ARTINIAN RINGS IN WHICH ONE SIDED IDEALS ARE QUASI-PROJECTIVE

By
D. A. HILL (Dublin-Salvador)

Introduction

For a ring R, an R-module M is said to be quasi-injective in case the natural homomorphism $\operatorname{Hom}_{R}(M, M) \rightarrow \operatorname{Hom}_{R}(K, M)$ is epic for all submodules K of M. Dually M is said to be quasi-projective in case the natural homomorphism $\operatorname{Hom}_{R}(M, M) \rightarrow \operatorname{Hom}_{R}(M, N)$ is epic for all factor modules N of M. Rings whose left ideals are quasi-injective have been studied by a number of authors ([3], [5], [7]), and for suitable conditions on the ring a number of structure theorems have been obtained ([5], [7]). The main object of this paper is to investigate artinian rings whose left ideals are quasi-projective. These rings include artinian hereditary rings, but many examples exist which are not hereditary. (See Section 4.)

The first three sections are devoted to characterizing artinian rings whose left ideals are quasi-projective. The main theorem (Theorem 3.5) appears in Section 3. There, these rings are characterized in terms of their primitive idempotents and two sided ideals i.e., given a basic set of primitive idempotents and the set of ideals of an artinian ring R, it is possible to determine if R has all left ideals quasi-projective by considering each left R-module $J^{\alpha} e$ where α is a positive integer, J is the Jacobson radical and e is a primitive idempotent. It will be shown that $J^{\alpha} e$ must have a certain decomposition for rings with left ideals quasi-projective, and that with the addition of a suitable hypothesis, this decomposition completely determines such rings.

The final section is devoted to a number of examples to show that the conditions of the structure theorems in 3 are necessary and the best possible.

We shall use the following notation. The ring R is associative with unity. The letter J denotes the Jacobson radical and ${ }_{R} M\left(M_{R}\right)$ signifies that M is a left (right) R-module. The socle of a module M, which is the largest semi-simple submodule of M, will be denoted by $S(M)$. When R is semi-local (i.e., R / J is artinian semi-simple), the semi-simple module $M / J M$, called the top of M, will be denoted by $T(M)$. Also the notation $M^{(A)}$ means $\oplus \Sigma M_{\alpha}$ where $M_{\alpha} \cong M$.

Preliminaries

A number of concepts will be needed in the development of the results which follow. We begin with the following

Defintion. Let P be a projective R-module. Then P is said to be hereditary in case every submodule of P is projective.

Clearly any submodule of a hereditary module is again hereditary. Also observe that for a given set $\left\{P_{\alpha}\right\}_{\alpha \in A}$ of hereditary modules, the direct sum $\oplus \Sigma P_{\alpha}$ is
always hereditary ([6], Proposition 7, page 85). Although many rings with left (right) ideals quasi-projective are not hereditary, a common feature of many of these rings is that they possess a 'large' hereditary left ideal.

We also will need the following lemmas which allow us to simplify some of the proofs in much of the subsequent work. Recall that a module Q is said to be projective relative to M if for all factor modules N of M the natural homomorphism $\operatorname{Hom}_{R}(Q, M) \rightarrow \operatorname{Hom}_{R}(Q, N)$ is epic. The class of modules to which Q is projective is closed under taking submodules, factors, and finite direct sums [8]. From this it is easily seen that $M_{1} \oplus M_{2}$ is quasi-projective if and only if M_{i} is projective relative to M_{j} for $i, j=1,2$.
1.1. Lemma. Let R be a ring. Suppose the module $\operatorname{Re} \oplus \operatorname{Re} / I e$ is quasi-projective where e is a primitive idempotent and Ie is a left ideal. Then $I e=0$.

Proof. By ([8], Proposition 1.2), Re/Ie is projective relative to Re. Thus the map $R e \rightarrow R e / I e$ splits. Since e is primitive, this forces $I e=0$.
1.2. Lemma. Let R be a ring with every left ideal quasi-projective. Let f be a primitive idempotent and I a left ideal such that $I \cap R f=0$. Suppose $f I \neq 0$. Then there exists a monomorphism $\varphi: R f \rightarrow I$, given by right multiplication of an element $x \in I$.

Proof. Since $f I \neq 0$, there exists an $x \in I$ such that $f x \neq 0$. Let φ be the map given by right multiplication of x. Then $R f / K f \cong \operatorname{Im}(\varphi) \subseteq I$. As $I \cap R f=0$, $R f \mid K f \oplus R f$ is isomorphic to a left ideal of R. Hence by $1.1, K f=0$. This shows that φ is monic.

2. The Loewy series decomposition

For a left R-module M, the Loewy series is the sequence of left R-modules

$$
M \supset J M \supset \ldots \supset J^{k} M \supset \ldots
$$

The k-th Loewy factor is the module $J^{k-1} M / J^{k} M$. One defines the Loewy series, for right modules in a similar way. The Loewy series will be used to obtain a decomposition for artinian rings whose left ideals are quasi-projective. In light of this, we make the following

Definition. Let R be left artinian and e a primitive idempotent. Let

$$
R e \supset J e \supset \ldots \supset J^{n} e \supset 0
$$

be the Loewy series for $R e$. For each α such $1 \leqq \alpha \leqq n, J^{\alpha} e$ may be decomposed into a direct sum of indecomposables say $J^{\alpha} e=\oplus \sum_{i_{\alpha}=1}^{k_{\alpha}} I_{i_{\alpha}}$. Then we may express the Loewy series as,

$$
R e \supset \oplus \sum^{k_{1}} I_{i_{1}} \supset \ldots \supset \oplus \sum^{k_{n}} I_{i_{n}} \supset 0
$$

The above expression will be called a Loewy series decomposition for the module Re.
It will be shown that rings with every left ideal quasi-projective have a particularly nice Loewy series decomposition for each of their principal indecomposable projective modules. This Loewy series decomposition will be used to characterize
left artinian rings with every left ideal quasi-projective in terms of the primitive idempotents and two sided ideals of the ring.

Remark. Note that for each $\alpha>0, J^{\alpha} e$ has a unique decomposition using the Krull-Schmidt theorem for artinian rings.

Thus the Loewy series decomposition for each principal indecomposable projective is unique up to isomorphism.

The remainder of this section will be devoted to obtaining the Loewy series decomposition for each $R e$, where e is a primitive idempotent and R is an artinian ring with every left ideal quasi-projective.
2.1 Lemma. Let R be a left artinian ring with every left ideal quasi-projective. Let f be any primitive idempotent and $L \subseteq R f$ a left ideal. Then L admits a decomposition $L=P \oplus K$ such that:
(1) P is projective and $f P=0$.
(2) $K \cong(R f / I f)^{(n)}$ for some two sided ideal I.

Here either P or K may be 0 .
Proof. The left ideal L is quasi-projective, so by ([4], Theorem 1.10),

$$
L \cong\left(R e_{1} / I e_{1}\right)^{\left(n_{1}\right)} \oplus \ldots \oplus\left(R e_{k} / I e_{k}\right)^{\left(n_{k}\right)}
$$

where $\left\{e_{j}\right\}_{j=1}^{k}$ are a set of primitive orthogonal idempotents and $R e_{i} \neq R e_{j}$ when $i \neq j$, and I is a 2 -sided ideal in R. As $R e_{j} \neq R f$ for all j with at most one possible exception, let $P \cong \oplus \Sigma\left(R e_{j} / I e_{j}\right)^{\left(n_{j}\right)}$ where $1 \leqq j \leqq k$ and $R e_{j} \nsupseteq R f$. Then there exists for each j, a left ideal isomorphic to $R e_{j} \oplus R e_{j} / I e_{j}$, where $R e_{j} \nsupseteq R f$. By 1.1 $I e_{j}=0$. Hence $P \cong \oplus \Sigma\left(R e_{j}\right)^{\left(n_{j}\right)}$. Now suppose $f P \neq 0$. Using 1.2 there is an isomorphic copy of $R f$ contained in $P \cong L$ contradicting R left artinian. Thus $f \cdot P=0$; and $L \cong P$ or $L \cong P \oplus(R f / I f)^{(n)}$ depending on whether there exists $R e_{j} \cong R f$ for some $j \leqq k$.
2.2 Lemma. Let R be left artinian with every left ideal quasiprojective, and let P and f be as in Lemma 2.1. Then P is hereditary.

Proof. Consider $K \subseteq P$. Then

$$
K \cong\left(R f_{1} / I f_{1}\right)^{\left(n_{1}\right)} \oplus \ldots \oplus\left(R f_{m} / I f_{m}\right)^{\left(n_{m}\right)}
$$

where each f_{j} is a primitive idempotent and I is a two sided ideal. By $2.1 f K=0$ which implies that each $R f_{j} \not \approx R f,(1 \leqq j \leqq m)$. Hence, there exists a left ideal isomorphic to $R f_{j} \oplus R f_{j} / I f_{j}$. So by 1.1. If $f_{j}=0$ for each j. This shows that K is projective, so P is hereditary.
2.3 Lemma. Let R be left artinian with every left ideal quasi-projective. Let K be as in Lemma 2.1. Suppose $K \cong(R f / I f)^{(n)}$ where $n>1$ and f a primitive idempotent, I a two sided ideal. Then
(1) $f \cdot J K=0$ i.e., $J K$ has no composition factor isomorphic to $T(R f)$.
(2) $J K$ is hereditary.

Proof. Suppose that $f \cdot J K \neq 0$. Then $f \cdot J f f I f \neq 0$. This induces a homomorphism of $R f$ into $J f / I f$. Hence there is a factor module of $R f, N \subseteq J f / I f$. Since K is a direct sum of at least two copies of $R f / I f$, there is a submodule of \bar{K} isomorphic to $N \oplus R f / I f$.

Thus N is projective relative to $R f l l f$. Using this and that $T(N) \cong T(R f)$, we have the following diagram,

in which the map π can be extended to a map $\varphi: N \rightarrow R f / I f$. But φ is epic since $J f / I f$ is superfluous in $R f / I f$. Thus $R f / I f$ is isomorphic to an epimorphic image of N. This contradicts R being left artinian.

To prove (2), we need only note that as $J K$ is quasi-projective $J K \cong \oplus \Sigma R e_{\alpha} / I e_{\alpha}$ where each $R e_{\alpha} \not \equiv R f$. Thus $I e_{\alpha}=0$ for each e_{α} follows from 1.2. This shows that $J K$ is projective. The proof that $J K$ is hereditary is similar to the proof of 2.2.

Lemma's 2.1, 2.2, 2.3 provide the motivation for the following
Defintion. We will say that a left artinian ring R has a Loewy series decomposition of type $q p$ if the following conditions hold: For each primitive idempotent $f, J^{\alpha} f=$ $=K_{\alpha} \oplus P_{\alpha}$ where P_{α} is hereditary, and $K_{\alpha} \cong\left(R f f I_{\alpha} f\right)^{\left(n_{\alpha}\right)}$ where I_{α} is some two sided ideal.

The K_{α}, P_{α} satisfy,

1. $K_{1} \supset K_{2} \supset \ldots \supset K_{n}=0$ and $J K_{\alpha}=K_{\alpha+1} \oplus Q_{\alpha+1}, Q_{\alpha+1} \subset P_{\alpha+1}$.
2. If $K_{1} \cong\left(R f \mid I_{1} f\right)^{\left(n_{1}\right)}, n_{1}>1$, then $K_{\alpha}=0, \alpha>1$.
3. If $K_{1} \cong R f / I_{1} f$ then for $\alpha>1$ where $K_{\alpha} \neq 0, \mathrm{~K}_{\alpha} \cong R f / I_{\alpha} f$.
2.4 Proposition. Let R be a left artinian ring with every left ideal quasi-projective. Then R has a decomposition of type qp.

Proof. Let f be any primitive idempotent. Then by 2.1 and $2.2, J^{\alpha} f=K_{\alpha} \oplus P_{\alpha}$ where $K_{\alpha} \cong\left(R f / I_{\alpha} f\right)^{\left(n_{\alpha}\right)}, P_{\alpha}$ is hereditary, and I_{α} is a two sided ideal. To show (1) we use induction to construct $K_{\alpha+1}$ and $P_{\alpha+1}$ from K_{α} and P_{α} as follows: Let $J^{\alpha+1} f=$ $=J\left(K_{\alpha} \oplus P_{\alpha}\right)=J K_{\alpha} \oplus J P_{\alpha}$. By 2.1 and 2.2, $J K_{\alpha}=K_{\alpha+1} \oplus Q_{\alpha+1}$ where $Q_{\alpha+1}$ is hereditary and $K_{\alpha+1} \cong\left(R f / I_{\alpha+1} f\right)^{n_{\alpha+1}}$. Clearly $K_{\alpha+1} \subset K_{\alpha}$. Now $J^{\alpha+1} f=K_{\alpha+1} \oplus Q_{\alpha+1} \oplus J P_{\alpha}$. Let $P_{\alpha+1}=Q_{\alpha+1} \oplus J P_{\alpha}$. Then $P_{\alpha+1}$ is hereditary and $Q_{\alpha+1}$ is a direct summand of $P_{\alpha+1}$.

For statement (2), we note that it follows easily from 2.3. For (3) let $K_{1} \cong$ $\cong R f \mid I_{1} f \subseteq J f$. Suppose $K_{\alpha} \cong R f / I_{\alpha} f$ and $K_{\alpha+1} \cong\left(R f / I_{\alpha+1}\right)^{\left(n_{\alpha+1}\right)}$ where $n_{\alpha+1} \geqq 1$. Then $R \bar{f} \rightarrow K_{\alpha} \rightarrow 0$ whence $J f \rightarrow J K_{\alpha} \rightarrow 0$. Now using that $J f / J^{2} f$ has one isomorphic copy of $T(R f)$ we have $T\left(K_{\alpha+1}\right) \cong T(R f)$. So $n_{\alpha+1}=1$.

Remark. In the future the terminalogy $K_{\text {subseript }}, P_{\text {subscript }}$ will be used to stand for the modules K_{α}, P_{α} when $J^{\alpha} f=K_{\alpha} \oplus P_{\alpha}$ whenever R has a decomposition of type $q p$ and f is a primitive idempotent.

3. Left artinian rings whose left ideals are quasi-projective

The Loewy series decomposition of type $q p$ will now be used to characterize the rings of this section. An additional property must be satisfied by the above decomposition in order to completely determine the structure of these rings. This is indicated by the following
3.1 Lemma. Let R be as in Lemma 2.1. Suppose $J^{\alpha} f=K_{\alpha} \oplus P_{\alpha}$ where $K_{\alpha} \cong$ $\cong(R f \mid I f)^{(n)}$. Then for any indecomposable projective left ideal $P, P \cong R e$, e a primitive idempotent, such that $P \cap K_{\alpha}=0$, we have $e \cdot K_{\alpha} \neq 0$ if and only if there exists an isomorphic copy of P contained in K_{α}.

Proof. If $e \cdot K_{\alpha} \neq 0$, then by $1.2 K_{\alpha}$ contains a copy of $R e$ whenever $R e \neq R f$. Otherwise 1.1 applies and K_{α} contains a copy of $R f$, a contradiction to R artinian.

We now examine the left ideals of rings possessing a decomposition of type $q p$.
3.2 Lemma. Let R be a left artinian ring with a decomposition of type qp. Then for any left ideal $L \subseteq R f, f$ a primitive idempotent, $L \cong M_{\alpha} \oplus N$, where N is hereditary, and $M_{\alpha} \cong\left(R f / \bar{I}_{\alpha} f\right)^{\left(n_{\alpha}\right)}$ where M_{α} is a direct summand of K_{α} and $J^{\alpha} f=K_{\alpha} \oplus P_{\alpha}$.

Proof. Since $L \subseteq R f$, there exists α_{1} such that $L \subseteq J^{\alpha_{1}} f, L \nsubseteq J^{\alpha_{1}+1} f$. Since $J^{\alpha_{1}} f=K_{\alpha_{1}} \oplus P_{\alpha_{1}}$ the restriction to L of the canonical projection of $J^{\alpha_{1}} f$ onto $P_{\alpha_{1}}$ maps L onto a submodule $L_{\alpha_{1}}$ of $P_{\alpha_{1}}$. As $P_{\alpha_{1}}$ is hereditary, $L_{\alpha_{1}}$ is projective, hence $L \cong$ $\cong L_{\alpha_{1}} \oplus M_{\alpha_{1}}$ where $L_{\alpha_{1}} \subseteq P_{\alpha_{1}}, M_{\alpha_{1}} \subseteq K_{\alpha_{1}}$.

Now we consider two cases:
Case 1: $\alpha_{1}=1, K_{1} \cong\left(R f / I_{1} f\right)^{\left(n_{1}\right)}, n_{1}>1$. Consider the restriction to M_{1} of the canonical projection π of K_{1} onto each of the indecomposable summands $I \cong R f / I_{1} f$ of K_{1}. If the restriction is epic for one of the indecomposable direct summands $I, M_{1} \subseteq K_{1}$ and I quasi-projective imply that $M_{1} \cong I \oplus M_{2}$ where $M_{2} \subseteq K_{1}$. Now apply the same argument to M_{2} as was done to M_{1} in case one of the projections onto an indecomposable direct summand of K_{1} is epic when restricted to M_{2}. Since K_{1} is a finite direct sum of indecomposable quasi-projective modules, continue the process until

$$
M_{1} \cong\left(R f / I_{1} f\right)^{(s)} \oplus M_{s+1}, \quad s \leqq n_{1}
$$

and $M_{s+1} \subsetneq K_{1}$ has the property that for each $\pi: K_{1} \rightarrow I$, when restricted to M_{s+1} is not epic. This means that $\pi\left(M_{s+1}\right) \subseteq J I$ for all indecomposable I in the direct sum decomposition of K_{1}. Therefore,

$$
M_{s+1} \subseteq J K_{1} \subseteq J\left(K_{1} \oplus P_{1}\right)=J^{2} f
$$

But by property 2 of the Loewy series decomposition of type $q p, J^{2} f=P_{2}, P_{2}$ hereditary. Hence M_{s+1} is hereditary. Setting $N=M_{s+1} \oplus L_{1}$, we have $L \cong N \oplus M_{s}$ where $M_{s} \cong\left(R f / I_{1} f\right)^{(s)}$. Thus the conditions of the lemma are satisfied.

Case 2: $K_{\alpha_{1}} \cong R f / I_{\alpha_{1}} f$. If $M_{\alpha_{1}}=K_{\alpha_{1}}$ there is nothing to prove. Otherwise

$$
M_{\alpha_{1}} \subseteq J K_{\alpha_{1}} \subseteq P_{\alpha_{2}} \oplus K_{\alpha_{2}}=J^{\alpha_{2}} f
$$

where $\alpha_{2}=\alpha_{1}+1$. The projection $\pi: J^{\alpha_{2}} f \rightarrow P_{\alpha_{2}}$ maps $M_{\alpha_{1}}$ onto a hereditary submodule $L_{\alpha_{2}}$ of $P_{\alpha_{2}}$. Hence $M_{\alpha_{1}} \cong L_{\alpha_{2}} \oplus M_{\alpha_{2}}, M_{\alpha_{2}} \cong K_{\alpha_{2}}$. If $K_{\alpha_{2}}=0$, we are through.

Otherwise, property 3 of a Loewy series of type $q p$ implies that $K_{\alpha_{2}} \cong R f f I_{\alpha_{2}} f$. If $K_{\alpha_{2}}=M_{\alpha_{2}}$ there is nothing more to prove. Otherwise, using that R is artinian, we can continue the process s number of times until we obtain $M_{\alpha_{s}}$ such that $M_{\alpha_{s}}$ is hereditary or $M_{\alpha_{s}} \cong L_{\alpha_{s+1}} \oplus M_{\alpha_{s+1}}, L_{\alpha_{s+1}}$ hereditary, $M_{\alpha_{s+1}} \cong R f I_{\alpha_{s+1}} f$. Let $N=\oplus \sum_{i=1}^{s+1} L_{\alpha_{i}}$. Then $L \cong N$ or $L \cong N \oplus M_{\alpha_{s+1}}$. In either case the lemma is satisfied. This completes the proof.
3.3. Lemma. Suppose R has a decomposition of type qp and satisfies the conclusion of 3.1. Then K_{α} is projective relative to P where P is a projective left ideal such that $K_{\alpha} \cap P=0$. Thus $K_{\alpha} \oplus P$ is quasi-projective.

Proof. Clearly the last statement follows from the first and the remark before 1.1. Recall that $K_{\alpha} \cong(R f / I f)^{(n)}$ where K_{α} is a direct summand of $J^{\alpha} f$, and f is a primitive idempotent. Now $P=\oplus \sum^{k} P_{i}, P_{i} \cong R e_{i}$, where each $e_{i} \in R$ is a primitive idempotent. We show that K_{α} is projective relative to P by first showing that it is projective relative to each P_{i}. So let g be a map $g: K_{\alpha} \rightarrow P_{i} / K_{i}, P_{i} / K_{i}$ a factor module of P_{i}, and π a map $\pi: P_{i} \rightarrow P_{i} / K_{i}$ which is epic. Now consider the module

$$
H=\left\{x \in P_{i}: \pi(x) \in \operatorname{Im}(g)\right\}
$$

By 3.2,

$$
\begin{equation*}
H=H_{1} \oplus \ldots \oplus H_{t-1} \oplus\left(H_{t}\right)^{(s)} \tag{1}
\end{equation*}
$$

where $H_{j} \cong R f_{j}, 1 \leqq j \leqq t-1, f_{j} \in R$ a primitive idempotent, and $H_{t}=R e_{i} / / e_{i}, H_{t}$ quasi-projective. In the following discussion set $e_{i}=f_{t}$.

Let $H=M_{1} \oplus M_{2}$ where M_{2} is the direct sum of all the indecomposable modules in (1) contained in the ker (π). Hence for each indecomposable module $H_{j} \subseteq M_{1}, K_{\alpha}$ has a composition factor isomorphic to $T\left(R f_{j}\right)$. This implies that $f_{j} K_{\alpha} \neq 0$ for each $H_{j} \subseteq M_{1}$. Clearly each $H_{j} \cap K_{\alpha}=0$ for $1 \leqq j \leqq t-1$. Thus for each $H_{j} \subseteq M_{1}$, ($1 \leqq j \leqq t-1$) there is an isomorphic copy of H_{j} contained in K_{α} since R satisfies the conclusion of 3.1. By the same argument, if $H_{t} \subseteq M_{1}, P_{i} \cap K_{\alpha}=0$ implies that K_{α} contains an isomorphic copy of P_{i}. These two statements imply that K_{α} is projective relative to M_{1}. Thus it is possible to extend g to M_{1} (and hence to H). So K_{α} is projective relative to $R e_{i}$ for each i, and is therefore projective relative to P.
3.4 Lemma. Let R be a left artinian ring. Suppose R has a decomposition of type qp and satisfies the conclusion of 3.1. If $1=\sum^{k} e_{i}$, where $\left\{e_{i}\right\}$ is a set of primitive orthogonal idempotents, then for any left ideal $L \cong R, L$ is quasi-projective and $L \cong$ $\cong \oplus \sum^{k}\left(M_{\alpha_{i}} \oplus N_{i}\right)$ where $M_{\alpha_{i}} \oplus N_{i} \cong R e_{i}$ and N_{i} is hereditary, $M_{\alpha_{i}}$ a direct summand of $K_{\alpha_{i}}, K_{\alpha_{i}}$ as in 3.2.

Proof. We first show that any left ideal of the form $L=L_{1} e_{1} \oplus \ldots \oplus L_{k} e_{k}$ is quasi-projective where $L_{i}, i=1, \ldots, k$, are left ideals.

By 3.2, $L_{i} e_{i}=M_{\alpha_{i}} \oplus N_{i}$ where $M_{\alpha_{i}} \cong\left(R e_{i} / I e_{i}\right)^{\left(n_{\alpha_{i}}\right)}$ and N_{i} is hereditary. Thus $L=\oplus \Sigma M_{\alpha_{i}} \oplus N_{i}$. Using 3.3, $M_{\alpha_{i}}$ is projective relative to N_{j} for all $1 \leqq j \leqq k$. Since $M_{\alpha_{i}} \subseteq R e_{i}$, and $R e_{i} \cap R e_{j}=0$ for $j \neq i$, 3.3 implies that $M_{\alpha_{i}}$ is projective relative to $R e_{j}$. Since $M_{x_{i}}$ is a direct sum of factor modules of $R e_{j}, M_{\alpha_{i}}$ is projective relative to
$M_{\alpha_{j}}(i \neq j)$. Now using the remark before 1.1 and the quasi-projectivity of each $M_{\alpha_{i}}$, it is easily seen that $\oplus \Sigma L_{i} e_{i} \cong \oplus \Sigma M_{x_{i}} \oplus N_{i}$ is quasi-projective.

We need only show that $L=\oplus \Sigma L_{i} e_{i}$ for suitably chosen left ideals $L_{i}, i=1, \ldots, k$. As $L \subseteq \oplus \Sigma L e_{i}$, and $\oplus \Sigma L e_{i}$ is quasi-projective by the previous remarks, $L e_{1}$ is projective relative to L by the remark before 1.1. Thus, the canonical epimorphism $\pi_{1}: L \rightarrow L e_{1}$ given by right multiplication by e_{1} splits. Hence $L \cong L e_{1} \oplus L_{2}$ where $L_{2} \subseteq L$, and $L_{2} e_{1}=0$. Now there exists a canonical epimorphism π_{2} of L_{2} onto $L_{2} e_{2}$. Using that $L_{2} \subseteq \oplus \Sigma L_{2} e_{i}$ quasi-projective, we can apply the same argument on L_{2} as on L. Thus $L_{2} \cong L_{2} e_{2} \oplus L_{3}$ where $L_{3} \subseteq L_{2}$ and $L_{3} e_{2}=0$. By the application of this argument for at most k times, L can be expressed as

$$
L \cong L e_{1} \oplus L_{2} e_{2} \oplus \ldots \oplus L_{k} e_{k} \oplus L_{k+1}
$$

where $L_{i} \cong L_{i} e_{i} \oplus L_{i+1}, L_{i+1} \cong L_{i}, \quad$ and $L_{i+1} e_{i}=0$. Since $L \supseteq L_{2} \supseteq \ldots \supseteq L_{k} \supseteq L_{k+1}$ and $L_{i+1} e_{i}=0$, we have $L_{k+1} e_{i}=0(1 \leqq 1 \leqq k)$. So $L_{k+1}=0$. Therefore $L \cong L e_{1} \oplus$ $\oplus L_{2} e_{2} \oplus \ldots \oplus L_{k} e_{k}$. By the remarks at the beginning of the proof, L is quasi-projective,

Now the following theorem can be proved which completely characterizes the left artinian rings whose left ideals are quasi-projective.
3.5 Theorem. Let R be a left artinian ring. Then R has every left ideal quasiprojective if and only if R satisfies the following conditions:
(1) For each primitive idempotent $f, R f$ has a decomposition of type $q p$.
(2) For each K_{α} such that $J^{\alpha} f=K_{\alpha} \oplus N_{\alpha} \subseteq R f$, and indecomposable projective left ideal $P, P \cong R e, e$ a primitive idempotent, such that $P \cap K_{\alpha}=0$, either $e \cdot K_{\alpha}=0$ or K_{α} contains an isomoprhic copy of P.

Proof. \Rightarrow follows from 2.4 and $3.1 . ~ \Leftarrow$ is a consequence of 3.4.

4. Examples

This section presents a number of examples of rings which serve to illustrate the main features of the decomposition used to characterize rings with every left ideal quasi-projective. The first two examples show that such rings cannot be completely characterized by their Loewy decomposition for each principal indecomposable module - we really need to know the two sided ideals of the ring. The following notation will be used. The 2-sided ideal $l_{R}(M)=\{x \in R: x M=0\}$ is the left annihilator of the module M. It is known that for left artinian rings M is quasi-projective if and only if M is projective over $R / l_{R}(M)$ [2].

1. Let F be a field and R the ring of matrices of the form,

$$
R=\left\{\begin{array}{cccc}
\overline{\mid \alpha} & \lambda_{4} & \lambda_{3} & \overline{\lambda_{2}} \\
0 & \gamma & 0 & \lambda_{1} \\
0 & 0 & \gamma & \lambda_{1} \\
\mid \underline{0} & 0 & 0 & \underline{\gamma} \mid
\end{array}\right\} \quad\left(\lambda_{i} \in F, i=1, \ldots, 4, \alpha, \gamma \in F\right)
$$

with primitive idempotents

Then $J e_{2} \cong T\left(R e_{1}\right) \oplus T\left(R e_{1}\right) \oplus K$ where K is a uniserial left ideal with $T(K) \cong$ $\cong T\left(R e_{2}\right), S(K) \cong T\left(R e_{1}\right)$. So the Loewy series decomposition for $R e_{2}$ is

$$
\left.\begin{gathered}
\mid \cong T\left(R e_{2}\right) \\
T\left(R e_{2}\right) \\
T\left(R e_{1}\right) \mid
\end{gathered}\left|T\left(R e_{1}\right)\right| T\left(R e_{1}\right) \right\rvert\,
$$

However, the decomposition for $R e_{2}$ is not of type $q P$. For R does not have every left ideal quasi-projective as the uniserial left ideal

$$
K=\left\{\begin{array}{cccc}
\overline{0} & 0 & 0 & \overline{\lambda_{2}} \mid \\
& 0 & 0 & \lambda_{1} \\
& & 0 & \lambda_{1} \\
\mid & & & 0 \mid
\end{array}\right\}
$$

is not quasi-projective, since K is not projective over $R / l_{R}(K)=R / K$.
The next example gives a ring with every left ideal quasi-projective and with a Loewy series decomposition the same as the ring in 1.
2. Let F be a field and R the ring of matrices of the form,

$$
R=\left\{\begin{array}{cccccc}
\overline{\mid \alpha} & \lambda_{3} & \lambda_{2} & & & \\
& \gamma & \lambda_{1} & & 0 & \\
& & \gamma & & & \\
& & & \alpha & \lambda_{3} & \lambda_{4} \\
& 0 & & & \gamma & \lambda_{1} \\
\underline{1} & & & & \underline{\gamma| |}
\end{array}\right\}
$$

with primitive idempotents

It is easily checked that

$$
K=\left\{\begin{array}{cccccc}
{\left[\begin{array}{cccccc}
0 & 0 & \lambda & & & \\
& 0 & \lambda_{1} & & 0 & \\
& & 0 & & & \\
& & & 0 & 0 & \lambda \\
& 0 & & & 0 & \lambda_{1} \\
\mid & & & & & 0 \mid
\end{array}\right), ~}
\end{array}\right.
$$

where K is generated by the element

Thus $J e_{2} \cong T\left(R e_{1}\right) \oplus T\left(R e_{1}\right) \oplus K$ where $K=R x$ is a uniserial module such $T(K) \cong$ $\cong T\left(R e_{2}\right), S(K) \cong T\left(R e_{1}\right)$.

So the Loewy series decomposition is of form,

It is easily checked that K is projective over $R / l(K)$ and in fact that every left ideal is quasi-projective.
3. This example gives a ring with every left ideal quasi-projective, with a Loewy series decomposition for a principle indecomposable $R e_{2}$ such that $J e_{2} / J^{2} e_{2}$ has more than one copy of $T\left(R_{2}\right)$. Let K be a field, and R the set of matrices of the form.

$$
R=\left\{\begin{array}{cccccc}
\bar{\alpha} & \lambda_{3} & \lambda_{2} & & & \bar{l} \\
& \gamma & \lambda_{1} & & 0 & \\
& & \gamma & & & \\
& & & \alpha & \lambda_{3} & \lambda_{5} \\
& 0 & & & \gamma & \lambda_{4} \\
& & & & & \gamma \mid
\end{array}\right\}\left(\alpha, \gamma \in K, \lambda_{i} \in K, i=1, \ldots, 5\right) .
$$

with primitive idempotents

It is easily checked that R has every left ideal quasi-projective and that $J e_{2} \cong T\left(R e_{1}\right) \oplus$ $\oplus K_{1} \oplus K_{2} \quad$ where $K_{1} \cong K_{2}$ and $T\left(K_{1}\right) \cong T\left(R e_{2}\right), S\left(K_{1}\right) \cong T\left(R e_{1}\right)$.

So the Loewy series decomposition for $R e_{2}$ is

$$
\begin{array}{c|c|}
& \mid T\left(R e_{2}\right) \\
T\left(R e_{2}\right) \\
T\left(R e_{1}\right) & \left|\begin{array}{l}
T\left(R e_{2}\right) \\
T\left(R e_{1}\right)
\end{array}\right| T\left(R e_{1}\right)
\end{array}
$$

4. This example shows that condition (2) of 3.5 is necessary by exhibiting a ring with a Loewy series of type $q p$ without having all left ideals quasi-projective.

Let S be any local uniserial ring with a composition series of length 2 , so that $J S \cong T(S)$. Define R to be the matrix ring $M_{n}(S), n$ an integer such that $n>1$. Then for any primitive idempotent $e \in R, T(R e) \cong S(R e)$. So it is easily seen that R has a Loewy series decomposition of type $q p$. But for f any primitive idempotent such that $R f \cap R e=0$, we must have $f J e \neq 0$. Thus condition 2 does not hold. Clearly R does not have every left ideal quasi-projective since $R e \oplus T(R e)$ is not quasiprojective.

References

[1] F. W. Anderson and K. R. Fuller, Rings and categories of modules, Springer-Verlag (New York-Heidelberg-Berlin, 1973).
[2] K. R. Fuller, On direct representations of quasi-injectives and quasi-projectives, Arch. Math., 20 (1969), 495-502.
[3] S. Jain, S. H. Mohamed, S. Singh, Rings in which every right ideal is quasi-injective, Pac. J. Math., 31 (1969), 73-79.
[4] A. Koehler, Quasi-projective and quasi-injective modules, Pac. J. Math., 36 (1971), 713-720.
[5] A. Koehler, Rings in which every cyclic module is quasi-projective, Math. Ann., 189 (1970), 311-316.
[6] J. Lambek, Lectures in rings and modules, Waltham (1966).
[7] S. H. Mohamed, q-rings with chain conditions, J. London Math. Soc., (2), 2 (1970), 455-460.
[8] E. Robert, Projectives et injectives relatifs, C. R. Acad. Sci. Paris, Ser. A. B., 286 (1969), Ser. A. 361-364.
(Received August 5, 1980; revised June 15, 1981)

```
TRINITY COLLEGE
DUBLIN, IRELAND
AND
INSTITUTO DE MATEMATICA
UNIVERSIDADE FEDERAL DA BAHIA
SALVADOR, BAHIA, BRASIL
```

