
thus to obtain the representation theorem for De Morgan
algebras first proved by Kalman and independently,
usingtopological methods, by 8ialynicki- Bi rula and
Rasiowa. From this representation it is deduced that
finite De Morgan algebras are not the only ones wi th
Boolean congruence lattices. Finally it is shown that
the compact elements in the congruence lattice of a De
Morgan algebra form a Boolean sublattice.

§1. INTRODUCTION,

Principal congruences have turned out to be a useful tool, especially after
the publication of Day 1971, in obtaining some interesting information about a
given variety (equational class) of algebras. For example, the "equational" char-
acterization of principal congruences of distributive lattices - first given by
Gratzer and Schmidt (see Gratzer 1971, Theorem 3, p. 87) - has been used, among
other things, to characterize subdirect irreducibility (Example 3 in Gratzer 1971);
and it also implies that the variety of distributive lattices has definable prin-
cipal congruences(DPC) (see § 4 below for definition) and has congruence extension
property (CEP). (This is immediate via Day 1971.) Lasker 1973 found a similar
characterization in the case of distributive pseudo-complemented lattices and used
it to deduce CEP and OPC. Recently we observed in Sankappanavar 197+ b that his
characterization could also be used to give a very simple proof of the characteri-
zation by Lakser (see Gratzer 1971, Theorem 7, p. 178) of subdirectly irreducible
distributive pseudocomplemented lattices. To cite still another example, princi-
ple congruences of pseudo-complemented semilattices are characterized in Sankappa-
navar 197+ a and DPC and CEP are deduced; moreover, this characterization is
applied in Sankappanavar 197+ b to give a new direct proof of a result, due 'to
Jones, characterizing subdirectly irreducible ones.

In this paper a characterization of principal congru~nces of De Morgan alge-
bras is given. From this it follows that the variety of De Morgan algebras has
DPe and CEP. This characterization is then applied to give a new proof of Kal-
man's characterization of subdirectly irreducibles in this variety and thus to ob-
tain the representation theorem for De Morgan algebras first proved by Kalman and
later, using topological methods, by Bialynicki-Birula and Rasiowa. From this it

341



342 H.P. SANKAPPANAVAR

is deduced that finite De Morgan algebras are the only ones with Boolean congru-
ence lattices. Finally it is shown that the compact elements in the congruence
lattice of a De Morgan algebra form a Boolean sUblattice.

Recall that a De Morgan algebra is an algebra (Ai 1\, V, 'V, 0, I> of type
(2,2,1,0,0> such that (A i 1\, V, 0,1) is a bounded distributive lattice satis-
fying the identities 'V'V x = x and "'(x V y) = 'VX 1\ -v If. (We refer to -v as the
De Morgan negation.)t For a systematic study of these algebras see Ba 1bes and
Dwinger 1974 and Rasiowa 1974. Throughout this paper A denotes an arbitrary De
Morgan algebra. For the notation we refer the reader to Balbes and Dwinger 1974
and Gratzer 1971. We let O(a,b) and 0Lat(a,b) denote respectively the princi-
pal De Morgan algebra congruence and the principal lattice congruence on A gene-
rated by the pair (a,b) in AxA. BIAl denotes the set of complemented ele-
ments of A, while C(A) consi sts of those elements a of A such that the Bool-
ean complement a' in A coincides with the De Morgan negation 'Va. It is clear
that C{A) c B(A); and the equality holds iff A is a Boolean algebra. Finally
we let Con-A to denote the congruence lattice of A and recall that it is a dis-
tributive algebraic lattice.

§ 2. PRINCIPAL CONGRUENCES,

In this section we shall give a characterization of principal congruences of a
De Morgan algebra. The following Lemma - whose proof is straightforward - is cru-
cial for the rest of the paper.

LEMMA 2.1. LeX: a, b E A wUh 0.<;; b. Then

°(a,b) = 0Lat(a,b) V 0Lat('V b, 'Va).

THEOREM 2.2. LeX: a,b E A .6u.c.h that it -c b. FOJt x,lf .£n A, (x, If] E°(a,b) .£nn .the. noUow.£ng .£deYJ..t.U.£e.6 Me tJtu.e .£/1 A :

1) xl\al\'Vb=lfl\al\'Vb

2) (xt\a) V'V a = (yt\a) V 'V a

3) (xVb)t\.7vb= (yVb)1\ 'Vb
4) xVbV'Va=yVbV"'a,

OJi. eqiJ..£valel'Lti.y the .£de.YJ..t.U.£e.6 1), 2'). 3') and 4) Me tJtu.e.£n A, wheJte

2') (xV'Va)l\a=(yV'Va)l\a, and

3') (xl\'Vb)Vb (yl\'Vb)Vb

PROOF. Let us denote by [a] the element in the distributive lattice
A/OLat('V b, 'Va) corresponding to an element a EA. Then by Lemma 2.1 we have

t These algebras were first studied in Kalman 1958 (actually in his thesis 1955)
(but without 0 and 1) as a common abstraction of Boolean algebras and lattice-
ordered groups and by Bialynicki-Birula and Rasiowa under the name of quasi-
Boolean algebras. These algebras are related to constructive logic with strong
negation.



for x,y E A ,
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(x,y) E (J(a,b) iff ([ xl, [yl) E (JLat([al ,[bl) in A/(JLat('Vb, 'Va)

iff [xl /\ [a] = [yl /\ [a] and [xl V [bl = [yl V [b]

iff (x A«, y/\a) E (JLat('Vb,'Va) and (x Vo, yVb)EOLat('Vb,'Va)

iff the identities 1)- 4) are true in A.

Similarly by considering A/(JLat(a,b) it is readily seen that (x,y) E (J (a, b)

iff 1), 2'), 3') and 4) hold in A and thus the proof is complete. -

COROLLARY 2.3. Let x,y,a E A. Then:the o0.uow'<'ng C.OYlciU{.OI1J.l Me eqtUva-
lent:

a) (x,y) E e(a, 1)

b) (x/\a) V 'V a = (y/\a) V 'V a

c) (xV'Va)/\ 11.= (yV 'Va)/\a.

IYl pantic.~ oO~ a E C(A) we have (x,y) E e la, 1) '<'66 x /\ 11.= Y /\ a '<'06
xV'Va = yV'Va.

(We just remark here that this corollary includes the well-known characteriza-
tion of principal congruences of Boolean algebras.)

COROLLARY 2.4. Le.t a E A. TheYl (J (a,a V 'V a) = (JLat(a, a V 'Va). IYl otheJl.

WMM, (x,y) E (J (a, a V 'V a) '<'60 x /\ a = y /\ a aYld x Va V 'V a = y V a V 'V a.
IYl pMtiC.u1.M,'<'O a" 'Va :theYl (x,y) E e (a, 'Va) '<'00 x /\ a = y /\ a aYld
xV'Va=yV'Va.

PROOF. Observe ('V(aV'Va), 'Va) E(JLat(a, aV'Va).-

COROLLARY 2.5. Let a E A. TheYl:the o0.uOW'<'Ylg Me eqtUvalent.

i ) The lattic.e c.oYlgitUeYlc.e (JLat(a, 1) OYl A ..{.o aVe MoJtgan algebM C.OYlg~u.­
enc.e Oyl A,

t i ) 'Va..{.o:the BooleaYl c.omplement 00 a '<'yl A k.e. 'Va E C(A».

PROOF. From i) and ('Va, 0) E (J(a., 1) we see that ('Va.,O)E (JLat(a., 1)

which implies "va /\ a = 0, thus yielding ii). On the other hand, from i i ) and
Corollary 2.3 we have ('Va, 0) E eLat(a, 1), thus i) is immediate. -

Thus the property i) in the above corollary is characteristic of Boolean alge-
bras among De Morgan algebras. It also follows from the preceding corollary that
the condition (2) of Lemma 4.3 in eignoli 1975 can be improved to: For every
a E B(A) the lattice congruence (JLat(a, 1) is also a De Morgan algebra congru-
ence on A.

§ 3. APPLICATIONS,
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Following Baldwin and Berman 1975 we say that a variety V has de6.i.nablepJUn-
upal congftuence.o (DPC) iff there is a formula ¢(u, v, ft,.6) in the first order
language of V so that for all AE V and a, b, c, dE A, ¢!c,d,a,bl holds in
A iff (c,d) E O(a,b). Regarding the usefulness of DPC and varieties with DPC
the reader may refer to, for example, Baldwin and Berman 1975, McKenzie 1978,
Gratzer 1971, Lakser 1973 and Sankappanavar 197+ b.

Thus the following Theorem is immediate from Theorem 2.2.

THEOR EM 3.1. The vaiUety 06 Ve MOftgM algebftM has DPC.

Day 1972 proved that if an equational class has the property that in each of
its members the condition (x,y) E O(a,b) is determined by a set of equations in-
volving only x,y,a,b then the congruence extension property (see Gratzer 1971
for definition) holds in that class. In the case of De Morgan algebras the reader
can easily write down such equations using our Theorem 2.2 for x, y, a, bin A
(where a, b are not necessarily comparable). Thus we have

THEOREM 3.2. The vaiUettj 06 Pe MOJtgan algebftM has the congJtu.ence exten.6-<-on
pM pe.Jtty•

It may be remarked here that Theorems 3.1 and 3.2 could be obtained by more
involved methods. For example Theorem 3.2 is a consequence of results in eigno1i
1975 and Banaschewski 1969 and then an existential proof of Theorem 3.1 is ob-
tained from Theorem 3.2 and the (known) fact that every finitely generated De Mor-
gan algebra is finite, together with a result in Baldwin and Berman 1975, while
our proof gives an explicit defining formula.

SUBDIRECTLY IRREDUCIBLE DE MORGAN ALGEBRAS,

Kalman 1958 characterized the subdirectly irreducible De Morgan algebras and
thereby obtained the complete description of the lattice of subvarieties of the
variety of De Morgan algebras and a representation theorem. Later, using topolog-
ical methods Bialynicki-Birula and Rasiowa 1958 (see also Ba1bes and Dwinger 1974
obtained the same representation theorem.

We shall now apply Theorem 2.2 to give new proofs of these results. For this
we need the following observation.

LEMMA 3.3. Let A be aVe Moftgan algebJta 06 hugh;{:. ;;. 3 and w-<.th IC(A)j =2.
Then theM -i..6 an element a 1= 0 -<-11 A .6uch that a < "'a.

PROOF. We may suppose that there are elements xl' x2 in A such that 0 <
Xl < x2 < 1. We may further assume that each of "'Xl and "'x2 is incomparable
with each of Xl and x2 since in all other cases the Lemma is trivially veri-
fied. Now set a = (Xl V", x2) /\ x2 /\ '" Xl and we claim that a has all the de-
sired properties. Observe that '" a = Xl V", x2 V ('" Xl /\ x2) and hence a <v«,

furthermore if a = '"a then Xl V -v x2 = x2 /\ '" Xl and hence '" x2 ... x2 whi ch
contradicts our supposition and thus a < 'Va. Finally if a = 0 then noting
that a = (Xl /\ 'V Xl) V ('Vx2 /\ X2) we see that Xl /\ 'V Xl = 0 and hence Xl E
C(A} which is a contradiction to the hypothesis. Thus our claim is proved and
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hence the lemma ••
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The following three De Morgan algebras 2, 3 and 4 given in figure I, where
'Va = a, 'Vb = b and 'V c = c , playa very special role in the theory of De Mor-
gan algebras. We now apply our results to give a simple proof of Kalman's result
mentioned earlier. Observe that B(4) {O, b, c , l} while C(4) = {O, I} .

2

a b 0 c

0
0

3 4

(Figure 1)

THEOREM 3.4. (Kalman 1958) Lu A be non-bUv,£.aL Then the 60tlow'£'ng ~e
equ.-i.vatent:

1) A .{.6 ,/>.{mp.te •

2) A .{.6 ./>ubcUtteclilf .{.Meduub.te •

3) A .{.6 06 hught < 3 and CIA) {O, 1 }

4) A .{.6 utheJt 2 ott 3 ott 4.

PROOF. 2)" 3) is the only non-trivial implication, and we shall prove it
here. Suppose A is subdirectly irreducible. If CIA) has an element different
from 0 and 1 then from Corollary 2.5 it follows that O(b, 1) A e('Vb,l) = L\ (the
least element in Con A), which is a contradiction and hence CIA) = {O,l}. Next
suppose the height of A~ 3. Then by the preceding Lemma there is an element a
in A such that a < 'Va and a * O. But then from Corollaries 2.3 and 2.4 it
follows that e(a, 'Va) A e('Va, 1) = L\ which is again a contradiction and so the
height of A is less than 3. Thus (3) is true and the theorem is proved. •

In vie~1 of the famous Birkhoff's theorem the following corollaries are immedi-
ate. Let VIA) denote the variety generated by A.

COROLLARY 3.5. EveJtlj 11On-bUv,£.at De MOItgan atgebJta A .{.6 a ./>ubcUJtect pttod-
uct 06 ./>.{mp.tu [vz.z, 2, 3 and 4).

COROLLARY 3.G. (Kalrnan 1958; Bialynicki-Birula and Rasiowa 1957) A .{.6 a
./>ubcttgebJta 06 a cUttect poweJt 06 4.

COROLLARY 3.7. (Kalman 1958) The ffittice 06 ./>ubvaJt,{.eU.u 06 De Ilo"csan a.t-
gebJta-6.{.6 (( C, -element chun COI'LO.{.6;(;,{.llg o~ V(I) (ttUv-<.a.t r,xgebtta-6) , V 2) 1800,[-
ea;, atfJebtLa-6) , V13) 1M-called K.teene atgebJta-6) and V(4) lall De MOItgan atge-
bJta-6 ) •

Finally combining Corollary 3.4 with Day 1972, Theorem 4.1, one readily ob-
tains the following Corollary which was first obtained in Cignoli 1975 by giving
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an explicit characterization of injectives.

COROLLARY 3.8. (Cignoli 1975) V(4) and Ii (3) have. e.nvugL inje.Uive..6 and
"he.nee. have. the. wnalgamation P40P~Y.

CONGRUENCE LATTICES,

We shall now apply our previous results to obtain some information about the
structure of congruence lattices. We have the following theorem characterizing
the De Morgan algebras with Boolean congruence lattices.

THEOREM 3.8. Con A i.6 Boole.an .£66 A u MniA.e.

PROOF, Since A is semisimple, from a result of Tanaka 1952 (or see Burris
1975 , Corollary 2.6) it follows that Con A is a Boolean lattice iff any two e-
lements of A are equal on all but finitely many factors, and the latter is true
iff A is finite ••

In the rest of the paper our concern is to show that the compact elements in
Con A form a Boolean sublattice of Con A. It is well-known that in a distribu-
tive lattice the meet of two principal congruences is a principal congruence (see
Lakser 1973 for example). In fact, if a';;; b "and e';;; d then /}Lat (a, b) II

/}Lat(e,d) = IJLat(b II d II (a V e), b II d). However, in a De Morgan algebra this
property may not hold in general, but we still have the following useful informa-
tion.

LEMt1A 3.9. Let a,b,e,d E A w.{;th a';;; band e';;; d. The.n

/}(a,b) IIIJfe,dl = B(aVe, aVeV (blld)) v e (aV'Vd,aV'VdV (bll'Ve)l.

PROOF, Using Lemma 2.1 and distributivity of Con A we have

I) (a,b) /\ I) fe,d) = [I)Lat(a,bl V/}Lat('Vb, 'Va)]/\ [I)Latfe,d) V I)Lat ('Vd, 'Ve)]

= [I)Lat[a,bl MLatfe,d)] V [I)Lat[a,bl /\ I)Lat ('Vd, 'Ve)]

Recall that IJ Lat (xII y, x) = BLat(Y, xVy), and thus we have

I) la,b) II/} (e,d) = I)Lat la Vc, [bll d) v a Vel V I)Lat la V r- d, a V 'VdV Ibll 'Vel)
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= O(aVe, av c.v (bAd)) V O[aV < d; aV 'Vd V (bA 'Ve)).

Thus the Lemma is proved. •
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LEMMA 3.10. EveJtlj pJUnc..tpal eon9'tUenee on A hM a complement wlUeh .u, eom-
pact ~n Con A. In nact ~n a,b E A and a ~ b then

e(a,bJ' = 1)('VaVb,l) V elbA »b, 'Vb) VI) ['Va, 'VaVa).

PROOF. Observe that

[O,'VbAa) E 1)['VaVb, 1), ('VbAa, 'VbAb) E I)(a,b),

('VbA b, 'Vb) E I) (bA 'Vb, 'Vb), ('Vb, 'Va) E I) (a,b) ,

('Va, 'Va Va) E I) ('Va, 'Va Va) , ('Va v o , 'Va Vb) EO (a,b) and
( 'Va Vb, 1 J E I) ( 'Va Vb, 1) •

Thus if ~ denotes the congruence on the right side of the above equation then we
just observed that I) (a,b) V9> = 1)(0, 1). Finally using the previous Lemma it is
straightforward to verify that I)(a,b) II ~ = ~. •

The following theorem reveals the nice structure of congruence lattices of De
Morgan algebras.

THEOREM 3.11. CQn A -U a d-UtJUbu.Uve algebtuUc .ea.:t:Uce who.oe eompact e1.e-
merLt6 n0!U11 a Boolean .6U.b.ea.:t:Uee.

PROOF, From Lemma 3.9 and distributivity of Con A it readily follows that
the meet of compact elements is compact in Con A and thus the compact elements
in Con A form a sublattice. Finally the fact that this sub1attice is Boo1 ean
follows from Lemma 3.10, thus the proof is complete. •

Finally we remark that in view of Theorem 3.8 the converse to the above theo·
rem is true if A is finite, however it is not known if it holds in general.
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